
TABLE OF CONTENTS

INTRODUCTION TO UTILITIES. 1
ABOUT UTILITIES.. 1

The Appendices 2
UTILITY CONVENTIONS ... 2

Screen Navigation 2
PLATFORM DIFFERENCES.. 3
MAXIMUM NUMBER OF TABLES ... 3
WHERE DO I GO FROM HERE?... 4

FILE MANAGEMENT . 7
COPYFILE ...7

What it does 7
When to use it 7
How to use it 7
Options 8

MAKECASE...10
What it does 10
When to use it 10
How to use it 11
Input Files 11
Output Files 11
Sample Output 12
Options 13

MERGE..13
What it does 13
When to use it 13
How to use it 14
Version 8.1 1
•
•
•
•
•
•

2

•
•
•
•
•
•

Input files 14
Output files 14
Moving Data 15
Writing MERGE specifications in Mentor 15
MERGE options 16
Data Manipulation Statements 20
MERGE_defaults 21
Sample output 22
Options 23

DBUTIL ..24
What it does 24
When to use it 24
How to use it 24
Options 25

RAWCOPY ..26
What it does 26
When to use it 26
How to use it 26
Input files 27
Output files 27
Options 27

REFORMAT...27
What it does 27
When to use it 28
How to use it 28
Input files 28
Output files 28
Sample output 29
Qff or Db file 33
Map and Data File Options 33
Data File Format Options 34
Data File Spreading Options 38
Using spec language 42

DATA ANALYSIS . 47
Hole ...47

What it does 47
When to use it 47
How to use it 47
Input files 48
Output files 48

Sample output 48
Options 51

SCAN...54
What it does 54
When to use it 55
How to use it 55
Input files 55
Output files 56
Options 57

LIST ...62
What it does 62
When to use it 62
How to use it 62
Input files 63
Output files 63
Sample output 63
Options 65

Data Alteration. 69
CLEANIT..69

What it does 69
When to use it 69
How to use it 69
Input files 70
Sample cleaning session 70

Other cleaning commands.. 78
Deleting a case 78
Repeating commands 78
Finding a case 78
Showing variables 79
Defining procedures 79
Restoring a case 80
Viewing a questionnaire 80
Modifying case IDs 80

CODEEDIT ..82
What it does 82
When to use it 82
How to use it 83

VERBEDIT...83
What it is 83
How to use it 83
 3
•
•
•
•
•
•

4

•
•
•
•
•
•

Customizing CfMC Software . 85
CFMCMENU..85

What it does 85
When to use it 85
How to use it 85
Options 87

MAKEMSG ..88
What it does 88
When to use it 88
How to use it 88
Which message file? 88
Options 89
Input files 90
Output files 90
Points to note 90

Meta Commands . 93
RULES OF META COMMANDS .. 93
META COMMANDS AND THEIR SYNTAXES... 94

Allowed Abbreviations . 145
COMMANDS AND ABBREVIATIONS.. 145
LIST OF ABBREVIATIONS .. 147

Glossary. 183
GLOSSARY OF CFMC TERMS ... 183

CfMC Conventions . 199
Comment Out (‘ ’) ... 199
Spec file .. 199
List File ... 200
Command Line Keywords... 201

CONFIG:<configfile> 202
CORE:<bytes> 203
DEFINE@<keyword>=<value> (=<valuen>) 203
DUMP:switch 204
INFILE:<spec file> 204
LDEV:# 204
LISTFILE:<listfile>,option1 ... 204
*<filename> 205
List file options 205

SPEC_WID:### 212
Using DOS Variables in the File Name... 212
Program-Generated File Extensions .. 212

Ampersand Referencing (&<specfile>) 214
Ctrl-Y or Ctrl-C or Ctrl-<intr>... 215
Renaming Files ($filename).. 215
Variables... 216

Punch (caret) Variables 216
Field Variables 217

Complex connectors (for bases, etc.) ... 217
Other Useful Commands 218
>QUIT 218
>DUMP I7 218
>SYSTEM command 219
>PUT_CHARACTERS 219
>LIST_DB_CONTENTS 219

Graphic Characters. 221

CON and ZSPC Statements . 223
CON Statements 223
ZSPC Statements 225
 5
•
•
•
•
•
•

6

•
•
•
•
•
•

 Chapter 1
• • • • • •

 INTRODUCTION TO UTILITIES

ABOUT UTILITIES
This manual describes the various utility programs that come with CfMC soft-
ware. Utilities perform common tasks, such as copying or converting data files or
creating reports about your data. These utilities allow you to execute complex
tasks without learning the underlying commands and syntax of Survent or Mentor.

They often have a standard user interface that includes menus and fields for you to
fill in. Many provide a final screen that summarizes your choices and gives you
the option to exit before proceeding. You can also save a command file to run
again in “batch” mode later.

The utilities described in this manual are programs that can be used by either Sur-
vent or Mentor users. Utilities specific to Survent (such as Quotamod, Suspres,
Foneutil and Fonebuld) are documented the Survent manual.

The utilities described in this manual fall under four categories:

File management Data Analysis Data Alteration Customization

COPYFILE HOLE CLEANIT CFMCMENU

DBUTIL LIST MERGE MAKEMSG

MAKECASE SCAN RECODE

MAKEVARS

MERGE

RAWCOPY

REFORMAT
Version 8.1 1
•
•
•
•
•
•

2 Ch

•
•
•
•
•
•

The Appendices
This manual’s appendices include other items of interest to both Survent and Men-
tor users:

• A comprehensive listing of “meta” commands (commands used across multiple
programs)

• A glossary of CfMC terms
• An overview of CfMC programming conventions
• Information about file transfers
• A chart of ASCII graphic characters and their hexadecimal values
• A list of CON and ZSPC statements (for accessing system information)

UTILITY CONVENTIONS
Many utilities share several common features in terms of screen navigation and
file names.

Screen Navigation
Menus. On menus, enter the letter of your selection or use the arrow keys (or

Ctrl-U and Ctrl-D on UNIX terminals) to highlight your selection and press Enter.

To back up to the previous screen enter a caret (^) and press Enter.

Fields. Enter responses at the arrow prompt (-->). If there are dots, they repre-
sent the number of characters that can be entered in that field. You can use the
BACKSPACE key to delete text. Press Enter when you are satisfied with your
response. Multiple responses can be entered in this field separated by commas (for
example: 01,07,03). To back up to the previous screen from an arrow prompt,
enter a caret (^) and press Enter.

When the field is a box, enter text and then press ESC. You may use the arrow
keys to move the cursor, and use the BACKSPACE and INSERT keys to correct
text. If the box is more than one line, there is no need to press Enter at the end of a
line; text will automatically wrap. (UNIX users: You can only correct text on the
current line you are on. You must press Enter until you reach a > prompt to move
on to the next screen.)

To back up to the previous screen from a box field, enter a caret (^) as the first and
only character and press ESC.

File Names. When you are asked to specify a file name, you can enter the name
(i.e. BANK) to indicate the file is in the current directory, or if the CfMC variable
apter 1

is set, the utility will look in that directory. You can also enter a full or relative
path name (i.e. c:\J123\BANK or ../j124/bank) to indicate the file is in another
directory. When you enter a study name, do not specify the standard datafile TR
extension; it is assumed.

NOTE Be sure to use unique output file names. If you run the same utility twice
with the same output file name, it will rename the first output file.

PLATFORM DIFFERENCES
Survent and Mentor operate in the DOS (IBM-PC compatible), and unix (linux,
aix, hpux, etc.) environments. Unix filenames must be lower case to be read by
CfMC programs. DOS filenames cannot be longer than eight characters with a
threecharacter extension CfMC file types have unique extensions.

These differences are summarized in the following chart.

MAXIMUM NUMBER OF TABLES
CfMC utilities use the local default database setting when creating tables. To
adjust the maximum number of tables the utilities can create, use the meta com-
mand >DB_SIZES in your mentinit file. To allow approximately 5,000 tables per
run, use the setting:

>DB_SIZES= 0 0, 0 0, 0 0, 50000 0, 0 0

The >DB_SIZES command is described in detail in Appendix A: Meta Commands of this
manual.

Operating system Computer
Hardware

File structure File names

DOS IBM PC or
compatible

\ACME\A123\ BANK.TR

UNIX UNIX PC or
minicomputer

/acme/a123 bank.tr

Only ASCII files and CfMC .tr data files are compatible across all platforms. All other
files created by CfMC software can only be used on the platform that they are
generated on (.fon, .db, .qff, .quo, suspend files, etc).
INTRODUCTION TO UTILITIES 3
•
•
•
•
•
•

4 Ch

•
•
•
•
•
•

WHERE DO I GO FROM HERE?
We hope you find this manual useful. CfMC is always looking for feedback about
our software, our manuals and our technical support.

Below is a list of ways to contact us, depending upon your needs.

IF YOU WANT TO: CONTACT VOICEMAIL E-MAIL/WEB SITE

Get general info. Receptionist (415) 777-0470 info@cfmc.com

www.cfmc.com

Lease CfMC
software, add more
users, upgrade

Marketing East: (415) 536-
2774

joycer@cfmc.com

West: (415) 777-
0470

sales@cfmc.com

Get help with using
the software, have a
suggestion, want a
new feature added
to software, want to
report a bug

Tech Support (415) 777-0470 support@cfmc.com
(e-mail preferred)

Get training Training (415) 777-0470 train@cfmc.com

Get copies of
manuals, have
corrections for the
documentation

Documentation (415) 777-0470 doc@cfmc.com

CfMC-S.F. Web site www.cfmc.com

Talk to other users
of CfMC software

Spec-talk
discussion group

spec-talk@cfmc.com

Get a quote from
the San Francisco
Service Bureau

San Francisco
office

(415) 777-0470 servbur@cfmc.com

or CfMC-SF Web
site

www.cfmc.com
apter 1

Get a quote from
the Denver Service
Bureau

Denver office (303) 860-1811 denver@cfmc.com

or CfMC-Denver
Web site

www.cfmc.com/denver

IF YOU WANT TO: CONTACT VOICEMAIL E-MAIL/WEB SITE
INTRODUCTION TO UTILITIES 5
•
•
•
•
•
•

6 Ch

•
•
•
•
•
•

apter 1

 Chapter 2
• • • • • •

 FILE MANAGEMENT

2.1 COPYFILE

What it does
COPYFILE allows you to do basic file management, such as copying, sorting and
printing data files by selecting options from menus. Since COPYFILE is menu
driven, it allows you to do sophisticated operations to data files without having to
know Mentor command syntax. If you want to learn Mentor command syntax, the
underlying commands for COPYFILE are included at the end of this chapter.

When to use it
Use COPYFILE to copy, subset, translate, sort or combine data files. If you need
to move data between files, use MERGE. If you are trying to build a CfMC
dataset and have a variable numbers of records per case, or missing records, use
MAKECASE instead of COPYFILE.

How to use it
At the operating system prompt, enter:

COPYFILE

You will have to supply different information depending on the task you select
(see OPTIONS below). You can press ESC to exit most screens, or enter termi-
nate in a text field to quit COPYFILE. When you have completed all the
screens, COPYFILE displays a summary screen which indicates the options you
have selected and it gives you a chance to change them before you run the opera-
tion.
COPYFILE will return to the main menu screen when it has completed the task
you have selected.
Version 8.1 7
•
•
•
•
•
•

8 Ch

•
•
•
•
•
•

Options

1 COPY
Imports or exports several different file types. You can also copy a file, change
record length, or attempt to fix a corrupted file. You can use the following file
types as input:

• CfMC System (TR)
• ASCII
• ASCII Card-image (multiple records per case)
• ASCII Delimited file
• Binary
• Swapped Binary (from other types of computers)
• CfMC HP3000 SPL format (DTA)
• CfMC Phone file (FON file from FONEBULD)

You can have the following types of files as output:
• CfMC System (TR)
• ASCII
• ASCII Card-image (multiple records per case)
• ASCII with blanks removed from end of records
• Binary
• Swapped Binary (for other types of computers)
• CfMC HP3000 SPL format (DTA)

You must indicate a record length between 2-65000 columns. ASCII, card image-
and binary files must have a record length that is a multiple of 80. When writing
out a standard CfMC TR file, you can also index the file or try to fix a corrupted
file (usually one that was previously left open).
Copying from a delimited file produces a called DELIM.MAP which contains a
map of locations and lengths written to and, if the field is numeric, the mean, stan-
dard deviation, standard error, minimum value and maximum value.
Only standard CfMC TR files can be exported to CfMC HP3000 SPL (DTA) for-
mat.

2 COMBINE
Combines two or more CfMC System files. You can create a new file or append to
an existing file. The output file case length must be greater than or equal to the
longest file being combined and less than 65,000 columns. You can combine up to
apter 2

a total of 999,999 cases.
You can enter each file name of each file you want to use, or you can use “wild
cards” to select a group of files. The wild card characters are “*” to match any
character, “?” to match single alphabetic characters, and “#” to match single
numeric characters. For example, “RRUN##” would match any file names that
start with RRUN and end with any two numeric characters, such as RRUN05,
RRUN10, and RRUN27.
Use the MERGE utility to combine cases from two files and/or make longer
records.

3 SORT
Sorts a CfMC System file. COPYFILE will sort the file sequentially based on the
data in the variable or location [column and row(s)] you provide. This is called a
sort key. You can provide up to five sort keys for a file.
You can also do a random sort (this is useful for scrambling phone numbers in a
FON file), by using the Random_Value keyword for the sort key.

4 SUBSET
Allows you to create a file that contains a subset of an existing CfMC system file.
This option writes multiple files with every "Nth" record
You can also write one or many files with every "Nth" record in the file or files.
This is often used to create a subset of sample files in order to distribute them to
other interviewing houses. For instance, you can either write 10 files with the 1st,
2nd, etc. record going to each file or just write one output file with the 1st, 11th,
21st, etc. record in it.
Another example: if there are 1,000 records and 100 random records are supposed
to be sent to each of ten interviewing houses, the utility will put the 1st, 11th, 21st,
31st, etc., records into file No. 1; the 2nd, 12th, 22nd, 32nd., etc., into file No. 2,
and so on. Thus, a random sampling is distributed.
You can select:

• cases based on data criteria
• a random number or percentage of cases
• the first 'n' number of cases

SUBSET will offer to write a second data file that contains all the data cases not
written to the first data file. To select cases based on data criteria, you can enter
either a data location or use variables defined in a DB file.

5 PRINT
FILE MANAGEMENT 9
•
•
•
•
•
•

10 C

•
•
•
•
•
•

Prints the data from a CfMC system file into an ASCII file. The output file con-
tains the case ID and the data from each case. You can choose the number of cases
to print and can specify how many 80-column records from each case to include.
The output file has the default extension of PRT.

6 DISPLAY
Displays a listing of CfMC data files. This includes all files with the following
extensions:
ASC BIN SWB TR

These represent ascii, binary, swapped binary, and CfMC standard data files.

7 TEXT
Allows you to display text data from CfMC System files. You can also move text
pointers or move text from one location in the data file to another. You must know
the column location of where the text area starts in the file.

Advanced Users Note: If you want to learn Mentor command syntax so you
can manage files without using COPYFILE, see Mentor: TILDE COMMANDS
and refer to the following commands:
~ADJUST
~CLEANER SAY and DISPLAY_ASCII
~DEFINE PROC= WRITE_CASE and PRINT and MODIFY
~EXECUTE PROC=
~INPUT
~OUTPUT
~REFORMAT
~SORT

2.2 MAKECASE

What it does
MAKECASE converts an ASCII or binary file into a CfMC System file (TR).

When to use it
Mentor and some CfMC Utilities require data to be in a CfMC system file, so use
hapter 2

MAKECASE if your data is not in a system file (for example, if it has not been
collected by Survent). Since MAKECASE checks the number of cards per record
and matches case IDs, use it instead of COPYFILE if you have variable number of
records per case or if you suspect you may have missing records in your data file.
MAKECASE requires that the input file have data records 80 columns long.
ASCII files greater than 80 columns long must be translated using the COPYFILE
utility.
MAKECASE allows for a maximum of 50 records per case. If you have a file
with more than 50 records per case, you will have to construct separate files and
then use the MERGE utility to combine them.

How to use it
At the operating system prompt, enter:

MAKECASE

At a minimum, you must provide an input file name, file type, a case ID location
(up to ten columns wide), and a record ID location (up to two columns wide).
Most data files will have a case ID in front of each record and then a record ID
immediately after the case ID or at the end of the record. If a file has case IDs but
no record IDs, MAKECASE will assume there is only one record per case and
will construct the system file with record one as case one, record two as case two,
etc. If you have a file that has alphabetic record IDs, you must change them to
numeric, and MAKECASE has an option to let you do so.
You can press ESC to exit most screens, or enter terminate in a text field to
quit MAKECASE.
When you have completed all the screens, MAKECASE displays a summary
screen which indicates the options you have selected and gives you a chance to
change them before you run the operation.

Input Files
MAKECASE accepts the following file types:

• ASCII
• Binary
• Swapped Binary
• CfMC System (TR)

Output Files
Below are the default file names for the files produced by MAKECASE. Remem-
FILE MANAGEMENT 11
•
•
•
•
•
•

12 C

•
•
•
•
•
•

ber that if you are going to run MAKECASE repeatly, you will want to assign
unique file names so you do not overwrite existing files.

Sample Output
The SYSF1 file will be a System file with only good cases in it. CASE.ERR is a
file that contains errors MAKECASE generates when it encounters the following
types of records:

BAD: does not have a known record ID.

MAKECASE will print an error message that includes the case ID, the bad record
ID and the contents of the bad record.

DUPLICATE: a record that has the same case ID and record ID as a

previous record.

MAKECASE will print an error message that includes the case ID, record ID, and
the contents of the duplicate records. The last duplicate record will be the one kept
for the case.

MISSING: a case that is missing a record.

MAKECASE will print an error message indicating that the case will be dropped
from the output file. (You can designate certain records as not required for a case;
these records will not generate an error message.)
The following is a sample CASE.ERR file. The case ID is in columns 1-4 and

Name Ext. Description

SYSF1 TR data file

CASE ERR print file

SNGL TR single-record System file (used
to make sure the cases have
been constructed correctly. You
can CLEANIT on this file to look
at it.)
hapter 2

the record ID is in columns 79-80.
First case is ID 0001

Rec # 25 has a bad record ID ' ' -- case ID = 0007

0007 45871562 37459277 9827 7626

case ID 0007 is missing record 03

case ID 0007 dropped because of missing record(s)

case ID 0009 -- Record 03 is duped -- Rec # 35 -- Last record kept

00093 5002 355 33867691 166 1214 03

00093 35566832 80549879 7388 5524 03

case ID 0009 is missing record 02

case ID 0009 dropped because of missing record(s)

Last case is ID 0010

Number of cases written was 8

Options
MAKECASE has the following options:

• Sort the data file by case IDs and record IDs
• Check the sequence of the case IDs. MAKECASE will send an error to the

CASE.ERR file each time it encounters a case ID that is not one greater than
the previous case ID.

2.3 MERGE

What it does
MERGE combines data from matching cases in two different data files. In the out-
put file, data can be appended to the end of the case or moved toa different loca-
tion.
You can use MERGE to select cases from one data file without moving any data
from the other file (see OPTIONS below). MERGE has versatile command lan-
guage that is easy to use.

When to use it
Use MERGE whenever you want to combine data from two files on a case-by-
case basis.
MERGE is effective if you have data collected from a questionnaire and need to
match it to the information contained in a "demo deck." You can also use MERGE
to combine cases if you enter the data from category questions in one data file first
and then code the open-end questions in a different data file later.
FILE MANAGEMENT 13
•
•
•
•
•
•

14 C

•
•
•
•
•
•

How to use it
At the operating system prompt, enter:

MERGE

MERGE takes cases from an input file, appends data for each matching case from
an import file and writes the combined cases to an output file. You can append the
entire matched case from the import file to the end of each corresponding case
from the input file, or you can move the entire case or parts of the case to a new
location in the output file.
At a minmum, you must provide the file names and types of both input and import
files, an output file type, the case length for the output file, and case ID location
for both files. If the CFMCDATA environment variable is set, MERGE will look
for a TR file there. If the CFMCDATA environment variable is not set, MERGE
will look in the current directory. If you need to specify another directory (or
another file type), press return and enter the full path and data file name.

Input files
MERGE accepts the following file types:

• ASCII
• Binary
• Swapped Binary
• CfMC System (TR)
• CfMC Phone File (FON from Survent)

Output files
MERGE can create the following types of files:

• ASCII
• Binary
• Swapped Binary
• CfMC System (TR)

The case length must be an even whole number, and large enough to include the
length of the input file plus the number of columns you are adding from the import
file. The default output length is the length of the input file plus the entire length
of the import file. The minimum case length is 80 columns and the maximum is
25,000 columns.
hapter 2

Moving Data
You can move data to a new location in the output file. You must indicate the from
and to data locations. If there is data in the input file in the to location, MERGE
will write the new data in its place in the output file. You can move up to ten dif-
ferent data locations in one run.

NOTE: Moving data to a new location will write over any existing data.
This is not recoverable! Make sure you have a backup copy of your data file
before you use MERGE.

When you have completed the first section of screens, MERGE displays a sum-
mary screen and gives you a chance to change options from the defaults. MERGE
also gives you the opportunity to save the specs it generates if you want to use them
again.
You can enter terminate in a text field to quit MERGE when you are entering
file information and selecting options. Once processing has begun, you can press Ctrl-Y
to terminate the run.

Below are the default file names for the files produced by MERGE. Remember, if
you are going to run MERGE repeatedly, you will want to assign unique file names so you
do not write over existing files.

Writing MERGE specifications in Mentor

All legal input and output options may be used on the ~INPUT and ~OUTPUT
statements. You must have two input statements and one output statement to use

Name Ext. Description

MRGDT TR data file

MERGE PRT print file
FILE MANAGEMENT 15
•
•
•
•
•
•

16 C

•
•
•
•
•
•

Merge. Here is an example merge input/output section:

~input main study=in1 number_input_buffers=2

~input openends study=in2 new_buffer

~output merged

~merge

Within the ~MERGE block the following must be answered:

PRIMARY=

PRIMARY_KEY=

SECONDARY=

SECONDARY_KEY=

The values for primary and secondary should be set to the study names of two of
the input files currently open. Based on the example above, these would be set to
in1 and in2 respectively.
The PRIMARY_KEY and SECONDARY_KEY are the fields on which one
wishes to match and should be set to a value that evaluates to a string. Here are
some examples:

PRIMARY_key=[1.4$]

PRIMARY_KEY=SUBSTITUTE([1.4$],"a","0")

PRIMARY_KEY=[1.2$] join [11.2$] join [21.2$]

MERGE options
The ~MERGE options are either set to a value, as in <OPTION>=VALUE, or
turned on or off via a minus sign, as in option, -<OPTION>. Except for the
APPEND_LOCATION option, the setting last seen for any option is the one that
will be used.

Status
The status command displays all of the ~MERGE options and their current set-
tings. The following specs will produce a listing of all of the ~MERGE options
hapter 2

available:
~input $ study=in1 number_input_buffers=2

~input $ study=in2 newbuffer

~output null

~merge

primary=in1 primary_key=[1.4$]

secondary=in2 secondary_key=[1.4$]

status

~end

Here are the results of the status command showing all of the options and their
default values:

-SORT_PRIMARY

-SORT_SECONDARY

WRITE_MATCHED

WRITE_UNMATCHED_PRIMARY

-WRITE_UNMATCHED_SECONDARY

WRITE_DISALLOWED_DUPlicateS

-PRINT_MATCHED

-PRINT_UNMATCHED_PRIMARY

-PRINT_UNMATCHED_SECONDARY

PRINT_SUMMARY

-PRIMARY_DUPlicateS_ALLOWED

-SECONDARY_DUPlicateS_ALLOWED

DISALLOWED_DUPlicateS=error

DISALLOWED_PRIMARY_DUPlicateS=error

DISALLOWED_SECONDARY_DUPlicateS=error

EXEC_MCOPY_IF_MATCH

-EXEC_MCOPY_IF_UNMATCHED_PRIMARY

EXEC_MCOPY_IF_UNMATCHED_SECONDARY

APPEND_LOCation=0

SORT_PRIMARY will cause the primary file to be sorted into a temporary
file which will then be used to do the actual merge.

SORT_SECONDARY will cause the secondary file to be sorted into a tem-
FILE MANAGEMENT 17
•
•
•
•
•
•

18 C

•
•
•
•
•
•

porary file which will then be used to do the actual merge.
WRITE_MATCHED means that if the primary and secondary key fields

match, a case will be written to the output file.
WRITE_UNMATCHED_PRIMARY will cause a case to be written to the

output file when there is no matching record from the secondary file.
WRITE_UNMATCHED_SECONDARY will cause a case to be written to

the output file when there is no matching record from the primary file.
WRITE_DISALLOWED_DUPLICATES Usually disallowed duplicates

are treated the same as unmatched records. If you are writing unmatched primary
or secondary records but don't want to write duplicated records, use the minus
form of this option.

PRINT_MATCHED means that when a match occurs, a message will be
printed indicating this in either the list file or open print file.

PRINT_UNMATCHED_PRIMARY means that when no matching sec-
ondary record exists for a primary record, a message will be printed indicating this
in either the list file or open print file.

PRINT_UNMATCHED_SECONDARY means that when no matching pri-
mary record exists for a secondary record, a message will be printed indicating
this in either the list file or open print file.

PRINT_SUMMARY is used to print summary information about the merge
into the list file or open print file. The information printed includes the number of
matched and unmatched records, the number of records written, the number of
duplicates detected, etc.

PRIMARY_DUPLICATES_ALLOWED is used to allow duplicate match
fields to appear in the primary input file, and in the case of a match, not to move
the secondary data file on to the next record until all of the primary records having
that match key have been used.
 If, for example, the primary file contains trailer information and the secondary
file contains demographics, one can attach demographic information to each
trailer record by allowing primary duplicates.

SECONDARY_DUPLICATES_ALLOWED is used to allow duplicate
match fields to appear in the secondary input file, and in the case of a match, not
to move the primary data file on to the next record until all of the secondary
records having that match key have been used.

NOTE: Using both PRIMARY_DUPLICATES_ALLOWED and
SECONDARY_DUPLICATES_ALLOWED in the same ~merge block will
result in an error.

DISALLOWED_DUPLICATES= may be set to error, warn or ok. When a
duplicate record occurs in a file in which duplicate records are not allowed, the
hapter 2

record will NOT be thrown away if the corresponding
WRITE_MATCHED_xxxxx option has been set and
WRITE_DISALLOWED_DUPLICATES has not been set, regardless of what
DISALLOWED_DUPLICATES has been set to.
The default setting for the disallowed duplicates ~merge options is ERROR.
The following two options control the disallowed_dups setting separately for the
primary and secondary data files.
All of the ~merge settings work on the last option that is set. The underlying effect
of using the original disallowed_dups option should be to set both of the new
options to the same value. If either of these two options is used, it should only
affect the setting of the file it is intended to affect - primary or secondary.

DISALLOWED_PRIMARY_DUPLICATES= Similar to
disallowed_duplicates=, but it only applies to the primary input file. It may be set
to error, warn or ok.

’DISALLOWED_SECONDARY_DUPLICATES= This is similar to
disallowed_duplicates=, but it only applies to the primary input file. It may be set
to error, warn or ok.

NOTE: _DUPS is an acceptible syntax when using the options above.

EXEC_MCOPY_IF_MATCH is used to execute the merge_copy com-
mands found in the ~MERGE block if a match occurs.

EXEC_MCOPY_IF_UNMATCHED_PRIMARY is used to execute the
merge_copy commands found in the ~MERGE block when there is a primary
record that has no corresponding secondary record. Since merge_copy always
puts data from the secondary record into the primary record, and because all of the
secondary record is blank in the case of an unmatched primary, setting this option
causes primary data fields to be blanked when there is no match.

EXEC_MCOPY_IF_UNMATCHED_SECONDARY is used to execute
the MERGE_COPY commands found in the ~MERGE block when there is a sec-
ondary record that has no corresponding primary record.

APPEND_LOCation=0 until PRIMARY= has been set Once set, the
append location defaults to the absolute column number of the WORK_LENGTH
of the primary input file plus one.
If you use the APPEND or APPEND_ALL command, appending will begin at
APPEND_LOCATION. The value of the append location is dynamic. After each
append operation the append location is increased by the number of columns
appended. The append location may be set to any column within the output length
FILE MANAGEMENT 19
•
•
•
•
•
•

20 C

•
•
•
•
•
•

and it may be reset in the course of a ~MERGE block.

Data Manipulation Statements

MERGE_COPY
The syntax of the MERGE_COPY command is:

MERGE_COPY TARGET_LOC_IN_PRIMARY = source_loc_from_secondary

The MERGE_COPY command operates essentially the same way that ~CLEAN
copy operates, with the exception of several features designed to help make merg-
ing data easier.
The biggest difference between MERGE_COPY and COPY is that the
MERGE_COPY command locations specified on the left side of the equal sign
are automatically taken to be from the primary data file, and those on the right
side are taken to be from the secondary. Thus, what would be written in a
~CLEAN block as:

"copy in1![41.10]=in2![1.10]"

can be written in a ~MERGE block as:
"mcopy [41.10]=[1.10]".

NOTE: So far, MERGE_COPY does not work with text questions.

APPEND
The append commands syntax is:

APPEND_SOURCE_LOC_from_secondary

When the append command is used, the data location specified is taken to be from
the secondary data file, and this data is appended to the primary data file starting
at the location specified by APPEND_LOCATION (see APPEND_LOCATION=
above). The value of APPEND_LOCATION changes after each append command
so that successive append commands attach the data starting at the latest
LAST_USED + 1 column.

APPEND_ALL
This command attaches the entire secondary record to the primary data file begin-
ning at APPEND_LOCATION (see APPEND_LOCATION= above).
Note that in order to append data, the output file length must be sufficiently
greater than the TOTAL_LENGTH of the primary data file to accommodate the
data being appended. The following two sets of specs will produce the same
hapter 2

results:
First using append:

~input mer3a.asc ascii=40 number_input_buffers=2 study=in1

~input mer3b.asc ascii=40 new_buffer study=in2

~output mer3c.asc ascii length=80 '' Make the output longer.

~merge

primary=in1 secondary=in2

primary_key=[1.4$] secondary_key=[1.4$]

append [1.40] '' Default append_loc is primary worklen + 1

And then using MERGE_COPY:

'' Extend the work_length on the primary.

~input mer3a.asc ascii=40 worklen=80 number_input_buffers=2
study=in1

~input mer3b.asc ascii=40 new_buffer study=in2

~output mer3c.asc ascii

~merge

primary=in1 secondary=in2

primary_key=[1.4$] secondary_key=[1.4$]

merge_copy [41.40]=[1.40]

Proc=
You can define a proc and use it in ~MERGE. The commands used in the proc
should be those you would use in a ~CLEAN block (i.e. not ~MERGE com-
mands).

MERGE_defaults
The ~SET_OPTION_MERGE_DEFAULTS= allows the user to define a string of
merge commands that will be executed each time a ~MERGE block begins.
The string that you set MERGE_DEFAULTS equal to is not cracked until a
~merge command block is started. The string may contain any command that
would be legal inside a ~MERGE block including meta commands. The string
may be continued by using "&&". Backslash-Ns that appear in the string are rec-
ognized as a new line character. Note how the use of \n in the default string below
FILE MANAGEMENT 21
•
•
•
•
•
•

22 C

•
•
•
•
•
•

allows one to use the >QUIT command as part of the defaults setting.

 merge_defaults=">quit errors=1\n primary_dups_allowed" &&

 "primary_key=[1.5$] secondary_key=[1.5$]"

EMPTY_CASE
EMPTY_CASE is a special variable that only is used from within procs called by
a ~merge block. It should always be prefaced with a study name, as in
11EMPTY_CASE. EMPTY_CASE is true when it is inside a ~MERGE block and
the record referenced by "studyname" is the nonexistent side of an unmatched
pair.

Sample output
The MRGDT.TR file contains the combined cases. The MERGE.PRT file con-
tains a list of errors for missing and bad cases, warnings when data is being moved
to columns that already contain data, and a summary report which includes counts
of the number of records that matched and were written to the output file. Below
is sample of MERGE.PRT. In this example, data was moved to a location that
already had data in it (columns 25-28), and two cases did not match.

**** WARNING CASE 0001 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

**** WARNING CASE 0002 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

INPUT CASE 0003 WITH MATCH FIELD = "0003" HAS NO MATCH IN IMPORT FILE

**** WARNING CASE 0004 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

INPUT CASE 0005 WITH MATCH FIELD = "0005" HAS NO MATCH IN IMPORT FILE

**** WARNING CASE 0006 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

**** WARNING CASE 0007 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

**** WARNING CASE 0008 IS NON-BLANK IN RECEIVING FIELD: 25.4 ****

SUMMARY

NUMBER OF MATCHED RECORDS: 6

NUMBER OF INPUT RECORDS WITHOUT MATCHES: 2

NUMBER OF RECORDS WRITTEN TO OUTPUT: 8

NUMBER OF RECORDS IN INPUT FILE: 8

File with merge listing is MERGE.PRT

Output data file name is MRGDT.TR
hapter 2

Options
Select the options you wish to change by entering the numbers of those options.
The first two options, (1) cases to write out and (2) cases to print out require that
both files be sorted on their respective match fields (case IDs). You will be
prompted to indicate if the files are already in order or need to be sorted. The
options to MERGE are:

1 Cases to write out
This option controls which records are written to the MRGDT.TR file; the default
is to write out all records from the input file. You can change this to write out:

• all records from both input and import files
• all records from the input file*
• only matching records from the input file*
• only unmatched records from the input file
• all records from the import file
• only unmatched records from the import file
• all unmatched records from both input and import files
• no records (compare only)

* Use these options if you want to copy only certain cases from the input file with-
out moving any data from the import file. This will create a new data file that is a
subset of the original input file, with cases that either match or do not match the
cases in the import file.

2 Cases to print out
This option controls which records are written to the MERGE.PRT file; the
default is to include only unmatched records from the input file. You can change
this to include:

• all unmatched records from both input and import files
• unmatched records from the input file
• only unmatched records from the import file
• all records from both input and import files
• all records from the input file
• only matching records from the input file
• all records from the import file
• no records

3 Duplicate handling
The default is to use all duplicate cases from the input file, and take data from
only the first duplicate in the import file. You can change this to use only the first
FILE MANAGEMENT 23
•
•
•
•
•
•

24 C

•
•
•
•
•
•

duplicate from the input file and append data from the first duplicate in the import
file.

4 Duplicate messages
This option controls when MERGE generates messages about duplicate cases.
These messages appear in the MERGE.PRT file. The default is to ignore duplicate
cases in the input file, and complain about duplicate cases in the import file. You
can have MERGE complain about duplicate cases in the input file only, duplicate
cases in both files, or not create any messages about duplicates.

5 Data Overwrite messages
This option controls the number of data cases MERGE will complain about when
it is moving data to a location where data already exists. These messages appear in
the MERGE.PRT file. The default is to create messages for the first 10 cases. The
range you can choose from is 0 (no messages) to 99.

2.4 DBUTIL

What it does
DBUTIL lets you look at items in a DB (database) file or copy items from one DB
file to another DB file.

When to use it
DBUTIL lets you do housekeeping on a DB file. You can copy DB items from one
file to another, or, in the case of duplicate items, you can select which records you
wish to make active.
You should be familiar with basic DB commands in order to use DBUTIL. See
Appendix A: Meta Commands for details on >USE_DB and >CREATE_DB.

How to use it
At the operating system prompt, enter:

DBUTIL

You will be prompted for a Spec File and a List File; both are optional. (See Men-
tor Appendix D: CfMC Conventions for a description of Spec Files and List Files.)

From the DBUTIL prompt, you can choose Copy, Reveal, Help(?), or Quit.
hapter 2

Note: Many of the DBUTIL commands are meta commands, and require the
meta symbol (>) to be recognized. So, when a meta (>) is included in an
example, be sure to include it when you enter the command.

Options

Copy

1 To copy a DB file, you must open it first. At the DBUTIL prompt, enter:
>USE_DB file1

2 To copy the items to another DB file, you must open it in ReadWrite mode.
Enter:
>USE_DB file2,READ_WRITE

3 Once both the DB files are open, copy the items. Enter:
COPY ALL

Reveal

1 Open the DB file in ReadWrite mode. Enter:
>USE_DB filename,READ_WRITE

2 To show specific items from the DB file, enter:
REVEAL

3 Enter the name(s) of the item(s) you want to see. You can use an
ampersand to continue a list of items on the next line. For example:
Name(s) of item(s) to deal with->AGE,INCOME,GENDER,&

OCCUP,RATING1

All records for each selected item are displayed. In the case of multiple entries for
a single item, the record with an asterisk on the line is currently active. Enter the line num-
ber of another record if you wish to make it the active record. In the example below, the
FILE MANAGEMENT 25
•
•
•
•
•
•

26 C

•
•
•
•
•
•

second item is currently being used by the database.

-->>USE_DB MYDB3,READ_WRITE

-->REVEAL

Name(s) of item(s) to deal with -->AGE

Look for all versions of DB item AGE

<-------When item stored-------> Type Length

1: WED JUN 23 1995 09:09 1 86

2: * THU JUN 24 1995 13:20 1 98

We have found 2 items. Which one to make ACTIVE? -->

4 Or, for a full list of the items in the DB file, enter:
>USE_DB filename,READ_WRITE

>LIST_DB filename

Note: When DBUTIL has completed an option (COPY or REVEAL), all DB
files will be closed. You must open the database file again to perform
another operation.

2.5 RAWCOPY

What it does
RAWCOPY recovers corrupted CfMC data files (TR). RAWCOPY looks at each
data base, tries to recover it, and discards the cases that are not valid.

When to use it
Use RAWCOPY with data files that do not open. Possible causes of file corrup-
tion include system crashes while the data file is open, bad sectors on hard disks
or diskettes, errors in file transfers, or files that have been altered, possibly with a
debug utility.

How to use it
At the operating system prompt, enter:

RAWCOPY

At a minimum, you must provide the data file name, and an output file name (if
you enter a 1-to-8 character-long name, RAWCOPY will add the TR extension for
hapter 2

you, if you enter the complete path with the file name, you need to include the TR
extension).

Input files
RAWCOPY only works on CfMC data files.

Output files
RAWCOPY creates a data file containing all the cases it could recover.

Options
You can have RAWCOPY check for a specific case ID length; the cases that don’t
have the case ID length you specify will be dropped. If you do not use this check,
you run the risk of recovering previously deleted cases. If you choose to not use
this check, enter “0” when you are prompted for the number of digits in the case
ID.
You can have RAWCOPY fix up cases that have had text pointers corrupted or
deleted. You must enter the starting location of the text area. RAWCOPY will
write the “back pointer” back to the “front pointer” position for all text in the text
area that does not currently have a front pointer pointing to it. If you do not wish
to recover text pointers, when you are prompted for a ‘textstart’ location. (See the
Survent manual discussion of TEXT questions for more information.)

2.6 REFORMAT

What it does
REFORMAT takes a data file and a set of CfMC variables from a CfMC QFF file
or DB file and produces an ASCII file of fixed or delimited format with only the
variables you requested. REFORMAT also creates a data map for the data file.
You can use a compiled Survent questionnaire, or specific variables from a Sur-
vent questionnaire, use Mentor variables or tabsets, or create new variables using
data location references. If you use existing variables, you can get all variables in
a range, variables of certain types (eg. CAT or TABSETs) or specific variables.
Coded items can be spread as response codes or in 0/1 format. You can include
long open-ended (TEXT) questions in the spread data or just standard data points.
FILE MANAGEMENT 27
•
•
•
•
•
•

28 C

•
•
•
•
•
•

When to use it
Use it when the end user needs data in an ascii format. REFORMAT allows you to
use a compiled QFF file if you are a Survent client (with some additional con-
trols). If you are a Survent OR Mentor client, you may use variables from a DB
file rather than the questionnaire file. The main advantage of using a DB file for
Survent clients is that you can get a subset of the variables from a questionnaire
without putting special controls in the questionnaire or recompiling a question-
naire.

How to use it
At the operating system prompt, enter:

REFORMAT

At a minimum, you must provide the data file name (if you enter a 1-8 character-
long name, REFORMAT will add the TR extension for you, if you enter the com-
plete path with the file name, you need to include the TR extension), a name for
output files, and the size for text questions in the reformatted data (10-5000 char-
acters). Use a unique output name. If a file with the same name already exists,
REFORMAT will rename the existing file.

Input files
REFORMAT accepts the following file types:

• ASCII
• Binary
• Swapped Binary
• CfMC System (TR)
• CfMC Phone File (FON from Survent)

Output files
REFORMAT can create the following files: a data file (RFT), a map file (RFL)
and a data definition file (DEF). You can create data definitions that match the
spread data for SSS-XML, SPSS, SAS, SQL “readable” files, QUANTUM, and
UNCLE, or CfMC packages COSI, Survent, or Mentor.
hapter 2

Sample output

The data file (RFT)
The three types of data records you can export are 1) fixed format, 2) delimited, or
3) card-image. By default the data is spread in fixed format. See OPTIONS to
change the output from fixed format. This is a sample data file for a multiple-
response CAT question spread as codes. (See the map file section for details about
this data file.)

00017

0002

00037

0004

0005456

0006

0007

0008

0009126

001024

The map file (RFL)
The map file (RFL extension) lists information about the question data, recode
values, questions and responses, and additional information depending on the
question type.

This is a sample map file for a multiple-response CAT question spread as codes.
FILE MANAGEMENT 29
•
•
•
•
•
•

30 C

•
•
•
•
•
•

(This is question 6a from the Roadrunner questionnaire.)

rrunr.rfl: Old record length=640 New record length=10 Page 1

Q= Label Type FromLocation ToLocation RefmtType MaxResp

The case ID will be in columns 1.4

Q QN6A CAT [31] --> [5.6] Type=CODE Max=6

X 1st=[5] 2nd=[6] 3rd=[7] 4th=[8]

X 5th=[9] 6th=[10]

T Q6a. Which entertainment was participated in during the past three
months?

R 1 31^1 --> X=1 Video games

R 2 31^2 --> X=2 Billiards

R 3 31^3 --> X=3 Fun House

R 4 31^4 --> X=4 Musical Revue

R 5 31^5 --> X=5 Dunk the Moose

R 6 31^6 --> X=6 Other

R 7 31^7 --> X=7 Don’t know/refused, use Mentor

The record types printed are identified by the letter in column one:

Q line question descriptions include:

Letter Record type

Q Question description information

X Extra line for some CATEGORY, NUMERIC,
EXPRESSION and SPC questions

T Text line

R Response item for CAT and FLD questions

Q-line question Description

Q=label The question label or number (e.g., CAT01)

Type Question type (e.g., CAT for CATEGORY)
hapter 2

X line extra descriptions include:
• The column grid that determines the data location in the RFT file for

multiple-response CATEGORY questions spread in either response code or
punch format.

• For FIELD or coded ascii questions, the X line appears only for multiple-
response FIELD questions in the same format as multiple-response
CATEGORY questions spread as responses {!RFT_CAT_RESPONSE}).

FromLoc Data location and width in the original data (e.g., [1/29])

ToLoc The data's new location in the RFT file (e.g., --> [33.8])

RefmtType The reformat type varies according to the question type

For CATEGORY questions:

Type=1/0 (default, see data file option 7)

Type=CODE (see data file option 6)

Type=MOVE (see data file option 5)

For FIELD questions:

Type=MFLD for multiple-response FLD questions

Type= is not specified for single response FLD questions

For LOOP questions:

Type=UNWIND (if making DEF files)

Type=SAVE (if not making DEF files)

MaxResp The number of separate responses allowed (e.g.,
Max=1)

LotusItem For comma-delimited format only, this is the LOTUS
column number for this data (e.g., Item#=6)

Q-line question Description
FILE MANAGEMENT 31
•
•
•
•
•
•

32 C

•
•
•
•
•
•

The X line indicates the columns in the RFT file for each of the possible
responses. In this example there are 10 possible responses and each
response uses four columns for a total of 40 columns:

Q RADIO FLD [1/7.4] --> [7.40] Type=MFLD Max=10

X 1st=[7.4] 2nd=[11.4] 3rd=[15.4] 4th=[19.4]

X 5th=[23.4] 6th=[27.4] 7th=[31.4] 8th=[35.4]

X 9th=[39.4] 10th=[43.4]

T This is the map for a multi-response FLD question

R KDFC

R KQED

R KVAL

R KJAZ

R KALW

R KFOG

R KAFE

R KCAF

R KBBF

R KCDS

R KLVM

R KIQI

R KMEL

R KPLS

R KREO

• For NUMERIC questions the X line indicates the valid range of responses
and any allowed exception codes. It would look like this:

X Range=1-5000 Exceptions=DK,NA

T lines contain the question text.

R line recode descriptions (CATEGORY or FIELD) include:
• Response code
• The original data location and punch (for CATEGORY questions)
• Location and punch or response code in the spread data file response text

(for CAT questions)
• ToLocation for CATEGORY (punch) variables vary for the reformat type:
hapter 2

For MULTI_CAT_01 option, you will see the ToLocation
and punch in the spread data file.

For option 5 in the REFORMAT program you will see X.width
and the response code, where X refers to the spread data column
locations on the X line.

X 1st=[32.2] 2nd=[34.2] 3rd=[36.2]

R 03 1/30^3 --> X.2=03 YELLOW

In this example, if 03 was the first response for this question then the code 03
would be in columns 32 and 33 in the spread data file.

Qff or Db file

After asking the name of the data file to reformat, the next screen will ask whether
you will be using a QFF file for the reformat or a DB file. Survent users will want
to use the QFF file for a complete dataset and/or controls based on the question-
naire coding. Mentor users may only use the DB file and will specify which vari-
ables they want. Survent users may use the DB file especially if they only want a
few variables in the output.

Map and Data File Options
REFORMAT lets you change what information is included in the map file and
how it is formatted (MAP file options screen) and what information appears in the
data file (options screen).

Map File Options
The Map file contains information about the variables in the data file. Here is a
description of the options:

1 Exclude “from” columns
By default, the map file includes information about where the data came from and
where it was spread to in the new data file. If you want to exclude the “from'” col-
umns, use this option.
FILE MANAGEMENT 33
•
•
•
•
•
•

34 C

•
•
•
•
•
•

2 Exclude page headings
By default the program provides page headings with the name of the study, the
page number, and column headings for the information listed for each question. If
you wish to exclude this information, choose this option. You can use this option
when you are generating a map file to be read by another software program.

3 Exclude page breaks
If you do not wish to have page breaks in the map file, choose this option. This
would be useful if you had a printer that could not properly print the pages with
page breaks.

4 Change page length
Use this option to change the page length from the standard 66 lines per page.

5 Change page width
Use this option to change the page width. By default the width is unlimited.

6 Change column headings (delimited files only)
By default, the program prints the variable names at the top of each column in
delimited files. Choose this option to change to "A"-"Z" type headings like those
used by many spreadsheets.

7 Use “SAMEAS” for duplicate code lists
The map file includes a complete code list for every code list question by default.
If you choose this option, for each time you have the "SAMEAS" command in the
questionnaire, REFORMAT will write one line with the notation "This uses the
same code list as question XXX."

Data File Format Options
You are presented with the following data options with REFORMAT:

Enter the Options you want, or press <ENTER> only to make a FIXED FORMAT
ASCII data file with no variable definitions.

DATA FORMATS:

1) FIXED format ASCII data w/ optional data definitions for CfMC
Mentor/Survent/COSI, or SAS, SPSS, QUANTIME, UNCLE

2) DELIMITED format (comma or tab delimited for spreadsheets, etc.)

3) CARD-IMAGE format (80 column records with Case and Card IDs)

1 Write fixed format with data definitions (Mentor, COSI, SPSS)
hapter 2

Fixed format ASCII data spreads the data in the same relative position for every
question across respondents. Records will be as long as necessary for the data
spread. The data definition file(s) created by REFORMAT contain variable
descriptions for different data processing packages. Generally, this includes the
question text, new location, type, and code list where applicable. In addition to
variable definitions, some data descriptions include automatic table creating spec-
ifications (Mentor, QUANTIME).

The options presented for types of data definition files and their file extensions
are:

a) None

b) CfMC Survent
Questionnaire specifications matching the spread output (QSP)

c) CfMC Mentor
Mentor tabsets matching the spread data (DEF)

d) COSI
Variable definitions export to CfMC companion Windows-based
tabulation/printing/charting package, file extension (DEF)

e) SPSS
Definitions to load into this data processing package (SPS)

f) SAS
Definitions to load into this data processing package (SAS)

g) QUANTUM
A tabulation package (QUA)

h) UNCLE
A tabulation package (UNC)

i) SQL “readable” files

j) TRIPLE-S XML
A market research data definition standard (SSS)
FILE MANAGEMENT 35
•
•
•
•
•
•

36 C

•
•
•
•
•
•

The RFT file exported using these options is created with all response list items
spread as response codes by default (except that SAS multi-response CAT ques-
tions are spread as 0/1 variables).

Data files created with data definition specs other than SAS will only do 0/1 vari-
ables if you use the “make 0/1” variables reformat option (MULTI_CAT_01).

LOOP variables are spread in such a way that there is a separate iteration for each
item answered in code list order.

For COSI, SAS, SPSS, TRIPLE-S XML and UNCLE spec file generation, the
variables created for other packages generate new names to create separate vari-
ables in cases where there is a multi-response question or there are questions
inside of a loop. In order to create unique variable names with these multiple iter-
ations, REFORMAT truncates variable names as many characters as necessary to
add an extension.

For multiple-response CATEGORY questions, REFORMAT adds the numbers
"01" through "99" to the end of the variable name; if the name is greater than six
characters it is truncated by one or two characters; if there are more than 99
responses allowed, REFORMAT uses the ASCII lettering sequence starting at
"AA" to "ZZ."

For LOOPS, REFORMAT adds letters "A" through "Z" to the end of the variable
names less than eight characters; if the name is eight characters long, the last char-
acter is replaced by an "A" to "Z".

For multi-response questions within loops, REFORMAT adds the extension
“01A” for the first name; names greater than five characters will be truncated as
necessary. For example, a question named "HOSPITAL" which has 10 responses
and 5 loop iterations will have its iterations named "HOSPI01A" through
"HOSPI10E". When names are truncated and the extension added, it is possible to
end up with duplicate names; if this occurs, REFORMAT generates a warning
message.

Note that other software packages, although supported in general, may not match
the types of variables you wish to export for those packages. If this is a problem,
you can use the RFL (MAP) file to generate a coding language that will work with
hapter 2

your other software as a basis to create your own variables.

2 Write delimited format (for spreadsheets)
Delimited data is spread with a standard width for each question, and a delimiter
of your choice between variables. Common delimiters used are tab, comma and
"blank." Note that this also creates fixed format data (it is in the same relative
position across respondents). Quotes are places around variables with "string"
data; numeric data is recorded without quotes around it. Data from the following
question types will be enclosed in quotes: SPC subtypes 3, 4, 7, 9, and V; PHONE
subtype G; and VAR. Comma-delimited format adds from one to three columns to
the original data width (one comma plus quotes around data).

In addition, Reformat has a new "MAXIMUM_DELIMITED_FIELDS=###"
option. This controls how many items to put in each output delimited file. You can
now have reformat create more than one delimited file with each file having a
specified number of fields. This is so that users that have databases with a maxi-
mum number of supported fields can read each of the files separately into the pro-
gram; for instance, EXCEL has a maximum of 255 fields in a file. If you use this
feature, REFORMAT will make as many files as necessary to create the output,
with each file having a maximum of ### fields.
The minimum value is 10 fields, the maximum is 32000. If you have a question
variable translating to more than the maximum_fields value, the program will
generate an error and request that you break the question variable into smaller
pieces and try again.
If a question variable has more fields than are available to fill the current file, all
of the fields of that variable will be put in the next file, etc. The files are named as
<study>_#, where # is 1-999. The first file is <study>_1, then <study>_2, etc.
until all variables are placed in some file.
An exception to this feature is the !LOOP variable; if REFORMAT finds a !LOOP
variable in the file, it will stop the run and deliver an error message.

3 Write card image format
Card-image data generates a case ID and record ID for each 80-column record
generated, and then the data that fits on that record. REFORMAT numbers card
IDs sequentially from 01 to nn for the number of records created for each respon-
dent. The same number of records are written for each respondent regardless of
the amount of data in their particular data record. REFORMAT writes record
descriptions in the MAP file in record number/column format (e.g., 2/23 means
card number 2, column 23, or absolute position 103).
FILE MANAGEMENT 37
•
•
•
•
•
•

38 C

•
•
•
•
•
•

Data File Spreading Options
Next you will see the following menu:
SPREAD OPTIONS/OTHER ISSUES:
0) Eliminate non-labeled questions (eg. rotate seeds)
1) Convert NUMERIC alpha exceptions to numbers
 (eg. 01-10,,dk becomes 001-010,,999)
2) Convert CAT/FLD codes to sequential numbered codes (01-99)
3) Convert CAT/FLD codes to text ("yes"/"no" instead of 1/2)
4) Convert CAT/FLD codes to 0/1 variables ("135" to "10101")
5) Expand binary only (CAT/TEXT), keep FLD/NUM/VAR data as is
6) Expand multi-response CATS ONLY when writing CAT/TEXT

0) Eliminate nonlabeled questions
This removes any questions from a questionnaire with “temporary” labels, the
idea being that if you didn’t label them you probably don’t need to save them.

1) Convert NUMERIC alpha exceptions to numbers
This changes alphanumeric exception codes to numeric codes in case your data
needs to be all numeric format. If you have a numeric variable with exceptions
such as “DK” for don’t know, it will convert that to a number higher than the
range allowed for the numeric values. So if the range allowed is 1-99, it makes the
exceptions 999,998,etc. backwards to 997. This will make the variable wider by
one charcter.

2) Convert CATEGORY/FIELD codes to sequential numbered codes
This makes all the codes start at “1” for 9 or fewer codes, “01” for 10 to 99 codes,
and “001” for 100-999 codes, and numbers all the codes sequentially from that
point when converting the data. This is another feature designed to change possi-
bly alphanumeric or out of sequence codes to seqential numeric.

3) Convert CATEGORY/FIELD codes to TEXT
This writes out the text of the response instead of the response code. It is espe-
cially useful when creating delimited files to be read into Access, Excel, or other
hapter 2

databases.

4) Spread CATEGORY/FIELD questions as 0/1 variables, not codes
This writes code variables as 0/1 variables, meaning each code will generate a 0 if
it is not picked as a response, and a 1 if it was, creating strings of 0 and 1 codes. If
you choose this option, you will be asked whether to convert single response
CATEGORY questions, multi-response CATEGORY questions, single response
FIELD questions, and/or multiple response FIELD questions.

5) Expand binary only (CAT/TEXT), keep FLD/NUM/VAR data as is
For Fixed format datasets only, appends CAT and TEXT question data (in the
whatever format specified) at the end of the dataset, leaving all FIELD,
NUMERIC, and VARIABLE data in its original location.

6) Expand multi-response CATS ONLY when writing CAT/TEXT
This is a sub-option of option 5, it says to only spread multi-response CATE-
GORY type questions (and TEXT questions) at the end of the dataset, NOT sin-
gle-response items.

You are also asked whether to include TEXT questions in the dataset output. If
your output is fixed format, you are asked the maximum length of a text item. If
your output is card image format, it only allows a maximum of 70 characters per
item to stay within the 80 column card image requirements.

Troubleshooting
Possible reasons for the program not to run would be a DB file and TR file that do
not match, or if you used TABSET definitions that were complex variables. The
program will write out data even if it finds errors when matching the data to the
variables, so it is your responsibility to check the integrity of the data file you cre-
ate. You should check your data file carefully if you see a warning messages like
this:

(WARN #891) There were too many responses found in the data here!

Error on question 0.10 and case ID 0001

If your files are very large, you may get core size errors. See data file option #8
(above) to increase maximum core size.
FILE MANAGEMENT 39
•
•
•
•
•
•

40 C

•
•
•
•
•
•

REFORMAT exports "SQL readable" files
The ~reformat option "sql_data=(databasename=<database name> table-
name=<table name>)" will create a .def file with an SQL table definition, a .tab
file with SQL insert statements and a matching data (.rft) file to be uploaded to the
table in an SQL database.
Example:

~input mt3710 ;
 ~qfffile mt3710
 ~specfile mt3710a
 ~reformat sql_data=(databasename=cfmctest tablename=mt3710a)
 ~end
Options include:
 databasename - name of the data base

If specified, the .def file will use the name that you provided and will begin with
these two lines:
 create database if not exists mydatabasenamehere;
 use mydatabasenamehere;

If not specified, the .def file will begin with the above two lines commented out.

tablename - name of the table (required)
include_size_on_text - using the minus form removes the size spec from text
variables in the .def file (e.g. gives you text instead of text(2000)). This option
exists because not all data base programs allow the size spec in their syntax. The
default is "on."
num_exceptions_separate - causes NUM questions that have alpha exceptions to
be saved as two variables, one with only numbers and the other with only the
exception codes. the variable for the exceptions will have _extra appended to its
name, as in Q1 and Q1_extra

• without this option NUM questions with alpha in them will be type char
• with this turned on you will get a type numeric and a type char variable
• the default is "off"

Here is an example .def file:

create database if not exists bank;
hapter 2

use bank;
create table if not exists mike (

 caseid char(4),
havecard char(1),

cardtype_1 char(1),

cardtype_2 char(1),

cardtype_3 char(1),

cardtype_4 char(1),

cardtype_5 char(1),

cardtype_6 char(1),

The .rft file will be a tab-delimited version of the data that can be added to a data-
base using the “LOAD” command.

The CfMC variable types are converted to SQL types as follows:

The default for all other variable types is “char” (!spc, !phone, etc.).
If there are more than 100 characters of text, they are concatenated using concat
("first 100 chars of text","next 100 chars","more text"). If less than 101 characters,
then just do ‘here is some text’. Enclosed quotes (") are converted to \" and ' to \'.

CfMC Type Sql Type

FLD char

NUM (without decimal) numeric

NUM (with decimal) dec

EXPR (without decimal) numeric

EXPR (with decimal) dec

VAR char

TEXT text
FILE MANAGEMENT 41
•
•
•
•
•
•

42 C

•
•
•
•
•
•

Using spec language
You can use Mentor’s ~REFORMAT commands to execute REFORMAT com-
mands in batch mode. Use the “S” option on the final REFORMAT screen to save
a spec file to reproduce your run or write your own specifications. Below are a list
of commands you could use when writing or modifying a spec file.

The following commands are required in your spec file:

To generate lists of variables by type or name:

The following are ~REFORMAT options, placed after the ~REFORMAT com-
mand and before the ~END command:

1 Use variables option:

~INPUT <filename> <filetype> Name of the data file to process

>USEDB <filename>

~QFFFILE <filename>

Use existing variables from DB file

Use a QFF file for the reformat

~REFORMAT Invokes the default reformat options

~END Ends the program

>LISTDB,listv^dcl,& List the items to file "listv^dcl"

TYPE=VAR=14567, Use types VAR, FLD, NUM, CAT, or
TEX respectively

TYPE=TABSET, type TABSET (Mentor only)

SORT=qqnum(q1-q23), Use range of qs from q1 to q23 (Survent
only)

PATTERN=(qn2*,T*,xyz), Use qs with names starting with T or
qn2 or xyz

TEMPLATE="!" Write each item out to the file on a
separate line

Variables=(var1 var2,var3 Enter items by name or make a list

&list Read in the list of items to spread
hapter 2

2 File type options:

3 Miscellaneous options:

4 Map file options:

var4 var5 var6) Items can be on separate lines,
spaces or separated with commas

DELIMITER=COMMA/TAB/SPACE/<
char>

Write delimited file with delimiter of
<char>

DELIMIT_NAME_FIRST Write name of variable on first line of
file

CARD_IMAGE Write card image file (80 byte
records)

DO_WHAT_YOU_CAN If there are data errors, attempt to
make file anyway

-USE_CFM_LABELS Ignore unlabelled/temporary label
questions (CFM#####)

-MAP_FILE Don't make map file

MAPFILE=(Start list of map file options

-FROM_FILE_INFO Don't include data locations data
came FROM, only TO

-HEADERS Don't include page headings

-FORM_FEED Don't include form feed at page
breaks

PAGE_LENGTH=### Change page length from 66 lines per
page to ###

EXCEL_NAMES Use "AA" - "ZZ" type variable names
in delimited files instead of real
names
FILE MANAGEMENT 43
•
•
•
•
•
•

44 C

•
•
•
•
•
•

5 Category/Field variable options:

6 Other question options:

7 Data definition file (DEF) options:

SAMEAS_IN_MAP Write "SAMEAS list at Q2a" instead of
remaking list, if list uses "SAMEAS"
feature in Survent.

) End of map file options

MULTI_CAT_01 Write 0/1 codes (and matching
variables) for multi-response
category questions

APPEND_CAT_DATA Leave other data alone, spread
category data at the end

-EXPAND_SINGLE_CATS Don’t leave single-response category
questions, leave as punches

RENUMBER_RESPONSES

SINGLE_CAT_RESPONSE

USE_RESPONSE_TEXT=####

Change response codes to sequential
numeric codes

Expand single-category questions as
response codes (override 0/1 coding)

Exports the text of the response item
instead of the response code

RECODE_ALPHA_EXCEPTIONS

TEXT_AS_VAR=###

Change an alphanumeric values to
high numeric values in NUMERIC
questions.

Expand TEX questions in standard
text area using length of ###

SURVENT_SPECS Generate Survent QSP file matching
spread data

HARDCOPY Associated Survent file
hapter 2

CHK Associated Survent file

SUM Associated Survent file

MENTOR Mentor table-building DEF file
matching spread data

CLN Cleaning specifications for Mentor

COSI_SPECS Specs for COSI

SPSS_SPECS Specs for SPSS (SPS)

SAS_SPECS Specs for SAS (SAS)

QUANTUM_SPECS Specs for QUANTUM (QUA)

UNCLE_SPECS

SSS_XML

Specs for Uncle (UNC)

Specs for Triple-S XML (SSS)
FILE MANAGEMENT 45
•
•
•
•
•
•

46 C

•
•
•
•
•
•

hapter 2

 Chapter 3
• • • • • •

 DATA ANALYSIS

3.1 HOLE

What it does
HOLE produces a report called a holecount (also known as a marginal). A hole-
count is a display of the counts of the punches in the data for each column. Data
used to be recorded by machines that punched holes into cards and this is where
the idea of having holes (often called punches) to represent data orginated. The
possible punches in one column are 1 to 9, 0, X and Y.

HOLE creates simple counts and percentages which are easy to read. Columns are
labeled with the record number and column number, or can be labeled with the
absolute column number. Percentages are based on the total number of cases.
HOLE will produce a report for a maximum of 2,000 columns per run.

When to use it
A holecount report allows you to view data from an entire data file in a few pages.
Use HOLE to ensure that numbers in cells in a table match those in the data. You
can also use HOLE after you have transferred a data file across platforms to verify
that it has the same counts for each punch. You can also use holecounts to deter-
mine how to group response sets for a stub (SCAN works for this as well).

How to use it
At the operating system prompt, enter:

HOLE

Follow the instructions for each screen. At a minimum, you will have to supply a
data file name (and accept all the defaults). You can use multiple input files, as
Version 8.1 47
•
•
•
•
•
•

48 C

•
•
•
•
•
•

long as they are the same file type. Use commas to separate file names, or wild
cards ("?" for letters, "#" for numbers, or "*" for anything) to select a group of
files.

You can press ESC to exit most screens, or enter terminate in a text field to
quit HOLE.

When you have completed all the screens, HOLE displays a summary screen
which indicates the options you have selected and gives you a chance to change
them before you run the report.

Input files
HOLE accepts the following file types:

• CfMC System (TR)
• ASCII
• ASCII Card-image (multiple records per case)
• Binary
• 'Swapped' Binary (from other computer types)
• CfMC HP3000 SPL format (DTA)
• CfMC Phone File (FON file from Survent)

Output files
The default filename for a holecount is the data file name with an extension of
HOL (for example “rrunr.HOL”). Remember that if you are going to run HOLE
repeatedly, you will want to assign unique file names so you do not write over
existing files.

Sample output
A HOLEcount report has the following headings by default:

Heading Description

Data column: Case/Column number

Total: The number of cases in the data file.
Percentages are based off of this
number.
hapter 3

On the following page is a sample of the report produced by HOLE for the first
ten columns of data from the Roadrunner data file.

No Answer: The number of cases that had no
responses in the column.

Multipunch: The number of cases that had more
than one answer in the column.

Any Answer: The number of records that had any
answer in the column. ("Total" minus
"No Answer" = "Any Answer")

Total Answers: The total number of responses in a
column. This number will be larger
than "Any Answer" if there are any
multipunches in that column.

1-9,0,X,Y Total number of responses for each
column.

Heading Description
DATA ANALYSIS 49
•
•
•
•
•
•

50 C

•
•
•
•
•
•

hapter 3

Options
The default is a holecount of all columns, percentaged off the total number of
cases. To change the defaults, choose one or more of the following options:

1 Make your own HEADER
Create a title or heading of the holecount report.

2 Print the DENSITY of the columns.
Include a count of the number of multipunches for each column. This shows the
number of answers from each record. Density appears as a number under the fre-
quency and percentage.

3 BASE the hole counts.
Use only certain records from the data. You can use a data location to determine
which records to use. An example would be a base of [5^1], which means only
include those cases that have a one punch in column five. You can also use vari-
ables from previous Mentor runs. Enter the name of the DB file in which the vari-
ables are defined. Refer to variables by question number or name using the
following syntax:

Variable(VAR) or Text(TEX) questions

OTHRCARD="CHEVRON”

Numeric(NUM) questions

AGE>=35

Category (CAT) or Field (FLD) variables

GENDER(M) gender category M

AGE(1-5) ages categories one through five

STATE(AL-CA,NY) state categories AL through CA or NY

Data Location References

Category Numeric Field

[AGE^1-5] [STATE#AL,AZ,CA,NY] [10.5] > 5
DATA ANALYSIS 51
•
•
•
•
•
•

52 C

•
•
•
•
•
•

4 WEIGHT the data
Weighting is a way to change the relative value of each case. You would probably
only want to weight the data in your holecount report if you are comparing it to
data in a weighted table. You can also specify how many decimals of significance
to print.

You can use data locations or variables to define the weight, see the examples
under the BASE option.

5 Specify the PAGE FORMAT
To change one of the page format options, enter the item number of the item(s)
you wish to change. You must enter all the options you wish to change at once;
separators between the item numbers are not necessary. For example, entering 13
would allow you to change the page length(1) and change the number of decimals
in the percents(3).

Option Default
1) Page Length 66
2) Data Column Percent Base total
3) Number of Decimals in Percents 1
4) Print Percent Sign yes
5) Print Frequencies Only no
6) Print Percents Only no
7) Rows of All Zeros Printed yes
8) Data Location Format <unknown>
9) Compressed Display yes

6 Do MULTIPLE COLUMN SETS

Allows you to do holecounts on groups of columns. This is useful to check
only certain columns or to avoid printing a group of columns that are blank.

7 Make your own FOOTER

[GENDER^1] [AGE#1-10,23-55]

[1/10^1-5]

Data Location References

Category Numeric Field
hapter 3

Put a note at the bottom of the holecount report.
DATA ANALYSIS 53
•
•
•
•
•
•

54 C

•
•
•
•
•
•

3.2 SCAN

What it does
SCAN produces tables using data locations or variables from a CfMC DB file.
Different variable types will produce different tables:

CAT (category) or FLD (field): Counts for each category with percentages of the
total. The No Answer category is a count of the number of cases that did not fit
into a category. The Any Response category is a count of the number of cases with
any response. (Any Response + No Answer = Total)

When specifying All Variables or All of Certain Types, it prints the "TOTAL
RESPONSES" at the bottom of the table.

NUM (numeric): Counts for Total, No Answer, Any Response, Mean, Stan-
dard Deviation, Standard Error, Median, Minimum (value in the field) and Maxi-
mum (value in the field).

When specifying All Variables or All of Certain Types, it prints values, plus
Mean, Standard Deviation, Standard Error, Median, Minimum, Maximum and
sum. Numeric variables also have an option to either get stats only, all values, or
all values and stats.

VAR (variable [open-ended]): Counts for Total, No Answer, and Any Response,
plus a breakout of all the different values in the field.

TEX (text [special format open-ended]): Counts for Total, No Answer, and Any
Response, and statistics on the number of characters in the text responses. Scan
does NOT break out the separate values in a TEX field for analysis.

SCAN also lets you do T-tests on banner columns. You can test at three different
levels of specificity: .90, .95, or .99.

When specifying All Variables or All of Certain Types, it prints Number of
Responses, Mean, Standard Deviation, Standard Error, Median and Number of
Characters. The question type for all variables is displayed.

SCAN supports delimited and HTML output. Printable files and delimited files
can be printed for import to EXCEL or data programs, or HTML output which
may be read with a browser or posted on the internet. The HTML reports have
hapter 3

links between the Table of Contents and tables to make navigation easier.

When to use it
SCAN is an easy way to produce report-ready tables because it allows you to use
pre-existing DB variables, and it includes column headings and row labels. SCAN
is also useful to produce counts for variables when crossed by some other set of
variables in the study.

To see specific responses to any question type on a case-by-case basis, use LIST.

How to use it
At the operating system prompt, enter:

SCAN

and follow the instructions for each screen. At a minimum, you will have to sup-
ply a data file name, answer if you have predefined variables to use, and provide a
row description to scan. You can use multiple input files, as long as they are the
same file type. Use commas to separate file names, or wild cards ("?" for letters,
"#" for numbers, or "*" for anything) to select a group of files.

Row descriptions can be data locations, variables or a combination of both. See
2.1 HOLE for examples of the correct syntax to use with variables. Each addi-
tional row description will create an additional table.

If you have variables defined in a database file, you can generate a report based on
variables (rather than data locations). Variables are usually question names used in
Survent. You can select all of one type of question (CAT, NUM, etc.), or you can
use wild cards to match variable patterns (QN??, OTH*). You can also specify a
group of questions by indicating the first and last question number to include.

You can press ESC to exit most screens, or enter terminate in a text field to
quit SCAN.

When you have completed all the screens, SCAN displays a summary screen
which indicates the options you have selected and gives you a chance to change
them before you run the report.

Input files
SCAN accepts the following file types:
DATA ANALYSIS 55
•
•
•
•
•
•

56 C

•
•
•
•
•
•

• CfMC System (TR)
• ASCII
• ASCII Card-image (multiple records per case)
• Binary
• 'Swapped' Binary (from other computer types)
• CfMC HP3000 SPL format (DTA)
• CfMC Phone File (FON file from Survent)

Output files
The files produced by SCAN are:

A SCAN table has the following headings by default:

Name Ext. Description

datafile SCN print file

HTML HTM Web page output

Delimited DLM for Excel, Web
Tables, browser

Heading Description

Banner: Text describing the banner variable.

Stub: Text describing the stub

Base: Text describing the base variable (if applicable).

Total: The count for the total sample. (If you have set a
base or weight, the total will reflect that base or
weight, not the total number of cases in the file.)

No Answer: The number of records with no answer.

Any Response: The number of records with any answer.

SCAN provides both banner points (column headings) and stubs (row
labels).
hapter 3

Here is a sample of the report produced by SCAN. A Table of Contents is printed
after the last table.

Computers for Marketing Corp. - SCAN of rrunr.tr - Page 1

ROW: QN11

BASE: Female

-COUNT- -PERCENT-

Total 168 100.0%

No Answer 117 69.6%

Any Response 51 30.4%

Basketball hoop 10 6.0%

Whack-a-Mole 7 4.2%

More video games 5 3.0%

Specific video game 7 4.2%

Music videos 7 4.2%

Darts 7 4.2%

Foosball 7 4.2%

More entertainment for

teenagers 4 2.4%

More entertainment for

small children 8 4.8%

Child care facilities 7 4.2%

Other 15 8.9%

Don't know/Refused 5 3.0%

Options
To change the defaults, choose one of the following options:

1 Make your own HEADER or FOOTER
Create a heading or page footer at the top and/or bottom of pages for the report.

2 Create a BANNER
A banner is made up of the headings for each of the columns in the table. You can
enter your own headings, or use predefined variable names, numbers or locations,
DATA ANALYSIS 57
•
•
•
•
•
•

58 C

•
•
•
•
•
•

such as REGION, QQ010.5, or [1/5.1^1-2]. SCAN always uses Total as the first
column heading.

3 BASE some tables

This is a way to use only certain records from the data. You can use a data location
to determine which records to include. An example would be a base of [15^1-3],
which means include only those records that have a one, two or three punch in
column fifteen. You can also use variables from previous Mentor runs. Enter the
name of the DB file in which the variables are defined. See 2.1 HOLE for exam-
ples of the correct syntax to use for variables.

4 WEIGHT the data

Weighting is a way to change the relative value of each record. You can give the
answers from a specific group in the study more weight than answers from the rest
of the respondents (for example, all the answers from males are given a value of
.75). This is usually done to compare the frequencies to the numbers in the cells of
weighted tables. You can also specify how many decimals of significance to print.

You can use data locations or variables to define the weight; see the examples
under the BASE option of the HOLE utility for the correct syntax to use for differ-
ent types of variables.

5 Specify the Print Options

To change one of the print options from the default, enter the item number or letter
of the item(s) you wish to change. You must enter all the options you wish to
change at once; separators between the item numbers or letters are not necessary.
For example, entering 23A would allow you to add horizontal percents(2), change
the number of decimals in the percents(3) and change the page length(A). A list of
formatting defaults follows.
hapter 3

6 RANK tables high to low
This prints counts with the most occurrences first, rather than sequentially.

7 To add STATS at the bottom of the report, enter the number of the item(s)
you wish to add in the order you want them displayed.

1) Mean

2) Standard Deviation

3) Standard Error

Option Default

1) Column width, Stub width 80/20 with banner, 20/30
standard*

2) Show Horizontal Percents? no*

3) Percent decimals/% sign 1/yes

4) Print cumulative % in banner Yes

5) Make % Base “Any Response”? no

6) Show frequencies only? no

7) Show percents only? no

8) Suppressed blank tables or
rows?

no

9) Print one table per page? no

0) Print Sigma at bottom? no

A) Page Length/Width 66/80 (w/banner 132)

B) Suppress TOTAL/NA/Any resp.? no (Can suppress any)

C) Title w/ variable locations? yes

D) Include table of contents? yes

*These are the defaults if you use Total as the only column. If you
add more columns, the column width default is 8 and the stub
width default is 20.
DATA ANALYSIS 59
•
•
•
•
•
•

60 C

•
•
•
•
•
•

4) Sum

5) Median (50% percentile)

6) Variance

7) Minimum Value in Field

8) Maximum Value in Field

9) Stats Only (All stats across page compressed)

Note: Even though statistics only make sense on rating scales or single location
numeric fields, if you select the statistics option, they will appear on all tables in
your frequency report. You cannot have statistics on some tables and not on others
in the same run.

8 Frequency Count tables
This produces a “frequency count” table, which is a standard format report that
includes counts, number of cells per table, percents, cumulative percents, and sub-
totals when doing variables within other variables. You can get up to 20 separate
variables. You can to cross up to 5 variables per table.

A frequency count shows what ASCII characters are in specified locations in the
data and reports the number and percentage of each group in relation to the total
sample. This is especially useful to look at short, multiple-column character sets,
such as numeric codes, state abbreviations, zip codes or telephone numbers. Fre-
quency counts are not case-sensitive and will put the strings “TEST”, “Test” and
“test” in the same category. (If you need a frequency count that is case-sensitive,
you will have to use Mentor to write a Mentor spec file and include the command
~SET CASE_SENSITIVE).
hapter 3

Here is a frequency count table with two variables:

first second -COUNT- -% OF TOTAL- CUM. %

(6 cells in table)

 AA BB 1 10.0 10.0

 AA CC 2 20.0 30.0

 AA -- 3 30.0

 BB BB 2 20.0 50.0

 BB CC 2 20.0 70.0

 BB DD 2 20.0 90.0

 BB -- 6 60.0

 EE EE 1 10.0 100.0

 EE -- 1 10.0

 -- 10 100.0

For more on frequency count tables, see Mentor, Appendix B, ~FREAK.

9 Output options
SCAN supports delimited and HTML output. Output filesnames can be up to 14
characters, plus the extension. Printable files and delimited files can be printed for
import to EXCEL or data programs, or HTML output which may be read with a
browser or posted on the internet. The HTML reports have links between the
Table of Contents and tables to make navigation easier. You will be presented with
the following options on your screen:

In addition to a printable ASCII report, do you want a delimited file
(for Excel/Spreadsheets), or Web Tables (to read with a browser)? Enter
the report types you want, or “A” for “All.”

1. Just a printable report

2. Delimited file (for Excel or other spreadsheets)

3. Web Tables (to read with a browser

A All types (printed, delimited and web)
DATA ANALYSIS 61
•
•
•
•
•
•

62 C

•
•
•
•
•
•

3.3 LIST

What it does
LIST produces a listing of all responses for a particular data location or variable.
The LIST report is not a summary count (if you want a summary count, use
HOLE or SCAN), but a case-by-case display of the responses.

When to use it
LIST is usually used to print the responses to open-end questions. This informa-
tion can be used to list all specific responses to certain questions or question types.
You can also create coded categories for an item and use Mentor to code the data
and create summary reports. See Mentor Volume I, Chapter 3: REFORMATTING
YOUR DATA for information on how to set up codes and Chapter 6: ADVANCED
TABLES for details on how to produce summary reports.

How to use it
At the operating system prompt, enter:

LIST

DOS Note: "List" is also a Norton Utility for DOS. To ensure you are running the
CfMC utility, use the full path to start LIST. In a standard installation, enter:

f:\cfmc\go\list

Follow the instructions for each screen. At a minimum, you will have to supply a
data file name, which type(s) of variables you want to list, which variables or data
locations to include, and how you want the list formatted (see OPTIONS, below).
See 2.1 HOLE for examples of the correct syntax to use with variables. You can
use multiple input files, as long as they are the same file type. Use commas to sep-
arate file names, or wild cards ("?" for letters, "#" for numbers, or "*" for any-
thing) to select a group of files.

If you have variables defined in a database file, you can generate a report based on
variables (rather than data locations). Variables are usually question names used in
Survent. You can select all of one type of question (CAT, NUM, etc.), or you can
use wild cards to match variable patterns (QN??, OTH*). You can also specify a
hapter 3

group of questions by indicating the first and last question number to include.

You can press ESC to exit most screens, or enter terminate in a text field to
quit LIST.

When you have completed all the screens, LIST displays a summary screen which
indicates the options you have selected and gives you a chance to change them
before you run the report.

Input files
LIST accepts the following file types:

• CfMC System (TR)
• ASCII
• ASCII Card-image (multiple records per case)
• Binary
• 'Swapped' Binary (from other computer types)
• CfMC HP3000 SPL format (DTA)
• CfMC Phone File (FON file from Survent)

Output files
The files produced by LIST are:

Sample output
A LIST report has the following items:

Name Ext. Description

datafile LST print file

Item Description

List order: How the data is listed, either question
by question or case by case.(see
OPTIONS, below)
DATA ANALYSIS 63
•
•
•
•
•
•

64 C

•
•
•
•
•
•

Instead of having as many items will fit on a page, you can choose to have each
variable on a page by itself. The default page width is 80 columns.

Here is a sample report produced by LIST.

Computers for Marketing - Listing of responses for JEANS.TR

List order: Data case responses listed within each variable

Variable or Data Location: The variable or data location you
have chosen to list.

Description: The question label and text.

Case: Case Identifier (ID). For files without
case IDs, LIST will default to the first
ten columns of the data.

Data: Whatever text or data appears for that
variable or data location.

Item Description
hapter 3

********** [2/10] **********

Description: Q5O - OTHER JEANS USUALLY WORN

Case: 0009 , Data: 'Bossimo, Stubby'

Case: 0013 , Data: 'Badland'

Case: 0015 , Data: 'Bill Blass'

Case: 0004 , Data: 'VCW, PAVORI'

Case: 0005 , Data: 'VCW'

Case: 0009 , Data: 'PAVORI'

Case: 0007 , Data: 'LOBO JEANS'

Case: 0008 , Data: 'TOMMY SMITH, WALKERS'

Case: 0004 , Data: 'WATER POLO'

Case: 0008 , Data: 'NO NAME'

Case: 0013 , Data: 'VCW'

Case: 0001 , Data: 'PAVORI'

Case: 0004 , Data: 'DRUM/ACME/X-FILE.'

Case: 0005 , Data: 'CODE RED'

 There were 14 responses to "Q50"

Options
LIST also allows you to:

1 BASE the tables

This is a way to use only certain records from the data. Use a data location to
determine which records to include. An example would be a base of [5.2#1-50],
which means include only those records that have the numbers one through 50 in
columns five and six. You can also use variables from previous Mentor runs. Enter
the name of the DB file in which the variables are defined. See 2.1 HOLE for
examples of the correct syntax to use for variables.

2 Write open-end text to a file.
The open-end text can be written to a special format file to be read by a Word Pro-
cessor or Spreadsheet program (e.g. WORD or EXCEL).
DATA ANALYSIS 65
•
•
•
•
•
•

66 C

•
•
•
•
•
•

LIST writes files that can be read by EXCEL as follows:

 CASE ID LABEL location TEXT OF RESPONSE

You can manipulate the text as you see fit, spell-checking or editting for content.
Then you can export the file to be read back into your CfMC TR file using the
support spec file "RDTEX^SPX".

Refer also to the support spec file "DMPTX.SPX" which does the same thing using
Mentor command language.

3 Print an extra variable.
Add an extra variable along with the case ID for each case, such as a name. This is
useful to include another variable, such as interviewer ID, or when printing all
variables of a certain type and you also want to include one variable of a different
type.

4 Specify how you want the list organized:
• a variable heading and all the data cases within that variable, or
• a data case heading and all the variables from that case below it; if you choose

this option, you can have the variable name, question text and response, or just
have the variable name and response on the list.

5 Choose the number of blank lines between cases:
0) compressed (none)

1) single spaced

2) double spaced

6 Adjust the page width
You can have a page width from 25 to 250 characters. The default width is 80
characters.
hapter 3

The options menu looks similar to the other utilities:

Enter any LIST options you want to use or Press <Enter> to list all cases
to a print file in portrait format.

B Specify a BASE (Subgroup of cases to LIST)

O Write Open-end text to a special format file to be read by a Word
Processor or Spreadsheet program (e.g. WORD or EXCEL)

V Print an extra variable in addition to the case ID

P Start each new item on its own page

L Add blank lines between each item listed

W Change the page width/use landscape print format
DATA ANALYSIS 67
•
•
•
•
•
•

68 C

•
•
•
•
•
•

hapter 3

 Chapter 4
• • • • • •

 Data Alteration

4.1 CLEANIT

What it does
Cleaning is the process of changing the data in data files to make them more accu-
rate. The CLEANIT utility allows you to display, verify and modify individual
records in data files.

When to use it
CLEANIT is a utility for clients that do not have Mentor. While the CLEANIT
utility is easy to use, Mentor is much more powerful and flexible. CLEANIT is a
subset of the Mentor command set. If you want to write complex cleaning proce-
dures, including conditionals (IF-THEN-ELSE) or automatically clean an entire
data file at once in batch mode, you need to use Mentor.

How to use it
At the operating system prompt, enter:

CLEANIT

This starts the cleaner block, and opens a log file called CLEAN.LOG. If a file
named CLEAN.LOG already exists, CLEANIT will append to this file. If you
want a separate log file for each session, you must rename the existing
CLEAN.LOG file.

You can also enter the single argument of a study name. Mentor will open the TR,
DB and QFF files for the study name, if they exist. With the DB file open, you can
display and modify questions using label names rather than data locations. With
the QFF file open, you can modify text questions without having to define the text
Version 8.1 69
•
•
•
•
•
•

70 C

•
•
•
•
•
•

location. For example, if your study name is bank, you can type:
CLEANIT bank

CLEANIT also supports going directly to a particular CASE ID. IF you want to
start at a particular case ID in the data file (TR file), type:

CLEANIT <study><caseid>

If the case id is missing, you are placed on the second case.

You can enter >HELP to look at the help screens to see all the CLEANIT com-
mands available. Enter ~END to quit CLEANIT.

CfMC recommends the following procedure to clean data with CLEANIT:

1 Copy the data file. (DOS/MPE “copy”)
2 Start CLEANIT. (CLEANIT)
3 Open the data file, if necessary. (FILE)
4 Display the data. (DISPLAY ASCII, DISPLAY BINARY, DISPLAY

TEXT)
5 Modify and check the data. (MODIFY ASCII, MODIFY BINARY,

MODIFY TEXT)
6 Move to the next case. (NEXT)

Input files
Data lookup or modification CLEANIT commands work on CfMC System files,
ASCII and binary files. For ease of use, you can use COPYFILE or MAKECASE
to convert other file types to a CfMC System file.

Sample cleaning session
1 Copy the data file
The changes you make to a data file with CLEANIT are permanent, so always
have a backup of the original data. Before you start CLEANIT, use the COPY
command to make a backup copy of your data file. Enter:

COPY file.tr back.tr (DOS, UNIX)

COPY filetr, backtr (MPE)

2 Start CLEANIT
hapter 4

Enter:
CLEANIT <studyname>

The Mentor cleaning block will display the prompt “CLeaNer command or >help-
->.”

3 If you need to open a data file, enter:
FILE filename

If your file is not a CfMC System file, you must indicate the file type and length.

Enter:
FILE filename ASCII=<length>

FILE filename binary=<length>

CLEANIT automatically positions you on the first record of the file.

4 Display the data
You can display data in either ASCII and binary format. The commands are:

DA <location or variable>

DB <location or variable>

You can either use a data location or variable. Indicate a data location by entering
the starting column and width. You can use two different formats, either the abso-
lute location or record number and column number.

For example:
90.5 (absolute column number and width)

2/10.5 (record number/column and width)

No matter which format you use to enter data location, CLEANIT will report the
data location in record number/column number and width format (2/10.5). If you
do not include a record number, it will default to one. If you do not include a col-
umn width, it will default to one.

If you have a database file that contains variables, you can use variables to call
data. While variables can be anything, they are usually the question names used in
Survent. Before you use variables in CLEANIT, you must have a database file
open. If you need to open a database file, enter:

>USE_DB <filename>

a) ASCII DATA

ASCII format is for single-punched or alphanumeric data. Since there can be only
one character per column, the columns are represented vertically, that is, the data
Data Alteration 71
•
•
•
•
•
•

72 C

•
•
•
•
•
•

from all columns are listed on the same line. The top two lines are a template
which indicates the column numbers. For example, to look at the first forty col-
umns of the current case, enter:

DA 1.40

CLEANIT will display:
ID: 0001 (study code=RRUN, int_id=bkok):1.40

Display 1/1.40:

0 1 2 3 4

1234567890123456789012345678901234567890

--

0001 340101011RF 3344125 1224114233

In this example, the case ID is in the first four columns (0001), column five is
blank, column six is a three, column seven is a four, etc. To display an entire data
record, you can enter “D*”. To display part of a record, enter the
DISPLAY_ASCII command with a data location, for example, to display just col-
umns 10 through 16, enter:

DA 10.6

CLEANIT will display:
ID: 0001 (study code=RRUN, int_id=bkok):10.6

Display 1/10.6:

1

0123456

01011RF

If there were any multipunched numeric data in this record, it would be repre-
sented with an asterisk. To be able to see multiple punches in one column, display
that column in binary mode.

b) BINARY DATA
Letters, punctuation marks and multipunched numbers are stored in the data file
by multiple punches in one column. Because there is a combination of characters
in each column, binary data is represented horizontally; that is, each column is
listed on a separate line. Each line contains the record and column location, the
ASCII character code, and all of the punches in that column. To look at columns
hapter 4

13 through 17 of the same record as above in binary format, enter:
DB 13.5

CLEANIT will display the column number, the ASCII character and the binary
data:

ID: 0001 (study code=RRUN, int_id=bkok):1.5

column ASCII Binary

1/13 1 1

1/14 1 1

1/15 R 9,11 (‘X’)

1/16 F 6,12 (‘Y’)

1/17

Here is an example from another data file that has a multipunched number in col-
umn 17:

DB 14.5

ID: 0002 (study code=TEST, int_id=):14.5

column ASCII Binary

1/14 4 4

1/15 ! 2,8,11('X')

1/16

1/17 * 2,3,6

1/18 A 1,12('Y')

You can see from this example that letters (column 18) and punctuation marks
(column 15) are also made up of multipunches.

c) TEXT DATA
Data from TEX questions from Survent are stored in compressed format at the end
of the data file. Survent uses text pointers, a data location that points to another
data location where the text actually is. If you don't already have your QFF file
open, indicate the start of the text location when opening the data file.

The syntax is:

FILE <name> TEXTLOCATION=<location>

For example:
FILE mydata TEXTLOCATION=5/1

To display the data from a TEX question, enter the display text command (DT)
and a text pointer location. For example, to display text data from the current case
Data Alteration 73
•
•
•
•
•
•

74 C

•
•
•
•
•
•

that is referenced by the text pointer in record 4, column 71, enter:
DT 4/71

To list all the text from the current case, enter:
DT *

If you want to list the responses for a particular data location from every case in
the data file, you can use the LIST utility.

5 Modify and check the data

a) (ASCII)
Data can be modified in either ASCII or binary mode. Use ASCII mode unless the
data is multipunched. Enter the modify ASCII command (MA) and a data loca-
tion. Enter:

MA 2

0.5

And CLEANIT will display:
ID: 0001 (study code=RRUN, int_id=bkok):20.5

Display 1/20.5:

2

01234

33441

MA->

To change the data, enter a character for each column. If you want to make a col-
umn blank, then enter a space for that column. If no changes are necessary, or no
changes beyond a certain point, press Enter. For example, if you want to keep the
first column a number three, change the second column to a blank and change the
third column to the number one, at the “MA->“ prompt, enter:

3 1

Now, check your changes by displaying the data in the same location again. Enter:
DA 20.5
hapter 4

And CLEANIT will display:
ID: 0001 (study code=RRUN, int_id=bkok):2.5

Display 1/20.5:

2

01234

3 141

NOTE: Once you reach the modify ASCII (MA) prompt, you must enter something
for each column, or press the Enter key to leave modify mode. Entering a blank with
a space bar changes the data to a space, it does not keep the data the same.

You cannot add data past the last column in the data record. Even if the data
record is defined as 80 columns long, but you only have data up to column 40, you
cannot add data to columns 41-80.

b) BINARY:
Letters, punctuation marks, and non-ASCII numbers are all stored in the data bya
combination of punches in a single column. When displaying data in ASCII mode,
asterisks represent numeric columns with more than one punch. To see all of the
punches in the column, you must use the display binary or the modify binary com-
mands. To display the data in columns 14 through 18 in the current case, Enter:

DB 14.5

CLEANIT will display:
ID: 0002 (study code=TEST, int_id=):14.5

column ASCII Binary

1/14 4 4

1/15 ! 2,8,11('X')

1/16

1/17 * 2,3,6

1/18 A 1,12('Y')

To change the data, use the modify binary command (MB) and the data location,
Enter:

MB 14.5
Data Alteration 75
•
•
•
•
•
•

76 C

•
•
•
•
•
•

CLEANIT will display the first column and prompt you for new data:
ID: 0002 (study code=TEST, int_id=):14.5

column ASCII BinaryNew Data

1/14 4 4 MB->

You must enter something at each "MB->" prompt, either new data or press Enter
to keep it the same. You can enter a single punch (1234567890XY) or multiple
punches separated by commas (e.g. 7,8,9). To keep the current punches and add a
punch, enter a plus sign and the punch you wish to add (e.g. +2), or to remove a
punch enter a negative sign and the punch you wish to remove (e.g. -2). To make a
column blank, enter B. So, to leave column 14 the same, change column 15 to
blank, change column 16 to punches one and five, add a five punch to column 17
and leave column 18 the same, you would Enter:

ENTER; B; 1,5; +5; ENTER.

It would look like this:
ID:0002(study code=TEST, int_id=):14.5

column ASCII BinaryNew Data

1/14 4 4 MB->

1/15 ! 2,8,11('X') MB->B

1/16 MB->1,5

1/17 * 2,3,6 MB->+5

1/18 A 1,12('Y') MB->

Now, review your changes by displaying the data in the same location again.
Enter:

DB 14.5

And CLEANIT will display:
ID:0002(study code=TEST, int_id=):14.5

column ASCII Binary

1/14 4 4

1/15

1/16 * 1,5

1/17 * 2,3,5,6

1/18 A 1,12('Y')

You could use ASCII mode to change multipunch columns of data to single
punch, but you would not be able to see exactly what data was in the multi-
punched columns before you change it.
hapter 4

c) TEXT
To modify the data from a TEX question, enter the modify text command (MT)
and

a text pointer location. For example, to display text data from the current case that
is referenced by the text pointer in record 4, column 71, enter:

MT 4/71

CLEANIT will display:
ID: 0016 (study code=RRUN, int_id=bkok):[4/71] =Roadrunner’s

pizza is totally rad, dude!

Then, CLEANIT will display a second screen which has the text in a box. You can
now use the text editor to modify the text. Press ESC when you are finished. Dis-
play the text again to check your work, enter:

DT 4/71

CLEANIT will display:
ID: 0016 (study code=RRUN, int_id=bkok):[4/71] =Roadrunner’s

pizza is totally rad, dude!

6 Move to the next case
When you use FILE to open a data file, you are positioned on the first case in the
file. To move to the next case, enter:

NEXT

You can move forward by entering NEXT and a plus sign and the number of cases
forward you want to go. For example, to remove four cases, Enter:

NEXT +4

NOTE: Cases are stored in the data file in the order they are entered; cases do not
necessarily have to be in case ID order. Do not assume that because you are the fourth
case in the data file and you move forward four cases that you will be on case ID 8.

To move to a specific case, enter NEXT and the case ID. You must include lead-
ing zeros, for example, if your case ID is four columns wide and you want case ID
Data Alteration 77
•
•
•
•
•
•

78 C

•
•
•
•
•
•

five, enter:
NEXT 0005 or N”0005”

You can also enter NEXT FIRST and NEXT LAST to go to the first and last
cases, respectively. To move backwards in the data file, use the BACK command.
To move three cases back, Enter:

BACK 3

Other cleaning commands
Enter >HELP to get a listing and short description of cleaning commands.

Deleting a case
To delete a case, DELETE. UNDELETE will remove the delete flag from the
case.

Repeating commands
CLEANIT allows you to repeat simple procedures easily. You can put several
commands on one line separated by semicolons. The NEXT_REDO command
will re-execute the entire line. For example, if you want to modify the data in col-
umns one through four and display the same columns again (to check your
changes) and then do the same thing on the next case, you would Enter:

MA 1.4; DA 1.4

NR

Using semicolons between commands can lead to long command lines. To make
changes to the line, use the meta command >EDIT_PREVIOUS. Enter:

>EP

When you are through with your corrections, press ESC and CLEANIT will exe-
cute the new command(s).

Finding a case
To find data cases that meet a criterion, use the HUNT or FIND commands.
HUNT starts at the beginning of the data file and stops at the first case that satis-
fies the criterion, while FIND starts from your current position and searches for-
ward in the file. For example, to find the next case that has a one punch in column
hapter 4

five, enter:
FIND [5^1]

To find the next case that matches the same criteria, just enter FIND or F.

Showing variables
If you have variables in a database file, you can use the SHOW command to the
complete variable (the question text) and the answer. To use variables, you must
have a database file open. Enter:

>USE_DB <filename>

Then use SHOW with name of the variable you want to see. For example:

SHOW qn18 and CLEANIT will display:
qn18(402,1)($C: 7) title=Q18. Would you classify your ethnic

background as . . . [1/53 CAT]

categories: #1: (1) Caucasian #2: (2) African-American #3: (3)

Hispanic #4: (4) Oriental #5: (5) American Indian #6: (9) Some

other ethnic group #7: (0)Refused=qn18(7:4=4=Oriental)

Defining procedures
You can use HUNT and FIND (described above) with defined procedures. You
can write a short procedure and use it on the entire data file. For example, to mod-
ify and review the ASCII data in columns five through seven, you could define the
following procedure once you are in the cleaning block:

DEFINE PROCEDURE=REPAIR:

MA 5.2

DA 5.2

}

Once the procedure has been defined you can execute it any time during the cur-
rent cleaning session by entering:

!REPAIR

Or you could start at the beginning of the data file and execute REPAIR on every
case.

Enter:
HUNT REPAIR
Data Alteration 79
•
•
•
•
•
•

80 C

•
•
•
•
•
•

Restoring a case
If you make changes to a data case and do not want to save the changes, enter:

RESTORE

This will restore the case from the last time it was saved to disk. When you move
to another case, the case is stored to disk and you cannot reverse those changes.

Viewing a questionnaire
Use the SURVIEW utility to view a data file in relation to a questionnaire file.
You must have a Survent questionnaire file (this file has a qff extension) and a
corresponding data file. Open the data file, the questionnaire file and then start
SURVIEW:

FILE datafile

~QFFFILE questionnaire file

~CLEAN VIEW

See Chapter 4: CONDUCTING THE INTERVIEW of the Survent manual for details on
how to use SURVIEW.

Modifying case IDs
The case ID is a record identification number from one to ten characters long.
Each data record has both an assigned and internal case ID. The assigned case ID
is created by Survent (or another program) and is contained in data location
assigned by the user.

Often assigned case IDs are four digit numbers kept in columns one through four.
The internal case ID is a number assigned automatically by Survent or Mentor and
resides in the case header, which is not part of the regular data.

To change a case ID, you must change both the assigned case ID and the internal
case ID. To change the assigned case, use the MODIFY_ASCII command. To
change the internal case ID, use the PUT_ID command. For example, here are the
steps to change case ID 0005 to case ID 0999.

First, display the case. Enter:
DA 1.20
hapter 4

CLEANIT will display the internal case ID on the first line:
ID: 0005 (study code=RRUN, int_id=bkok):1.640

Display 1/1.20

0 1 2

12345678901234567890

0005 033530205 5 3

To change the assigned case ID, change the data in the location (in this example,
columns one through four) with the MODIFY_ASCII command. Enter:

MA 1.4

CLEANIT will prompt you for the new data:
ID: 0005 (study code=RRUN, int_id=bkok):1.4

Display 1/1.4:

0

1234

0005

Enter the new data:
0999

Now, move the new assigned ID from the assigned data location into the case
header with the PUT_ID command. This command requires a string type variable,
so you must put a dollar sign ($) after the data location. Enter:

PUT_ID [1.4$]

Display the case again to verify the new case IDs in both the case header and the
data location. Enter:

DA 1.20

And CLEANIT will display:
ID: 0999 (study code=RRUN, int_id=bkok):1.640

Display 1/1.20

0 1 2

12345678901234567890

0999 033530205 5 3

Or, you can use the SAY CASE_ID command to see the current internal case ID.
Data Alteration 81
•
•
•
•
•
•

82 C

•
•
•
•
•
•

Enter:
SAY CASE_ID

And CLEANIT will display:
0999

If you want to write more complex cleaning procedures, including conditionals
(IF-THEN-ELSE) or automatically clean an entire data file at once in batch mode,
you need to look at all the features you can get with Mentor.

These commands are described in detail in Mentor Volume I: Chapter 2: PRE-
PARING YOUR DATA and Mentor Appendix B: ~CLEAN.

4.2 CODEEDIT

What it does
The CODEEDIT utility allows users who are willing to follow particular ques-
tionnaire-writing rules to have a complete coding solution. It is the best solution
for users who have a coding department and a coding manager who can edit code
lists to keep multiple coders working using Survent under the server.

CODEEDIT is supported on all platforms. It reads a QSP file and generates a cod-
ing and editing questionnaire.

When to use it
You should label questions to be coded with label extensions such as OE or OTH
(questions with OTH extension will have code lists associated with them).

The program runs in two passes: First, it finds the Other Specifies and open ends
and makes a file out of each. The user then adds codes to these files or changes
their location, etc. Then the program is run again and the updated code lists are
used to make a coding questionnaire.

The coding questionnaire has the following options:

• Code an uncoded question across cases.
• Code all questions on uncoded cases only (if the case is previously untouched).
• Edit particular open-end questions or all questions.
• Or, get a particular case to code whether or not it previously has been coded.
hapter 4

Other options
• codeedit moveothercodes: This moves codes from the original controlling

questions for “other-specifies” to the same location as the coded data so that it
is all in the same location. This is done at the end of coding.

• “codeedit counts” This displays how many are coded/not coded for each
question.

• “listcode <label>”: This lists a;; the cases tha need coding for a partiucular
question and the coded values if coded in tab-delimited format. It also gives a
summary count for the question.

How to use it
Type:

codeedit

You will get this main menu:
WELCOME TO THE AUTOMATIC CODING AND EDITING PROGRAM!

WHAT DO YOU WANT TO DO?

Type F2 then "TERM " at any time to drop changes and return to the main menu.

1 Code one "other specify" question (UNCODED CASES ONLY)

2 Code one "open-end" question (UNCODED CASES ONLY)

3 Edit a particular "other specify" across cases

4 Edit a particular "open-end" across cases

5 Code ALL others and openends within each case

6 Edit ALL others and openends within each case

X ** EXIT PROGRAM **

4.3 VERBEDIT

What it is
VERBEDIT is similar to the CODEEDIT utility, except it only allows editing of
verbatims.

How to use it
You need only specify the extension of each question to be included and run the
Data Alteration 83
•
•
•
•
•
•

84 C

•
•
•
•
•
•

program to create a questionnaire file to be used for editing. You can start at a
particular case or just get the next case to be edited. The time and interviewer ID
of the editor is stored in the dataset.

Here is the main menu:
WELCOME TO THE AUTOMATIC VERBATIM EDITING PROGRAM!

WHAT DO YOU WANT TO DO?

(NOTE: Type F2 then “TERM” to drop changes and return to main menu.)
1) Edit a particular open-end question across cases

2) Edit ALL verbatims within each case
hapter 4

 Chapter 5
• • • • • •

 Customizing CfMC Software

5.1 CFMCMENU

What it does
CFMCMENU is a menu-driven front end to CfMC software.

When to use it
This is for anyone who prefers a menu-driven front-end to CfMC software.
Advanced users can use the programmer's menu, see OPTIONS below.

How to use it
You can work on projects that are not currently in the field or you can access stud-
ies that are running live under the CfMC SERVER. Enter:

CfMCMENU
Version 8.1 85
•
•
•
•
•
•

86 C

•
•
•
•
•
•

Note: Menu options will vary according to the platform on which you are
working. The following menus reflect a DOS platform.

If you choose the first option, to work on studies that are not currently live, the
following menu will appear:

 ***** CfMC Software Menu System *****

Survent / System Utilities Data Reporting Utilities

----------------------------- -----------------------------------

1) Run Survent/test questionnaire 5) SCAN (tables for category data)

2) Quotamod (report/update quota info) 6) FREQ (tables for number/var data)

3) Suspres (report suspend info) 7) Holecount (summary column count)

4) Foneutil (report/update phone info) 8) LIST (show answers case-by-case)

Phone System Data Review/Alteration New File Creation

--------------- ----------------------- ----------------------

F) Make new sample I) Cleanit (see/update data) L) Copyfile (many options)

G) Check phone file J) View interview (single) M) Reformat (spread file)

H) Do Phone Reports K) Recode data (single user) N) Merge (combine files)

 DOS Commands General

 ------------------------ -------------------------

 S) Change directories W) Run a Mentor batch job

 T) Edit a file X) Exit menu, go to DOS

 U) Get listing of files Y) Get HELP on 1-Z

 V) Do a DOS copy command Z) Reset CfMC variables
hapter 5

If you choose the second option, to work on studies while they are live, the same
menu will appear, except for the first section. Instead of "Survent/System Utili-
ties," you will see:

Live data collection

 1) Supervise/start interviewers

 2) Monitor (interviewers)

 3) View (review/update data)

 4) Interview (under server)

Options
There is an advanced version of CFMCMENU for programmers called PROG-
MENU.

Enter:

PROGMENU

and you will see a menu that resembles the following:

***** CfMC
Software Menu System *****

Questionnaire

Development Live Data Collection Live Survent Sub-systems

---------------- --------------------------- --------------

1) Edit spec file 6) Supervise/start intvwrs A) Quotamod (quota updt/info)

2) Compile qnaire 7) Monitor (interviewers) B) Suspres (suspend info)

3) Test/run qnaire 8) View (review/update data) C) Fixresum (fix suspends)

4) Convert document 9) Interview (under server) D) Foneutil (phone updt/info)

5) EZWriter 0) Cleanit (updt live data) E) Makecfg (stations info)

Phone System Data Review/Alteration New File Creation

----------------- ---------------------------- -------------

F) Make new sample I) Cleanit (see/update data) L) Copyfile (many options)

G) Check phone file J) View interview (single) M) Reformat (spread file)

H) Phone reports K) Recode data (single user) N) Merge (combine files)

Data Reporting DOS Commands General

------------------ ------------------------ -----------------------

O) Scan (tables) S) Change directory W) Run a Mentor batch job

P) Freq (num tabs) T) Edit a file X) Exit menu, go to DOS

Q) Hole count U) Directory of files Y) Get HELP on 1-Z

R) List open-ends V) Do a DOS copy command Z) Reset CfMC variables

Both CFMCMENU and PROGMENU are batch files in the \cfmc\go directory
Customizing CfMC Software 87
•
•
•
•
•
•

88 C

•
•
•
•
•
•

which you can customize for your own needs.

The Survent utilities QUOTAMOD, SUSPRES, FIXRESUM, FONEUTIL,
MAKECFG, RECODE, and REFORMAT are documented in the Survent manual.
The utilities COPYFILE, MERGE, SCAN, FREQ, HOLE, LIST and CLEANIT
each have their own section in this manual.

5.2 MAKEMSG

What it does
MAKEMSG allows you to customize the program messages and help screens that
appear while running Survent, Mentor and Script Composer.

This utility supports message file lines that contain up to 300 characters. If you
add long messages, be careful because you must need to pay attention to line
wrapping on a terminal at 80 columns when messages are displayed.

When to use it
Use MAKEMSG to customize informational or error messages. You can also use
MAKEMSG to have your messages appear in another language. Currently Span-
ish, French and German are supported.

How to use it
All program messages are contained in the message file. To change a message,
make a copy of the ASCII version of the message file (\cfmc\control\msgfile.raw),
and then edit it to include the changes you want. Compile the file by entering:

makemsg

You will be prompted for the name of the file you have edited. MAKEMSG will
compile create a compiled message file with the name "newfile." Rename newfile
to msgfile and copy it to \cfmc\control directory. Survent, Mentor and Script
Composer will now use the messages you have added to the message file.

Which message file?
CfMC programs will first look for a message file named msgXXXX, the Xs being
a four-digit suffix that is the current program version number (for example,
msg9607). If the program does not find a msgXXXX file, then it will use the file
hapter 5

named "msgfile." To see which message file your CfMC program is currently
using, use the meta command >VERSION.

To change your messages to another language, see the OPTIONS section below.

Options

Changing the language
If you want to change your messages to Spanish, French, or German, follow these
steps (some basic messages have already been translated for you):

1 Change the message
Place the message in the message file (msgfile.raw) just before the English ver-
sion. Start the line with two letters indicating the language (sp=Spanish,
fr=French, ge=German), keeping the message number the same. Do not change
any variables, such as %s or %d, as they are filled in by the program. For exam-
ple:

g4377zu viele Antworte (nur %d anerkannt)

4377too many responses (only %d allowed)

2 Make a new message file
Enter:

MAKEMSG msgfile.raw gapfile language=ge

Msgfile.raw is the ASCII version of the message file that you have edited in step
one. While MAKEMSG creates the new message file, it will keep a record of any
gaps in the numbering sequence of the program messages in the file name you
indicate with "gapfile." Commonly used language options are sp=Spanish,
fr=French, and ge=German, respectively. They are represented by two characters.

You can set your own language abbreviations in your header. But, it is best to
abbreviate languages so that they are recognizable.

CfMC supports 350 languages. Here are some abbreviations for some of the com-
monly used languages:

• GE: German
• EN: English
Customizing CfMC Software 89
•
•
•
•
•
•

90 C

•
•
•
•
•
•

• FR: French
• IT: Italian
• PT: Portuguese
• SP: Spanish
• SV: Swedish
• ZH: Chinese
• XX: All languages

Using this option will compile msgfile.raw into a file called newfile. Rename
newfile to msgfile.raw and make sure it is in the \cfmc\control directory. Survent,
Mentor and Script Composer will now present the messages in the language you
have added to the message file.

The MAKEMSG file allows lines up to 300 characters wide.

Make a small MSGFILE for Survent on a diskette
The MAKEMSG option SMALSURV only puts message in the message file rele-
vant to standalone Survent. This is for disks by mail.

The full syntax for the MAKEMSG command line is:

MAKEMSG <rawfile><listfile>SMALSURV LANGUAGE=<letters>

Input files
You cannot edit the msgfile directly. Make a copy of \cfmc\control\msgfile.raw
and edit it. You can edit the copy with any ASCII editor.

Output files
Newfile is the compiled version of the message file (it needs to be renamed msg-
file). Gapfile is a record of any gaps in the sequence of message numbers
MAKEMSG encounters when compiling the message file.

Points to note
Error messages: When MAKEMSG gives informational messages while com-

piling the message file and finishes with the error:

ERROR (2602), but no message file available!

This is normal and does not indicate a problem.
hapter 5

MAKEMSG requires TERMTYPE=9 on a MPEXL platform: MAKEMSG makes
new msgfiles for CfMC programs. In MPEXL, to run MAKEMSG and create a
msgfile you must first type:

setvar TERMTYPE 9

This was done to keep unauthorized users from making msgfiles.
Customizing CfMC Software 91
•
•
•
•
•
•

92 C

•
•
•
•
•
•

hapter 5

 Appendix A
• • • • • •

 Meta Commands

RULES OF META COMMANDS

Meta commands are high-level commands, many of which work in both Survent
and Mentor. Meta commands are preceded by a greater than (>) character. When
the program reads this > sign, it knows that a special program command is being
requested. Appendix C of the Survent Manual lists the meta commands specific to
that package.
Meta commands that work in both Survent and Mentor are presented here in
alphabetical order.

Here are the general rules for meta commands:
• Meta commands must start in column one. (Unless you use

>ALLOW_INDENT.)
• Meta commands are used to turn options on and off by placing a minus sign (-)

after the greater than sign (>) and before the command.
 For example: >-ALLOW_INDENT.

• Options to meta commands can be entered in any order (unless otherwise
indicated).

• The command as shown on the first line of each section (in the left margin)
reflects the full version of the command. See the syntax for the correct
abbreviation.

• Underscores used to separate words are always optional. For example:
DB_TO_FILE can be abbreviated DBTOFILE.

• Plural commands can be abbreviated without the S. For example, COLORS can
be shortened to COLOR.
Version 8.1 93
•
•
•
•
•
•

94 A

•
•
•
•
•
•

• Standard abbreviations are:

See Appendix B: ALLOWED ABBREVIATIONS for the specific abbreviation for
all CfMC program commands.

META COMMANDS AND THEIR SYNTAXES

>ALLOW_INDENT
Allows meta commands, comments and &filename commands to be indented; by
default, they must start at the first column of the file. You can turn off this com-
mand by specifying >ALLOW_INDENT.

Syntax:
>ALLOWIND

>BATCH_JOB
Tells DOS- or UNIX-based systems to run the job in batch mode and not to expect
input from the keyboard. For example, messages that say “Press any key to con-
tinue” would not stop batch mode processing.

>BEEP
Sets up to three beeps, specified with three sets of two numbers (#) each. The first
in each set is the tone (0 is silence). The second # in each set is the duration in
milliseconds.

CLEAN CLN

COLUMN

ERROR

COL

ERR

LENGTH LEN

TOTAL TOT

WIDTH WID

WEIGHT WT
ppendix A

Syntax:
>BEEP # # # # # #

To hear the beep you’ve set, enter >BEEP.

>BROWSE
Displays a file on the screen, pausing when a screen is full.

Syntax:
>BROWSE filename

You can page up and down, go to the top or bottom or stop browsing at any time.

>CALL_DOS
Allows DOS commands to be called from within a program. Return to the pro-
gram by typing EXIT at the DOS prompt.

Syntax:
>DOS

You can execute DOS commands and small programs, but CfMC programs
remain resident in memory. You can also do a DOS command but remain in
the program. See >SYSTEM.

>CASE_SENSITIVE_<filename>
This command allows you to run jobs in directories with names such as
/home/study/TEST/One. It is to be used with caution if there are very long file
names.

Syntax:
>CASE_SENSITIVE_<filename>

When you use CASE_SENSITIVE, the filenames, whether upper- or lower-case,
will remain the same. So, your specs can be:

~In store/producesection/apples

or

~IN STORE/PRODUCESECTION/APPLES

or

~In Store/Producesection/Apples

This command keeps the case the way it was entered. It will not change the file-
Meta Commands 95
•
•
•
•
•
•

96 A

•
•
•
•
•
•

name to the default, which is all lowercase. Thus, each of the three statements
would look for the exact filename.
In addition, the software can read all filenames and paths regardless of the length
or case (Use " "s around filenames with special characters or spaces). The
program will lowercase all input and output names you specify unless you use
">CASESENSITIVE", in which case the program, will look for and write names
exactly as specified.

In ALL cases, lowercase file extensionsare output, unless otherwise specified. It is
assumed that setenv ENVIRONMENT variables are uppercase unless you specify
">CASESENSITIVE_ENV", in which case the program pays attention to the
exact case.

For example, when turned on, files referenced, such as "Study.db", will look for
"Study.db" and not "study.db". By default, it will look for "study.db" or "Study.db"
or "STUDY.DB".

>CFMC_FILE_EXTENSION
This says that CfMC programs expect certain program-generated file extensions,
such as TR for input files. This is the default.
It allows the user to definte alternate extensions for those usually used with files
created by CfMC.
You can specify $filename on any program command (e.g., ~INPUT $myfile) to
tell a CfMC program to accept the filename as given and not to add or check for
standard CfMC extensions. This applies only for files with an expected default
extension: data (TR); print (PRT); or db (DB). Where file type can be checked
(currently only on MPE) the program will check and complain if there is a con-
flict. This allows you to specify your own file names up to the maximum allowed
by your operating system (eight plus three character extension for DOS, eight for
MPE, and 14 for UNIX (some UNIX versions have no character limit).
>CFMC_FILE_EXTENSION makes $filename the default.

The current list of 16 controllable extensions are: CHK, DB, DEF, DLM, HRD,
LAB, LPR, PRT, QFF, QSP, QUO, RFL, RFT, SUM, TAB, TR

>CHARACTER_SET=ASCII (=EXTENDED_ASCII, =MULTIBYTE,
=SHIFT_JIS)
This is used to say what character set is allowed in spec files.
ppendix A

Multibyte is used for Chinese and Korean.
Shift_jis is used to allow Japanese.

Syntaxes:
>CHARACTER_SET=MULTIBYTE

>CHARACTER_SET=SHIFT_JIS

>CHARACTER_SET=ASCII

>CHARACTER_SET=EXTENDED_ASCII

Extended_ASCII allows the use of the extended ASCII character set in spec files.
This is useful for printing graphic characters, such as lines (ASCII 196) or the
British pound sign (ASCII 156) in tables.
By default, only ASCII characters 32 to 126 are passed on to list and print files,
while the other ASCII characters (0-31 and 127-255) are converted to spaces as
the spec file is read. When this meta command is set, characters having an ASCII
value of 32 through 255 are passed to the list and print files.
Regardless of the setting of the >CHARACTER_SET=EXTENDED_ASCII, tabs
and characters with an ASCII value less than 32 will always be converted to a sin-
gle space in list and print files. Tabs are converted to spaces so you can use tabs to
organize spec files better visually, but will not be passed to the list and print files.

Consult your operating system documentation for listing of the ASCII character
set.
See also >TAB_WARN.

>CHECK_EXIST
Indicates whether a file exists or not. You can give a file name in the current direc-
tory or an absolute or relative path name.

Syntax:
>CHECK_EXIST <filename>

CHECK_EXIST will generate an error and exit if a file exists, but the file name is
not acceptable to Mentor, such as file names with special characters (!, -, &) in
them. For example in DOS, CHECK_EXIST would find a file named junk, but
will exit with a page fault with files named j--k or j!!k.

>CLEAR_SCREEN
Clears your screen. This is similar to a DOS CLS command, but will not affect
Meta Commands 97
•
•
•
•
•
•

98 A

•
•
•
•
•
•

any color settings you might have in effect.

Syntax:
>CLS

>CLOSE_DB
Closes the named DB file. If all “save to” DB files are closed, items will be saved
to the program’s local DB file.

Syntax:
>CLOSEDB filename

This only closes the last DB file opened with >CREATE_DB or USE_DB.
See also >RESET_DB.

>CLOSE_QFF
Closes open QFF files after a compile, or after a file has been opened with the
~QFF_FILE or &&&qfffile command.

>COLORS
Controls the making of color specifications when using Script Composer, and the
system color when working in any CfMC program.

Syntax:
>COLOR CfbCfbCfb

Cfb Controls the system default colors on a color monitor. The color specifi-
cation starts with a ‘C’, then has the character color letter, then the background
color letter. You can specify three different color specifications on this command:
the screen colors, the color for question text, and the color for response text.
The foreground and background colors can be any of the following colors:

Z black B blue

W white Y brown

R red C cyan

G green M magenta
ppendix A

Example:
>COLOR CRG

This will print red text on a green background.

Example:
>COLOR CRGCBW

You can use a plus sign(+) before the color specifications for a bold foreground.

Example:
>COLOR C+WB

This will print bold white on blue. Using the plus sign(+) with “Y” (brown) turns
it to a bold yellow.

>COLORS sets the default colors for Survent interviewing or CfMC Utility pro-
grams. This command can be used in the INITIAL file (\CFMC\CONTROL or
CONTROL.CFMC) or at a CfMC program command line. This command can
also be used to specify a default for all questions composed in Script Composer.
The question text screen would always be displayed in the colors specified as the
second and third color specs.
You can also set colors by specifying a COLOR environment variable (SET COL-
ORS=CWGCWG in DOS), but >COLORS overrides SET COLORS. Do not
specify the same color for foreground and background, because this will make the
text indistinguishable from the background and you will not be able see com-
mands as you enter them.

>CONTROL_Y_QUIET
This is for Mentor only.
It determines if you get a “DO YOU WANT TO TERMINATE?” prompt when
you enter a Ctrl-Y during a Mentor run or not. By default, you are prompted to
confirm termination of a run when you enter Ctrl-Y.

Syntax:
>CTRLY
Meta Commands 99
•
•
•
•
•
•

100

•
•
•
•
•
•

Example:
Case # 35, ID: 0035

Mentor 12May93 running tabs.spx at 17 MAY 1993 16:24.

total time: 0 minutes 12 seconds

DO YOU WANT TO TERMINATE (No/Yes)? -->

Enter N, Y or ENTER (ENTER is the same as N).

With >CONTROL_Y_QUIET set, Ctrl-Y is ignored. A possible consequence is
that you may not be able to terminate a Mentor run unless you reboot your PC or,
on the HP, you have the system manager abort your session. On PCs, Ctrl-C may
work to terminate your run.

>COPY
Copies a file. This overrides any operating system level COPY command. If you
want to use your operating system version of the copy, use >SYSTEM copy. (See
the >SYSTEM command.)

Syntax:
>COPY oldfile,newfile

>CREATE_DB
Creates a DB file to store question entries, variables and table specifications. After
the DB file is created, it is kept open with read-write access.

Syntax:
>CREATEDB newdbname,options,D=dupoption,S=sizoption

Options:
ENTRIES= Maximum number of entries allowed. The default is 505. (E)
ECHO Displays a message when you get an item from the DB file; default is

to not echo. (EC)
TEST A test mode file is one with a directory only, it is zero bytes large.
MAYBE_CREATE If the DB file exists in the current directory, a new one will

not be created, and instead the existing one will be opened in ReadWrite Mode.
(MCR)

DUPLICATE=dupoption Determines what the program will do when it
encounters duplicate names. (D)
 Appendix A

dupoptions:

ERROR Prevents you from storing a duplicate item and displays an error mes-
sage (this is the default).

QUIET Replaces the existing entry with the new one of the same name, with-
out displaying a warning.

REPLACE Replaces the existing entry with a warning (like Duplicate=Warn)
but helps keep your db file from getting filled up with multiple versions of items
since it deletes the old entry and, if the new entry is the same size or smaller, uses
that same space again.

WARN Replaces the existing entry with the new one of the same name, but
displays a warning message.

SIZES=sizoption Lets you specify the number of entries (ENTRIES=) by using
some preset values rather thanhaving to fill in the values. The sizoptions are:
SMALL, MEDIUM, LARGE, LOCAL and PREPARE. The values for each of
these is SMALL=500, MEDIUM=1000, LARGE=5000, LOCAL=1000, PRE-
PARE=3000. To change the settings for these sizes, use the >DB_SIZES com-
mand.

Example:
>CREATEDB newdb, EC, D=WARN, S=LARGE

This creates a DB file called newdb with the LARGE number of entries (5000),
will generate a message when you get an item from the DB file, and will display a
warning when replacing existing items.
If the DB files you create are usually the same size, put the >DB_SIZES com-
mand in your init or mentinit file instead of having to put it in your spec file every
time.
You can have multiple DB files open with write access and can put items directly
into any of the ‘save to’ DB files. You can have a maximum of ten DB files open
at any one time. Use >RESET_DB to close all DB files and >CLOSE_DB to close
one DB file.
Meta Commands 101
•
•
•
•
•
•

102

•
•
•
•
•
•

Example:
 >CREATEDB db1,D=W

 >CREATEDB db2,D=W

 >CREATEDB db3,D=W

 ~DEFINE-

 db1^loc1:[1/5^1.5]

 db2^loc2:[1/6^1.5]

 db3^loc3:[1/7^1.5]

 >LISTDB db1

 LOC1 ‘’ type = 1, g1=0026, g2= 15, g3= 0, ver = 1

 >LISTDB db2

 LOC2 ‘’ type = 1, g1=0026, g2= 15, g3= 0, ver = 1

 >LISTDB db3

 LOC3 ‘’ type = 1, g1=0026, g2= 15, g3= 0, ver = 1

“db1^loc1” directs the variable loc1 to the DB file db1.
See also: >USE_DB, >DB_SIZES, >CLOSE_DB, and >RESET_DB.

>DB_SIZES=
Sets default values for the number of entries in DB files when you use the
>CREATE_DB SIZES=option.

Syntax: >DBSIZE= e1, e2, e3, e4, e5

You must enter five numbers, and follow each number with a zero as a place
holder. Each number corresponds to the SMALL, MEDIUM, LARGE, LOCAL,
and PREPARE options to the SIZES= option of the >CREATE_DB command.
The default values for the number of entries are SMALL=500, MEDIUM=1000,
LARGE=5000, LOCAL=1000, PREPARE=3000. Use zero if you want to keep a
number at the default.

Example:
>DBSIZE= 0 0, 0 0, 10000 0, 0 0, 0 0

This example will change the number of entries for a LARGE DB file from 5000
to 10000, and leaves the rest of the numbers the same.
Since the local DB file is not opened until you attempt to make an item when no
other DB files are open (in read/write mode), you can control the size and dupli-
cate parameters of the local DB file before it is opened.
 Appendix A

If you are not creating your own DB files, you can set these numbers so that they
create large LOCAL (default system) DB files which are less likely to run out of
room. Keep in mind, however, that larger DB files will slow down Mentor’s setup
time. The LOCAL default also affects the number of tables CfMC utilities can
create in one run. To allow the utilities to create approximately 5000 tables per
run, set the LOCAL value to 50,000, enter:

Example:
>DBSIZE= 0 0, 0 0, 0 0, 50000 0, 0 0

For DB size LOCAL you can set any of the DUPLICATE= options by specifying
the letter of the option after the second number.

Example:
>DBSIZE= 0 0, 0 0, 0 0, 2000 0 w, 0 0

The previous example opens the local DB file with DUPLICATE=WARN, over-
riding the default DUPLICATE=ERROR. The local DB is also increased to 2000
entries; all DB files are opened with the default number of entries listed above.
Specify only the letter of the option and not DUPLICATE=.
Options are: Q for quiet, R for replace, W for warn, or E for error (default). See
>CREATE_DB for more information on these options.
For DB files other than LOCAL, you must set the duplicate option with either the
>CREATE_DB or >USE_DB command.
A default >CREATE_DB with no specifications for ENTRIES= or SIZES= makes
a DB size of SMALL. ~PREPARE COMPILE creates a DB size of PREPARE.
You can also include >DB_SIZES in your MENTINIT file. This will cause the
DB settings you specify to be in effect any time you run Mentor or Survent.
Use >-DB_SIZES to set number of entries back to the default values.

>DB_STATUS
Displays a list of currently open DB files in search order, noting which are Rea-
dOnly and which are ReadWrite. DB files opened ReadWrite indicate ReadWrite
access while ReadOnly files are listed by name only.

Syntax:
>DBSTATUS
Meta Commands 103
•
•
•
•
•
•

104

•
•
•
•
•
•

Example:
>DBSTATUS

There are three of a maximum of ten DB files opened. Listed below are the
DB files open. They are listed in search order.

c:\acme\j1357\db3.db with ReadWrite access

‘LOCAL’ DB file with ReadWrite access

c:\acme\j1357\db2.db

c:\acme\j1357\db1.db

Now, in Version 8.1, >dbstatus reports the number of used and available entries in
all open dbfiles.

Example:
>dbstatus

There are 2 of a maximum of 10 DB files opened

Listed below are the DB files open

They are listed in search order.

/fixed/mt3941b.db with Read-Write access (total entries=10000, used = 20)

/fixed/mt3941a.db with Read-Write access (total entries=10000, used = 20)

>DB_TO_FILE
Writes the DB entry to an ASCII format file. You must have a DB file open to use
this command (see >USE_DB). This works for ASCII type entries only (i.e.,
titles, labels), DB item type=123.

Syntax:
>DBTOFILE filename dbentryname

Example:
>DBTOFILE ban1 banner1_bn

In this example, the DB entry BANNER1_bn is sent to the text file BAN1.
See also >FILE_TO_DB for the reverse procedure.

>DEFINE
Creates keywords which can be used to instruct a program to read a file, a DB
entry or command(s). Enter the variable from the command line of a program pre-
ceded by the at sign (@).
 Appendix A

Syntax:
>DEF @keyword foption

Options:
@keywordis the keyword.

foptions: can be one of the following:
command

&specfile

&&dbentry

Once a keyword is assigned to some operation, it can be used at any time during a
program session to execute the operation. The keyword is not case-sensitive.

Example:
>DEF @HEADER &header

Where &header is a file containing PREPARE header statement options:
ERROR_BEEP,ALLOW_ABORT,SPEC_WIDTH=132,&

Example:
[STUDY1,1000,”study comment”,&

@HEADER

]

You could create a file of definitions for specifications you use often, and either
read this file in at the top of your specifications file or put it in the either the INI-
TIAL or MENTINIT files which are read each time you access a CfMC program.
These files are located in the CfMC CONTROL directory or group.

Example:
>DEF @STUDY sample

Define the study name at the top of your specifications file, then reference
@STUDY in place of the study name on any meta or tilde command throughout
your file.
You can append letters and/or numbers to @STUDY on a particular command,
e.g., >PRINT_FILE @STUDY~2 to open the print file SAMPLE2.PRT. The tilde
Meta Commands 105
•
•
•
•
•
•

106

•
•
•
•
•
•

(~) delimiter is required.
To revoke definition of a keyword use >-DEFINE @keyword. See also
>SHOW_DEFINES to display a list of all defined keywords.

>Define can also be used to do simple math to set the value of other defines. For
instance:

Example:
>define @TEXTSTART 7001

>define @LASTDATA = TEXTSTART - 1

>echo @LASTDATA “will echo 7000”

Note that the “=” sign after the define. You can use other defines and any math
statements in the defined variable (+. -, /, *).

Another option is to use two (@@)at signs:

Syntax:
>DEF @@name string

This stores the string in a DB file (must be opened ReadWrite) with the specified
name (14-character limit).
By default, defined items are not expanded when they appear inside a quoted
string. Use >FILL_DEFINES_INSIDE_QUOTES to have define items expand.

See also >DO_ALL, >IF_DEFINED, and >SHOW_DEFINES.

>DELETE
Deletes a file. This overrides any operating system level DELETE command. See
also >PURGE. If you want to use your operating system’s version of the delete
command, use >SYSTEM DEL (See the >SYSTEM command.)

Syntax:
>DEL file

>DEMO
Suppresses certain program messages and all messages associated with amper-
sand (&) and meta (>) commands. This can be used in applications to keep pro-
gram messages to the user at a minimum.
 Appendix A

>DISK_ROOM
Displays the number of bytes available on the current drive. You can specify the
actual number of bytes that must be available before a program can be run. In
addition, you can redirect the program to another drive if the specified number of
bytes is not available on the current drive. You can set this globally for all pro-
grams in the INITIAL file located in CFMC\CONTROL.

This meta command applies only to DOS-based systems.

Syntax:
>DISKROOM bytes >drive:

Examples:
>DISKROOM

Displays “Room on current drive: n bytes”

>DISKROOM 10000000

Checks for this number of available bytes on the current drive. If not available the
program will terminate with: (ERROR #4129) Only n bytes available on disk, but
n bytes needed now.

>DISKROOM 10000000 >D:

Checks for 10MB on the current drive and if not available will then try running
the program on the D drive.

>DO_ALL
Used with >DEFINE, allows you to define a keyword without an @ sign, but the
keyword will be case sensitive. >-DO_ALL is the default, meaning that keywords
must be defined with an @ sign and case is ignored. In order to be effective, you
must enter >DO_ALL before >DEFINE.

Syntax:
>DOALL

>DOS
See >CALL_DOS
Meta Commands 107
•
•
•
•
•
•

108

•
•
•
•
•
•

>DUMP
Sets the switches which will display information useful for programmers or turn
on special features. Dump switches will continue to display until they are turned
off.

Syntax:
>DUMP letter#

Dump switches are case sensitive. You can turn several switches on in one com-
mand.

Example:
>DUMP S1g2

Use a minus sign to turn off a dump switch.
Example:

>DUMP -g2

You can also turn on or off all of the switches set with a particular letter.
Syntax:

>DUMP letter

Example:
>DUMP S

Use this syntax with extreme caution since this will turn on several switches at
once and may cause unexpected results.
Use the SHOW option to see which dump switches are set.

Example:
>DUMP SHOW

>ECHO
Echoes text from a spec file back to the console. You could insert messages at var-
ious points in your specs so that when you execute them with PREPARE or Men-
tor, you’ll know how far the program has run. This is particularly useful when
your run results are being sent to a disk file and you would like to have an indica-
tion of how far the program has progressed. This overrides the operating system’s
>ECHO commands. Use >SYSTEM echo for the operating system version of
the command.
 Appendix A

Syntax:
>ECHO text

Example:
>ECHO Finished with section 1.

>ECHO_DEFINES
Shows the assignment of the defined keywords in the list file.

Syntax:
>ECHODEF

Example:
The following lines in a spec file:

>ECHO_DEFINES

>DEFINE @STUDY Gemini

>PRINT_FILE @STUDY

>USE_DB @STUDY

would generate these lines in a list file:
>DEFINE @STUDY Gemini

>PRINT_FILE @STUDY

(after define) >PRINT_FILE Gemini

>USE_DB @STUDY

(after define) >USE_DB Gemini

The default is >-ECHO_DEFINE.

>EDIT
Allows you to edit the text of a DB entry, i.e., title, banner, stub, while in edit
mode. The item must be limited to 23 lines (screen limit). Items exceeding the 23
line screen limit can be edited in an outside program editor (see >DB_TO_FILE).

Syntax:
>EDIT newname dbentryname

This will save the edited item with the label newname. Or, you can use either
newname or dbentryname alone:

>EDIT dbentryname Stores the edited item in the DB file with the same name
(writes over the old item).
Meta Commands 109
•
•
•
•
•
•

110

•
•
•
•
•
•

>EDIT newname Presents a blank full screen editor, andsaves the edited infor-
mation as newname.
Press ESC to exit edit mode.

You must have a DB file open with ReadWrite access to store the DB entry. See
>USE_DB and >CREATE_DB DUPLICATE=Warn, Quiet, or Replace if you
want to replace items.
See also >EDIT_PREVIOUS.

>EDIT_FILE
Allows you to edit of an existing ASCII file. The file must be 23 lines or smaller.

Syntax:
>EDITF filename

>EDIT_FILE does not create a new file; your changes are saved to the existing
file.
This will edit small ASCII files with CfMC’s editor, or if you use SET EDITOR=
your_editor_name (before running the program) it will use your editor to edit the
file.

Syntax:
SET EDITOR=path\executable_file_name

Example:
SET EDITOR=C:\NORTON\NE.COM

Press ESC to exit edit mode. See also >DB_TO_FILE.

>EDIT_PREVIOUS
Allows you to edit the line you just entered. In interactive mode, the line is re-exe-
cuted by the program once you press ESC to stop editing. >-EDIT_PREVIOUS
will pass the previous line back as if retyped.

Syntax:
>EP

>ELSE Controls specfile execution; specified after a >IF_DEFINED. This
allows you to specify actions to occur if the >IF_DEFINED condition is not true.
You can specify the @keyword on the >ELSE line to be sure you are in the right
Appendix A

nested block of the >IF_DEFINED.
Syntax:

>ELSE

Example:
>DEFINE @a command

>IF_DEFINED @a

specs or another meta command

>ELSE @a

specs or another meta command

>END_IF

>ELSE_IF
Allows you to specify another defined @keyword within a >IF_DEFINED @key-
word block as a condition for executing what comes next.

Syntax:
>ELSEIF @keyword

>END_IF Ends the IF block begun with >IF_DEFINED. To ensure that you are
ending nested IFs correctly you can specify the @keyword specified on
>IF_DEFINED on the >END_IF. If the keywords do not match you will get an
error. (ENDIF)

Syntax:
>ENDIF <@keyword>

See also >ELSE.

>END_OF_FILE
Causes an end-of-file on the currently opened spec file. Use this command to indi-
cate the end of a >FILE_TO_DB item.

Syntax:
>EOF

>END_REPEAT
Required at the end of each REPEAT block.

Syntax:
>ENDREP

See also >REPEAT.
Meta Commands 111
•
•
•
•
•
•

112

•
•
•
•
•
•

>-ERROR_LINE_NUMBER
Suppresses the errors which indicate which line in the spec file an error occurred.
These errors can be confusing and are not accurate if you have referenced another
file with an ampersand, and so you can choose to shut the errors off. MPE Users:
This option is especially useful if your input spec file is a QEDIT or HPEDIT file
containing line numbers, because Mentor will include these line numbers, and the
makes the error line numbers redundant.

Syntax:
>-ERRLNNUM

>FAKE_TIME
Allows you to set the system clock for CfMC programs. This is useful to set the
same run date/times on output printed at different times (for instance, if you are
checking for differences between output files over time), or to test a phone study
questionnaire by setting different times and seeing which numbers are coming up
using the FONESIM utility.
>FAKE_TIME reports the time it sets the system clock to when you use it.

NOTE: Check this carefully. >FAKETIME never generates an error for bad
syntax. It leaves the module with the illegal value unchanged.

Syntax:
>FAKE_TIME <day month year time>

Example:
>FAKE_TIME 01 AUG 99 11:15

Options:
day The day of the month field must contain a number that could occur in the

month specified.
month Only the first three letters of the month field are recognized. AUG,

August, and AugXXX will all set the month to August.
year Legal values for the year are two digits for 1980-1999 and four digits for

2000-2027.
time Use 24 hour clock time, between 00:00 to 23:59 (use 00:00 for mid-

night, not 24:00). The colon (:) is optional.
Appendix A

>FAKE_TIME without any options returns you to actual system time. The
>FAKE_TIME command controls the time and date information that will be dis-
played in a CfMC program run. The >FAKE_TIME setting can be changed during
the course of a run.

The >FAKE_TIME command affects the Mentor System variable, DATE_TIME.
It will also affect the results of >STOP_WATCH commands. Once a
>FAKE_TIME is set, >STOP_WATCH will only report 0 minutes and 0 seconds
in its total time field, unless a >FAKE_TIME command with no arguments is
encountered. When >FAKE_TIME has been reset to
the actual time, the total time reported by >STOP_WATCH will be
more or less correct.

The >STOP_WATCH command will report the difference between two FAKE-
TIMEs in its second field. When the difference between two FAKETIMEs is a
negative number, 0 minutes 0 seconds is returned.

>FILE_TO_DB
Writes a file with variable specifications to the DB file (opened with ReadWrite
access).
To put specs in a DB file under a ‘name’:

Syntax:
>FILETODB name filename

>FILETODB name #

A pound sign (#) after the name means to read from the spec file immediately fol-
lowing (or the console) until an end-of-file is encountered.

Example:
>FILETODB mystub #

TOTAL

NO ANSWER

[print_row=AR] ANY RESPONSE}

>EOF

This example would store these lines in the ‘save to’ DB file under the name
MYSTUB. This item could then be referenced to build tables with this label set as
the tables’ stub preface. See also >DB_TO_FILE for the reverse procedure.
Meta Commands 113
•
•
•
•
•
•

114

•
•
•
•
•
•

>FILL_DEFINES_INSIDE_QUOTES
Expands @define items when they appear inside a quoted string. The default is
that they are not expanded.

Syntax:
>FILLDEF

Example:
>DEFINE @month March

PRINT "This is the report for @month"

would print:
This is the report for March.

See also >c v‘DEFINE, >ECHO_DEFINES.

>FORCE_HARDCODE
You can put this command in the “mentinit” file and all compules will create QSP
files with “hard-coded” (assigned) data locations. This works the same way as the
compiler directive (!hardcode), but it does not have to be specified separately for
every questionnaire.

>HALT
Controls when the program stops and waits for Enter to continue. This will work
when the program is expecting possible additional input from the console/key-
board (i.e., almost all cases except when your program command included your
spec file name without an ampersand preceding it).

Syntax:
>HALT option

Options:
ANY Stops the program at any program message.
ERROR Stops the program at errors if console available

(&specfile).
NONE Disables other >HALT commands. This is the default.
WARNING Stops the program at any error or warning message if console

available (&specfile). If you enter HALT with no options, it stops the program.
Appendix A

>HELP
Displays the main help menu or help for the current program block.

Syntax:
>HELP

After loading either the Mentor or the PREPARE program, typing >HELP at the
first prompt will display the main help menu. To get help on an item displayed on
this menu, type the name of the item and Enter. If you are unsure of what to type,
just type any letter and Enter. This will display list of available help keywords
(options).
To move to additional screens, enter MORE and press Enter. Back up to a previ-
ous screen by typing the caret (^) on your keyboard. You can always return to the
main help menu by entering MAIN and pressing Enter. To exit help and return to
the program prompt, press Enter.
From many help screens you can get a complete list of the keywords available for
that command, such as ~DEFINE EDIT= or STUB=. When the list is long it will
stop after one screen, and allow you to page back and forth through the listing
with the minus (-) and plus (+) keys.

>IF_DEFINED
Says that if the @keyword is defined, then do what comes next. Requires
>END_IF to end the IF block, and allows >ELSE to do actions if the statement is
not defined. Use this as a conditional statement to control branching in a spec file.

Syntax:
>IFDEF @keyword

See also >ELSE, >ELSE_IF and the IF/ELSE/ENDIF commands in MPE, DOS,
and UNIX operating systems.

>JULIAN_YEAR_LENGTH
Sets the length for the Julian Year field of a date variable. Legal values are “only
2” and 4. By default, the width of the Julian Year field is 4 digits. Using this com-
mand with no value returns it to the default.

Syntax:
>JULIANYEAR=4
Meta Commands 115
•
•
•
•
•
•

116

•
•
•
•
•
•

>KEY_DELAY
Sets the speed of keystroke display (in milliseconds) for replaying a
>SAVE_KEYS file.

Syntax:
>KEYDELAY # &filename.KEY

The higher the #, the slower the rate of replay. The KEY_DELAY command is
optional. By not specifying KEY_DELAY you allow the key file to replay at max-
imum speed but you will not be able to follow the keystrokes. 100 is a reasonable
speed.

There are several # values that do special tasks:

>KEY_DELAY -1 Requires that a key be pressed at each word, Enter, ESC, or
F - # key to continue the display.

>KEY_DELAY -2 Requires that a key be pressed at each keystroke to continue
the display.

>KEY_DELAY #, # The first number controls the replay speed of text and the
second number controls the replay speed of all other keystrokes (e.g.,: Enter, ESC,
cursor arrow keys, function (F) keys).

This option is very useful for demonstration purposes, since text can be played
back to the screen quickly while other “operational” keystrokes can be slowed
down enough for the observer to see exactly how something was executed in that
particular program.

See also >SAVE_KEYS.

>LIST_DB
Lists entries in a DB file; the default is to list all entries. Groups of items can be
selected by variable type or by specifying a mnemonic pattern. If more than one
DB file is open, you must specify which to list. The listing can be sent to the con-
sole and/or an ASCII file. Use >TERMINAL-PAUSE=# to pause after nth line
prints to the screen.

You will get a message if no items are listed.
LIST_DB and LIST_DB_CONTENTS do the same thing.
Appendix A

Syntax:
>LISTDB

dbname,listname,SORT=sort_option,APPEND,TYPE=type,PAT=(pattern),TEMP="text"

Options:

dbname Is any open DB file, and is not required if only one DB file is open. If
not specified, a comma must be entered as a place holder if anything follows it on
the line.

listname Name of the ASCII file which will contain the listing. When a list
file is specified the file will be given the extension DCL. A plus sign (+) in front
of the listname will send the listing to the console and to the list file. If left off, a
comma must be entered as a place holder if anything follows it on the line; output
will go to the console only.

SORT= Specifies how to sort the DB file and which items to display either to
the console and/or DB list file.

Syntax:
SORT=sort_option

Sort_options:

LOCATION Lists items in the order they were created in.
NAME Lists all items sorted by name (default). It is not necessary to specify

SORT=NAME, just >LISTDB dbname.
QQNUM Lists only items that have a question number, meaning items that

were made by the PREPARE program or ~DEFINE PREPARE=.
The list is sorted on the qqnum. You can further qualify this sort by specifying a
specific range after -QQNUM.

-QQNUM causes the sort to include items that do not have a question number.
These are items made in Mentor such as data variables or table definitions.

Example:
>LISTDB rrunr,+rrunr,SORT=QQNUM(QN1-QN4)

In this example, QN1 is the beginning and lowest name and QN4 is the highest
name that will be included in the list.

APPEND Append to the DCL file if it’s there, otherwise append to a new file.
TYPE= States the specific variable types which should be listed.
Meta Commands 117
•
•
•
•
•
•

118

•
•
•
•
•
•

Syntax:
TYPE= option

Options:
ALL Lists all items.
TABLES Lists all tables.
TABSETS Lists all table sets.
VARIABLES=ALL Lists all variables.
VARIABLES=# Lists specific variable types. More than one number can be

used here. You can use the numbers 1-8, where:
1: VAR ($|$S)

2: Not used

3: FLD (=)

4: (#)

5: NUM

6: CAT (^)

7: TEX ($T)

8: ($P)

Example:
>LISTDB demo,catvars,TYPE=VAR=6

PATTERN= Specify a mnemonic pattern which the variable names must
match to be included in the listing. The pattern may include alpha or numeric
characters, and wildcards such as *, ?, or #.

Syntax:
PAT=(pattern1,pattern2, etc.)

The patterns may be separated by a comma or space.

Examples:
>LISTDB work,,PAT=(te*)

>LISTDB demo,,PAT=(QQ*, a*, te??????)

TEMPLATE= May state text to be listed along with each variable in the list. he
template may be extended beyond one line by closing the quotes and using & at
the end of the first line; the maximum length of a template string is 300 characters.
An exclamation point (!) in the template is the place holder for the variable name,
and a vertical bar (|) will start a new line.
Lines generated with the TEMPLATE option cannot exceed 132 characters. Use
Appendix A

line breaks (\\) to break long lines at 132.
Syntax:

TEMP="text ! and|a new line "!" here" &&

",which can be extended."

Examples:
>LISTEB demo,+listoe,TYPE=VAR=17, &&

TEMP="~SHOW !|"

>LISTDB demo,cats,TYPE=VAR=6,TEMP="'CAT"&&

" variable: !|~SHOW !"

The list file can be edited and used for getting multiple entries from a DB file
without specifying them individually. This can be done by typing && before each
name and then using &filename.DCL to bring in the file during a
PREPARE run.

Example:
>LISTDB RRUNR,+RRUNR

This example lists the contents of the DB file RRUNR to the screen and to the file
RRUNR.DCL (DOS and UNIX or RRUNRDCL in MPE). The default sort lists
all items alphabetically.

Here is a sample DB file list that includes examples of different DB variables:
AXIS1 '' type = 3, g1=0000, g2= 8, g3= 0, ver = 1

BAN1 '' type = 123, g1=0104, g2= 0, g3= 132, ver = 1

EDT1 '' type = 123, g1=0007, g2= 0, g3= 132, ver = 1

HEAD1 '' type = 123, g1=0104, g2= 0, g3= 132, ver = 1

PROC1 '' type = 124, g1=0001, g2= 8, g3= 0, ver = 1

QQ001.00 '' type = 1, g1=0015, g2= 15, g3= 100, ver = 1

QQ002.00 '' type = 1, g1=0023, g2= 15, g3= 200, ver = 1

QQ003.00 '' type = 1, g1=0023, g2= 15, g3= 300, ver = 1

QQ004.00 '' type = 1, g1=0026, g2= 15, g3= 400, ver = 1

ROW1 '' type = 1, g1=0024, g2= 15, g3= 0, ver = 1

STUB1 '' type = 123, g1=0005, g2= 1, g3= 132, ver = 1

TABSET1 '' type = 123, g1=0009, g2= 0, g3= 132, ver = 1

T001 '' type = 4, g1=0000, g2= 10, g3= 0, ver = 1

Here are the elements of the dbfile and their meanings. Let’s look at one specific
Meta Commands 119
•
•
•
•
•
•

120

•
•
•
•
•
•

line of the example above:
QQ001.00 '' type = 1, g1=0015, g2= 15, g3= 100, ver= 1

QQ001.00 The name of this DB item.

type = 1 The DB item type. It can be:
1 variable
3 expression
4 table
7 print statement
8 stats statement
123 specs (meaning any text variable or >FILE_TO_DB item)
124 procedure
324 Search_control
555 rank control
635 Read_control

g1=0015 information provided in g1 varies depending on the type of item. The
number in g1 is a hexadecimal number, individually referred to as the 1000s place,
100s place, 10s place and the fourth place is the unit.
The third and fourth places in g1 indicate the variable type for type= 1 DB items.
The third or 10s place can be:

0 Boolean
1 Number
2 Cats
3 Vector
4 String ($T,P,or $)
5 Region__!

The fourth place or unit position can be:
1 String ($)
4 # (Numeric range)
5 Numeric
6 CAT (^)
7 TEX ($T)
8 Punch ($P)
9 [? (EZW) ''made with EZWriter
A ^ optimized
 Appendix A

The fourth place will contain an “A” if a type 6 (^) variable was converted to an
optimized variable for faster execution. This is an internal program routine.

For type= 123 variables the fourth place indicates variable type for text variables
(or items that come >FILE_TO_DB):

4 Banner= or Lines=
5 Stub=
8 Print statement
9 Table_set=

When the fourth place is 4, then the 1000s and 100s place will indicate the number
of lines in that item.

Example:
BAN1 '' type =123, g1=0104, g2=0, g3=132, ver = 1

In this example the 1 in the 100s place in g1=0104 indicates this item contains one
line. For type= 3 (expression) g1 will be all 0s, i.e., g1=0000 meaning no variable
type.

g2= 15 g2 usually indicates the software version for this type of item. This
number changes for a particular variable type only when there is a CfMC program
change or enhancement to the internal routine that makes that type of variable. A
programming change could cause a version conflict for a specific variable type.
Note: This is not the same as the DB file version. Program version changes can
cause an old DB file to have a version conflict when a newer version of the pro-
gram tries to access it. If the DB item is a stub (e.g., type=123 g1=0005) then the
numbers after g2= indicate the number of lines in the stub.

g3= 100 Information in g3 varies depending on the type of DB item:
If g3= 0 then there is no further information for this type of DB item.

For type= 1 variables this is the internal question number of an item made with
either the PREPARE program or ~DEFINE PREPARE=.

For type= 123 variables this indicates the record length of the file and no line in
the file will be longer than this number. This is mostly significant for HP users.

ver = 1 The number of times the name of this item appears in the program’s
internal DB directory. When you edit a DB item with either DUPLIATE=QUIET
or WARN set on the ‘save to’ DB file, then this number will increment. The
Meta Commands 121
•
•
•
•
•
•

122

•
•
•
•
•
•

DBUTIL option REVEAL will show all versions of a particular DB item. DUPLI-
CATE=REPLACE will not increment ver =.

>LISTFILE <filename> option1
The listfile command is used to switch to a new list file from within a spec file.
The original list file will be the list file defined on the command line. This can be
used with the same options as the listfile: command-line keyword.

Syntax:
>listfile list1

(This will be directed to the list file named “list1”)
>listfile list2,echo

(This will be directed to the list file named list2 and it will echo to the screen)
>listfile list1 append

(This will be appended to the list file named “list1”)

See Appendix D: Command Line Keywords, for more details and a description of
all the options.

>LOCATION_FORMAT
Allows the user to specify the format of data locations in Script Composer, the
QSP comment line, CHK, HRD and SUM file data locations, data locations in
HOLE tables, CLEANIT displays, and error and warning messages. You can enter
data locations in any of the three formats, but output will be formatted according
to the specification in this command.

Syntax:
>LOCFORM option

Options:
1 Displays data locations as absolute columns (i.e., 113).
1/1 Displays data locations as record/column (default) (i.e., 2/33).
A01 Displays data locations as letterdigitdigit (i.e., B33).

Example:
>LOCFORM 1/1

You can specify >LOCFORM in the file INITIAL in CFMC\CONTROL (DOS or
 Appendix A

UNIX; CONTROL.CFMC in MPE). This will globally control location format for
any CfMC program.

>MULTIBYTE
Reads ASCII characters 0-255 from a data file. Without this command, ASCII
characters in a data file below 32 or above 126 are converted to a space. You can
use this command when your data file contains foreign characters or if you are
using a printfile as a data file and it contains graphical line characters.
Use >CHARACTER_SET=ASCII/EXTENDED_ASCII if you want to read addi-
tional ASCII characters in a spec file.

>NUMBER_ADJUSTMENT=
Controls truncation in the addition of binary real numbers. For example, the sum
of a set of weights may be 340.5 in decimal, but 340.499999999998656 binary,
which rounds to 340, not 341.

Syntax:
>NUMADJ=#

The number you specify on this command will be added (or subtracted if nega-
tive) to every number printed. The default is .0000001.

Syntax:
>NUMADJ=*

Specifying * as the adjustment will tell the program to return to the default adjust-
ment.

>NUMBER_OF_FILES
DOS ONLY: Adjusts the number of CfMC files you can have open at once. The
default is 100 files. This means you can have about 90 input files in a typical run.
If you use >NUMBER_OR_FILES to raise the limit, you must adjust the DOS
FILES command in your config.sys file as well.

>PASS_comments
This directs whether or not you want to pass “comments” from user spec files to
the .qsp file when compiling questionnaires. The default is NO. This is put in the
MENTINIT file. Comments made using the “comment syntax” (!comment
xxxxx) are always passed when this is set to YES.

>PAUSE=n
Pauses after every n lines prints to the terminal. (PAUSE)
Meta Commands 123
•
•
•
•
•
•

124

•
•
•
•
•
•

>PRINT_FILE
Creates an ASCII file for tables or output from PRINT commands. These files
have an extension of PRT.

Syntax:
>PRTF filename,#n,afilename=,prtoptions

Options:
filename The name of the print file. You may also specify the filename as

NULL or $NULL meaning the file will not be saved to disk. If you use $filename,
you do not need to include the PRT extension with the filename.

Example:
>PRT NULL #1

In MPE, you may specify filename as *filename to back reference a file equation.
See the example under List File in Appendix D: CfMC CONVENTIONS.

#n The number of the print file. The default is #1, and the allowable numbers
are 1-99. You can print to multiple files in one run this way, but you can only have
one print file ON (see below) at one time. There is no effective limit on the num-
ber of print files that can be open at one time. The number
depends on the operating system you are running. [DOS USERS: the FILES=
statement in CONFIG.SYS limits the total number of files that
can be open simultaneously (including operating system and program files; use
>STATUS FILES to list all open files). When you exceed this limit the
program will print an error message. It is possible to increase the FILES= specifi-
cation in the CONFIG.SYS file to allow more print files to be open, but this can
cause other errors if system memory is insufficient.]

afilename= is the alternate or alias name for this print file. You would specify
this instead of a #n after the filename. Names can be alphanumeric but must start
with an alpha character. See examples below.

prt options:

APPEND Adds the tables to the end of the file if it already exists, otherwise
creates the file.

BOTTOM_MARGIN=# Number of blank lines at bottom of page. Default is 3.
This affects the number of lines that will print on the body of the page. The body
 Appendix A

of the page is the PAGE_LENGTH minus the TOP and BOTTOM margins. You
will increase or decrease the number of lines in the body of the page by changing
the default for this option. The body of the page must have at least five usable
lines remaining after the top and bottom margins are specified.

COPIES=n In MPE, this specifies number of times to print the spool file.
ECHO Prints the table to the print file and to the screen.

FIXED_FORMAT Gives each line in the print file a fixed length, for example,
each line will be the defined maximum line length(default 132) filled with blanks.
Use this option if you want to use your print file as input for a Mentor run (MPE
only).

FORM_FEED Specifying -FORM_FEED lets you override program default
form feeds (^L).

FORMS= "forms message" In MPE, this specifies the forms message for spool
files.

HEADER_PAGE Prints a leading header page with the following information:
print file name, program, version, mode, file names, date and time.

Example:
Header Page for CfMC Printfile c:\tests\example.prt

PROGRAM Mentor 7.1 (1,08May97) with input/output:

test.spx to -test.lfl

11 JUL 1997 14:50

You can specify this option in either the INITIAL or MENTINIT file to make it
the default for all sessions, as follows:

>PRT; HEADER_PAGE.

LASER_CONTROL=<filename> Refers to the name of the laser control file
(located in the CfMC CONTROL directory or group). This file contains the
escape sequences that will be passed to the print file when back slash (\) com-
mands for text enhancements such bold (\B) or underlining (\U) are encountered.
You may have more than one laser control file.

LASER_NUMBER=# Specifies which laser printer to use. See Appendix D:
CfMC CONVENTIONS, Command Line Keywords for more information on
LASER_CONTROL and LASER_NUMBER.

PAGE_LENGTH=# Total number of print lines on a page. Default is 66.
PAGE_WIDTH=# Number of characters per print line. Default is 132. Maxi-
Meta Commands 125
•
•
•
•
•
•

126

•
•
•
•
•
•

mum is unlimited.
TOP_MARGIN=# Number of blank lines at top of page. Default is 3. See

BOTTOM_MARGIN. You may set this to zero (0).
USER Allows you to override the PRT extension, and specify any extension

you wish.
Syntax:

>PRTF filename^ext,USER

If you do change the print file extension then you must refer to the new extension
(filename^ext) if you reissue the >PRTF statement (see >PRTF ON and OFF).

Two options can be used as a toggle switch:

1 ON
Makes this file the default print file (once the file has been opened with a

previous >PRTF command).
Syntax:

>PRTF filename ON

2 OFF
Turns off printing to the default print file (previously turned on with

>PRTF ON). Does not close any print files, but you must specify the file to print
to after turning the default print file off.

Syntax:
>PRTF filename OFF

You can also have the name assigned by a >STUDY_NAME command:
Example:

>STUDY BANK

>PRTF *

This >PRINT_FILE command will substitute the name specified on the
>STUDY_NAME command (BANK) for asterisk (*).

You can use >PRINT_FILE with no options:
Example:

>PRTF;

This example will close a print file and will not open another. If you have more
than one print file open, you must specify a file name before the semicolon (;).
 Appendix A

This is a simple example of how to print to two print files at once:

>PRTF file1 #1

>PRTF file2 filename=abc

>PRTF file1 ON

~CLEANER

PRINT "this prints to file1, the default printfile"

PRINT #1 "this also prints to file1"

PRINT #"abc" "this prints to file2"

MODIFY fname[1.4$]="abc"

PRINT #fname "this also prints to file2"

You must close a print file to print or browse it.(>PRN, >BROWSE).
See also: ~DEFINE EDIT= and ~SET BOTTOM/TOP_MARGIN,
PAGE_LENGTH/WIDTH.

>PRINT_FILE_DEFAULTS
Allows you to set a group of commonly used print file options that will be used
each time the >PRINT_FILE command is issued in that file. This is often put in
the mentinit file to set standard print controls.
>-PRINT_FILE_DEFAULTS will turn off the group of print
options.
Syntax: >PRTFD option option option
You can set options with >PRINT_FILE_DEFAULTS and then
modify them with the >PRINT_FILE command.

Example:
>PRINT_FILE_DEFAULTS page_length=60 page_width=80

>PRINT_FILE file1

~CLEAN PRINT "file1 has a page length of 60 and a

width of 80."

>PRINT_FILE file2 page_width 20

~CLEAN PRINT "file2 has a page length of 60 and a

width of 20."

>-PRINT_FILE_DEFAULTS

>PRINT_FILE file3

~CLEAN PRINT "file3 has the system defaults of a page

length of 66 and a width of 132"

See also >PRINT_FILE.[ToolBar-Bar7]BarID=594
Meta Commands 127
•
•
•
•
•
•

128

•
•
•
•
•
•

>PRINT_REPEAT
As a repeat sequence (>REPEAT) is expanded in the program it will be printed to
a list file as it is generated (or it will be shown on screen if no list file is specified).
This lets you see how the program is treating the repeat. This is the default and
need not be specified unless you need to turn off >-PRINT_REPEAT, which sup-
presses the listing of the expanded repeat sequence.

Syntax:
>PRTREP

>PRN
Checks for an active printer port, and if one is found prints the file named to that
printer. (DOS only)

Syntax:
>PRN filename

Only print files which have been closed can be printed (see >PRINT_FILE).

>PURGE_empty_tr(files)
If a TR file is built and no records are added to it, this controls whether or not you
want to keep or delete the files when the job is done. The default is to keep the
files.

>PURGE_empty_ascii(files)
Similar to the meta command above: If an ASCII file is built and no records are
added to it, this controls whether or not you want to keep or delete the files when
the job is done. The default is to delete the files.

>PURGE
This command deletes a file. This overrides any operating system level PURGE
command. Use >SYSTEM purge to use the operations system version of the purge
command.

Syntax:
>PURGE file

See also >DELETE, >SYSTEM

>PURGE_SAME
Purges any existing file (except the list file) that has the same name as any new
file created by the program. Without PURGE_SAME, the program renames old
files by changing the filename’s first letter to the next alpha character. (AFILE, for
 Appendix A

example, would become BFILE.) You need to specify this before
the program creates the new file.

Syntax:
>PURGESAME

Use >-PURGE_SAME to return to having files renamed. If you want
>PURGE_SAME to be a default for all of your runs, put in your init or mentinit
file.

>PUT_CHARACTERS=
Allows you to specify three characters which designate how to fill a field contain-
ing zeros (either integer or floating point) or missing data.

Syntax:
>PUTCHAR=abcd

The first character specifies the field filler for integer zeros, the second is for
floating point zeros, and the third character is for missing data. A fourth character
may be specified for empty cells. The default value for >PUT_CHARACTERS is
“-” for integer zeros, “0.00” (to the appropriate decimal significance) for floating
point zeros (indicated as “0”), and “?” for missing data values; to return to these
defaults, specify >PUTCHAR=-0?.
Any character (except for B or Z) can be printed in the rightmost column of all
appropriate fields by entering that character in the location corresponding to the
type of field. Put B in any of the fields to indicate blanks, or Z for zeros.
If you have more than one PUTCHAR set (from >PUT_CHARACTERS,
~DEFINE_EDIT=PUT_CHARACTERS, or
~DEFINE_COLUMN_INFO=PUT_CHARACTERS), the >PUTCHAR
values are read first, then individual tables may override that with an
EDIT=PUT_CHARACTERS, and individual columns or rows in a table may
override that with COLUMN_INFO=PUT_CHARACTERS or
STUB=[PUT_CHARACTERS] respectively.

>QUEUE=
Says which queue to run C-Mentor in under the MPE operating system.

Syntax:
>QUEUE letter/=?

Options:
letter Can be B, C, D, or E, the default is C.
=? Shows the current queue. (Syntax: >QUEUE=?)
Meta Commands 129
•
•
•
•
•
•

130

•
•
•
•
•
•

>-QUEUE Turns the current queue off.

>QUIT
Immediately quits the current program and returns to the operating system
prompt. Temporary files used by the program are not purged. Use this command
with caution because changes made to open data files will not be saved.

Syntax:
>QUIT

If there is any text on the line after the QUIT, that text will be displayed by the
program when it terminates.

Syntax:
>QUIT ERRORS=#

The job will quit if the number of errors up to this point is greater than or equal to
the number specified here (#). The default is 200.

>RANDOM_SEED=
Allows you to set a specific seed for the Mentor vector function
RANDOM_CATEGORY, and the Survent function RANDOM.
This way, you can always generate the same results for these functions.

Syntax:
>RANDOMSEED=#

>READ
Allows the user to enter one command from the console (including Enter) before
the program returns to processing. The user will see this prompt: ===> This com-
mand can only be used on an interactive run (e.g., Mentor &spec.spx con)

Syntax:
>READ

Example:
~INPUT data.asc SELECT=&

>READ

~OUTPUT subset.asc, WRITENOW

~END

>RENAME
Renames a file. This overrides any operating system level RENAME command.

Syntax:
>REN file1, file2
 Appendix A

>REPEAT
Sets up a repeating pattern to produce multiples of specifications, using variable
names for changing items within the repeated sequence. The repeat elements are
then used in the specifications (which must be between >REPEAT and
>END_REPEAT commands). The program will repeat the specifications as many
times as needed, based on the number of repeat elements, up to 1000 iterations.
The maximum line width that can be generated by >REPEAT has a default of 132
characters. This can be changed by the command line keyword SPEC_WIDTH
(see Appendix D for a description of
SPEC_WIDTH).

Syntax:
>REP $NameA=item1a,item1b,item1c;$NameB=itemna

,itemnb,itemnc; STRIP="literal"

$Name= The repeat elements (limited to 19 alphanumeric characters) must be
preceded by a dollar sign ($). They are followed by an equal sign and the specific
variables.

item1a Variables must be enclosed in quotes if they contain spaces, commas,
or semicolons, or if they don’t begin with a letter or numeric digit. Repeat ele-
ments are not case sensitive.

Example:
>REPEAT $A=1,2,3;$B=Apples, Oranges, Bananas

{RATE$A:

How would you rate $B?

!CAT

3 Excellent

2 Fair

1 Poor }

>END_REPEAT

This example would generate three different questions, the first one being:
RATE1:

How would you rate Apples?

3 Excellent

2 Fair

1 Poor

Any dollar signs needed as part of the specification that precede a letter (e.g., $M)
must be preceded by an extra dollar sign (e.g., $$M). Single dollar signs in other
places are fine.
Meta Commands 131
•
•
•
•
•
•

132

•
•
•
•
•
•

To return a quote, use two quotes in a row.
Example:

>REPEAT $A="The title is ““My Fair Lady!””

Repeat elements must end with an underscore (_) if the next character runs into
the element name (i.e., $A_01 so the program looks for $A, not $A01. See
REPEAT_VARS_ALPHA_ONLY.)

Example:
>REP $A=1,2,3;$B=30,31,32

VAR$A_A: [$B^1//4]

>ENDREP

Would generate the following:

VAR1A: [30^1//4]

VAR2A: [31^1//4]

VAR3A: [32^1//4]

You can also use an ellipsis (. . .) to designate a pattern in the variables. 10, . . .
,15 means 10,11,12,13,14,15, while 10,12, . . . ,20 means 10,12,14,16,18,20. The
pattern can decrement as well as increment. The default pattern is 1; you can
establish a different pattern by specifying two single variables before the ellipsis.
Text cannot be set up in an ellipsis other than simple uses (i.e., a, . . . ,g).

Example:
VAR15: &

>REP $A=19,...,22;STRIP="WITH &"

[$A^1//5] WITH &

>ENDREP

Would generate:

VAR15: &

[19^1//5] WITH &

[20^1//5] WITH &

[21^1//5] WITH &

[22^1//5]

STRIP= lets you specify a string or literal that will be removed
from the final element in the repeat string.

By default, Mentor replaces >REPEAT variables with their values as soon as it
encounters them. >REPEAT can “pass through” variables as variables when
>REPEAT is used in conjunction with >ALLOW_INDENT. When
>ALLOW_INDENT is ON and file name with an ampersand within a >REPEAT
 Appendix A

is indented, variables are passed through rather than expanded. All variables will
be passed through, including $text strings. In this example, Mentor will not bring
in the contents of the referenced file:

>ALLOW INDENT

>REPEAT $F=1,2,3

&file$F

>ENDREPEAT

Mentor will pass through the variables in file1, file2 and file3 and issue a warning:
gen &file1

(WARN #4275) AMPERSAND file &file1 being passed thru

gen &file2

(WARN#4275) AMPERSAND file &file2 being passed thru

gen &file3

(WARN #4275) AMPERSAND file &file3 being passed thru

See also >ALLOW_INDENT, >END_REPEAT, >PRINT_REPEAT and
>REPEAT_VARS_ALPHA_ONLY.

>REPEAT_VARS_ALPHA_ONLY
Has the program read repeat element names as alphabetic only. Use this command
before doing repeats so that when the program sees ‘$A01’ in a spec line it knows
that the ‘01’ is not part of the repeat name. Otherwise you need to write it as
‘$A_01’.

Syntax:
>REPVARA

>RESET_DB
Closes all DB files currently opened with either a >CREATE_DB or >USE_DB
command.

Syntax:
>RESETDB

See also >CLOSE_DB.

>RUN_LABEL=
Specifies text to print (approximately 50 characters including spaces) in place of
the spec file name printed in the program information at the end of the run.

Syntax:
>RUNLAB=text
Meta Commands 133
•
•
•
•
•
•

134

•
•
•
•
•
•

Example:
>RUNLAB=SAMPLE TABLES

Mentor 12May96 running SAMPLE TABLES at 27 MAY 1996 08:11.

total time: 0 minutes 17 seconds

>SAVE_AS_DB
Saves input entered prior to the command as one DB entry in the DB file opened
ReadWrite.

Syntax:
>SAVEASDB dbname

See also >DB_TO_FILE and ~MAKE_ASQ.

>SAVE_AS_FILE
Saves all input entered prior to the command in a file of the specified name. This
includes both what you type and commands called in from other files.

Syntax:
>SAVEASFILE filename

For example, you could use this command if you are working interactively in C-
Mentor and have gotten several errors and you want to save what you have
entered so far so that you could edit it. You could then use the edited file as your
spec file.
You can also put this command in your init or mentinit file to have it create a file
of commands each time you use Survent or Mentor.

>SAVE_KEYS
Saves all keystrokes after the command (up through the next >SAVE_KEYS, if
any), in a file of the name specified. The file can then be called in (&file-
name.KEY) and the program will rerun all keystrokes.

Syntax:
>SAVEKEY filename.KEY,#

Options:
filename.KEY The extension is optional; if left off, it will be added to the file-

name. No other extension can be entered.
This saves and closes the file after n number of keystrokes is saved. Any

number may be specified here. The default is to only save the keystrokes when
the file is closed.

Example:
>SAVE_KEYS keeper,1
 Appendix A

This will save and close the file after each keystroke. This is valuable when your
system is crashing and you are losing the SAVE_KEYS file. This will slow
response time considerably!

The key file can be edited, allowing you to delete or add key commands such as
Halt which causes the keystroke display to stop at that point and wait for an Enter
to continue. See also >KEY_DELAY.

>SHOW_CORE_FARMARK
Shows the current condition of core memory. This is useful if you are debugging
problems related to lack of memory, such as CfMC GETCORE or CHECKCORE
error messages. It shows you what program commands are using memory and
how much memory remains. Your CfMC support representative can provide more
information and assistance.

Syntax:
>SC

>SHOW_DEFINES
Lists keywords (created with >DEFINE) and their definitions.

Syntax:
>SHOWDEF option

Options:
 * Lists all keywords and definitions.
 keyword Lists only the keyword specified. The at sign (@) must not be spec-

ified as part of the keyword.
letter*letter Lists all keywords beginning with the first letter and having the

second letter somewhere in the name.

Example:
>SHOWDEF MENU

Also see >DEFINE.

>SHOW_KEY=
Shows the keywords (options) for the MSGFILE block number named on the
command. The keywords are sorted in alphabetical order. The number (i.e., 14:)
appearing at the beginning of each keyword is its position number in the list of
keywords for that MSGFILE block.
Meta Commands 135
•
•
•
•
•
•

136

•
•
•
•
•
•

Syntax:
>SK=####

Example:
>SK=11

44

Keywords from msgfile #1144 (16 entries):

14: Blank B b(lank)

3: Column= C= c(olumn)=

15: COLumn_STATistics_values COLSTAT
col(umn)(_)stat(istic)(s)(_)(val)(ue)(s)

9: Cumulative_Percent CP c(umulative)(_)p(ercent)

10: FREQuency FREQ freq(uency)

4: Frequency_Decimals= FD= f(requency)(_)d(ecimal)(s)=

7: Horizontal_Percent HP h(orizontal)(_)p(ercent)

13: MINimum_Base= MINB= min(imum)(_)b(ase)=

16: NUMber_FORMat= NUMFORM= num(ber)(_)form(at)=

5: Percent_Decimals= PD= p(ercent)(_)d(ecimal)(s)=

11: Percent_Sign PS p(ercent)(_)s(ign)

12: PUT_characters= PUT= put(_)(character)(s)=

2: Statistics_column S s(tatistic)(s)(_)(column)

6: Statistics_Decimals= SD= s(tatistic)(s)(_)d(ecimal)(s)=

8: Vertical_Percent VP v(ertical)(_)p(ercent)

1: Width= W= w(idth)=

Here are some msgfile blocks commonly used:

COMMAND: MSGFILE BLOCK NUMBER:

Meta Commands 4000

>CREATE_DB sizes options 2100

DB meta options 2101

>USEDB Options 2101

>CREATEDB Options 2103

DB DUPLICATE=Options 2104
 Appendix A

Reserved keywords are words that are reserved by Mentor. They cannot be used
as variable names.

To get a listing of reserved keywords, enter >SK1203 and it will produce a listing

>LISTDB Options 3793

>LISTDB TYPE=Options 3794

Mentor Function Keywords 5061

~CLEANER keywords (non
procedure)

2684

~DEFINE

AXIS= $[keywords] 2583

EDIT= keywords 1216

COLUMN_INFO=options 1144

LINES= options 1107

STUB= [keywords] 1217

[PRINT_ROW=] options 1218

~EXC keywords 1213

~INPUT options 1210

~OUTPUT options 1211

~PREPARE

header options 1446

compiler commands 1466

~SET keywords 1207

Reserved Keywords 1203

COMMAND: MSGFILE BLOCK NUMBER:
Meta Commands 137
•
•
•
•
•
•

138

•
•
•
•
•
•

similar to this:

15: ALTer_FLAG ALTFLAG alt(er)_flag

10: CASE_ID CASEID case_id

20: CASE_NUMBER CASENUMBER case_number

21: CASE_WRITTEN CASEWRITTEN case_written

7: CATegorieS CATS cat(egorie)s(

29: CHecK_ERRor CHKERR ch(ec)k_err(or)

13: DATE_TIME DATETIME date_time

9: DELete_FLAG DELFLAG del(ete)_flag

5: DUDDUDdud

12: EOF_DATA EOFDATA eof_data

8: ERRor_FLAG ERRFLAG err(or)_flag

25: ERRORS ERRORS errors

2: FALSE FALSE false

11: FIRST_CASE FIRSTCASE first_case

26: JULIAN_DATE JULIANDATE julian_date

31: LAST_CASE LASTCASE last_case

22: LINE_NUMBER LINENUMBER line_number

27: LNNUM LNNUM lnnum

6: MATH_VALueS MATHVALS math_val(ue)s

3: MISSING MISSING missing NOT NOT not

23: PAGE_NUMBER PAGENUMBER page_number

28: PGNUM PGNUM pgnum

16: RANDOM_VALue RANDOMVAL random_val(ue)

24: TABle_NAME TABNAME tab(le)_name

30: TEXT_AREA_STATUS TEXTAREASTATUS text_area_status

4: TOTAL TOTAL total

1: TRUE TRUE true

14: VALueS VALS val(ue)s(

>STATUS
Displays the current status of the specified files.

Syntax:
>STATUS <option>

Options:
ALL Displays the status of all files currently opened. This is the default and

can also be done by entering >STATUS with no option.
 Appendix A

DB Displays the status of your DB file(s).
FILES Displays a list of all open files including msgfile, console, temp files,

input, and output files. It also lists how many blocks of far memory are available.
INPUT Displays the status of your input file, and lists the

study code (if any).
OUTPUT Displays the status of your output file, and lists the

study code (if any).

An example of >STATUS output follows.
Meta Commands 139
•
•
•
•
•
•

140

•
•
•
•
•
•

Example:
~INPUT DATA1

~OUTPUT DATA2

>STATUS

c->studycode: ()

TEMPNAME = te205002 TEMPVARNAME = TV000001

spec_wid=132, bufsizes: spx=2048, prt=2048, tr=2048, bf=4096, db=2048,

big=4096, misc=2048

INPUTfile, study_name=rrunr, 1 cases read

DOT every 10 cases

total case is 640 columns: data in 1.640, 640 work columns

modes: allow_update-N, allow_new-N, use_deleted-N

Print case ID when read case: N

case in core, id=0001, studycode RRUN, interviewer ID bkok : deleted-N,

error-N, altered-N, written-N, new-N, changed-0

TRfile name c:\acme\road\rrunr.tr (opt=111)

Number of cases: 500, adds: 500, dels: 0, updt: 4

The case length this file has is 640

The comment this file has is '<blank>'

This file's style is new w/o directory

no OUTPUTfile

There are 1 of a maximum of 10 DB files opened

Listed below are the DB files open

They are listed in search order.

c:\acme\road\rrunr.db

filesCHAIN dump from 005a14fc

at 005a14fc: #1=5: f:\cfmc70\control\msg9607 (opt=1) ... buf: 512

at 005a1e10: #2=-1: TE205000 (opt=33) ... buf: 20000

at 005a1118: #3=999: (console) (opt=20081) ... buf: 0

at 005a1b84: #4=999: (console) (opt=100082) ... buf: 0

at 005a1054: #6=7: cfmcsave (opt=100082) ... buf: 2048

at 005a81d3: #7=6: c:\acme\road\rrunr.db (opt=401) ... buf: 2048

at 005a8eb0: #8=8: c:\acme\road\tori.prt (opt=100082) ... buf: 2048

at 005a9214: #10=9: c:\acme\road\rrunr.tr (opt=111) ... buf: 2048

farmem 1K blocks: 275 max blocks: 1 (275000 bytes)

>printfile chain

file c:\acme\road\red.prt: #0=red.

>S_TIME
Sets a timing function needed by CfMC programs. This time will already be set by
 Appendix A

the program on most machines, but 486 machines or machines with plasma
screens (like COMPAQ portable or many laptops) will need to have >S_TIME set
manually.

Syntax:
>STIME ######

Determine the current S_TIME by running a CfMC program and then typing
>S_TIME and pressing Enter. This is not an exact value, and it can vary a little
each time you check it. It will be about the same on systems with the same proces-
sor (286s, 386s, etc.). To set the S_TIME, enter the time as a six-digit number as
HHMMSS. You can also specify the S_TIME in the INITIAL file in
CFMC\CONTROL (DOS, UNIX; or CONTROL.CFMC in MPE).

>STOP_WATCH
Displays timing information in minutes and seconds. This command works in tan-
dem with the ~STOP_WATCH command. Two numbers are returned; the first is
the elapsed time since the beginning of the run, and the second is the elapsed time
since the last >STOP_WATCH or ~STOP_WATCH command. You will get a total
timing at the end of the run regardless of the use of
>STOP_WATCH or ~STOP_WATCH.

Syntax:
>SW

Example:
>SW

total time: 0 minutes 6 seconds

>SW

total time: 0 minutes 11 seconds

(and for part 2, 0 minutes 5 seconds)

>STUDY_NAME
Establishes the study name. This name replaces the asterisk in ~INPUT *,
>USE_DB *, >PRINT_FILE *, and [*] (to indicate the study name on the header
statement in PREPARE).

Syntax:
>STUDY name

Option:
name One to six alphanumeric characters, where the first character must be

alpha.
Meta Commands 141
•
•
•
•
•
•

142

•
•
•
•
•
•

Example:
>STUDY BANK

>USEDB *

The program will use the DB file BANK.

>SYSTEM <command>
Allows you to specify system commands (such as DIR) in your spec file. A meta
command specified without >SYSTEM will be checked first as a CfMC meta
command. The program prints a warning if the command violates CfMC syntax
before passing it to the operating system. This is the default. Suppress the warning
by saying >-SYSTEM.

Syntax:
>SYS <meta command>

Option:
<meta command> Distinguish between a CfMC meta command and an operat-

ing system command of the same name (like ECHO) by saying >ECHO or >SYS
ECHO respectively. Or, you can use >SYS !, which
prevents any non-CfMC meta commands from being passed to the operating sys-
tem.

Example:
>SYS DIR *.TR

You can put this command in the CfMC INITIAL file (\CFMC\CONTROL\INI-
TIAL in DOS, UNIX; INITIAL.CONTROL.CFMC in MPE) so that it will be in
effect whenever a CfMC program is loaded.

>TAB_WARN
Controls whether the warning “converting tabs to spaces” for text lines in spec
files prints or not. Default is on, so use >-TABWARN to suppress the warning.
Mentor converts tabs to spaces (one space per tab).

Syntax:
>-TABWARN

See also: >CHARACTERSET=

>TRANSLATE
Translates one ASCII character to another.

Syntax:
>TRANS ASCII_value ASCII_value
 Appendix A

Example:
>TRANS 65 97

This will change all capital "A"s (ASCII 65) to lower case "a"s (ASCII 97). A sep-
arate translate command must appear for each different character to be translated.
The >TRANSLATE command operates on all characters which appear in the spec
following it, not just those that are a part of titles, stubs, etc.

Note: Be careful not to issue a >TRANSLATE command that will change
Mentor commands and keywords. This command not only affects text you
enter at the keyboard, but also affects text generated by Mentor, such as
automatic labels.

Tables may be run and stored in a DB file, then a >TRANSLATE command issued
just before the load and print phase of a run, as in the example below.

Example:
>USE_DB trans1

>TRANSLATE 65 97

>TRANSLATE 66 98

~EXECUTE load=T001 print

~END

If you want to translate a character that has an ASCII value greater than 126 [for
example, American dollar signs (ASCII 36) to British pound signs (ASCII 156)],
you must include the >ALLOW_ALL_CHARACTERS meta command in your
spec file.

>USE_DB
Opens a DB file. You can have multiple DB files open with write access and can
put items directly into any of the ‘save to’ DB files (see example under
>CREATE_DB).

Syntax: >USEDB dbname,roption,EC,D=doption
Options:

dbname The only required parameter. You can specify “ * ” as the dbname in
conjunction with a name specified on a >STUDY_NAME command.

roption Read option, either RO or RW. READ_ONLY(RO), lets you read
entries from the DB file. This is the default. READ_WRITE(RW)
lets you read entries from the DB file and write (and save) entries to the DB file.

EC ECHO displays a message when you get an item from the DB file. The
default is to not echo.

DUPLICATE= Determines what the program will do when it encounters dupli-
cate names.
Meta Commands 143
•
•
•
•
•
•

144

•
•
•
•
•
•

doptions:
ERROR prevents you from storing a duplicate item and displays an error mes-

sage (this is the default).
QUIET replaces the existing entry with the new one of the same name, with-

out displaying a warning.
REPLACE replaces the existing entry with a warning (like D=W) but helps

keep your DB file from getting filled up with multiple versions of items since it
deletes the old entry and, if the new entry is the same size or smaller, uses that
same space again.

WARN replaces the existing entry with the new one of the same name, but
displays a warning message.

>USE_DB
Opens a DB file. You can have multiple DB files open with write access and can
put items directly into any of the ‘save to’ DB files (see example under
>CREATE_DB).

>Var(iable)_len(gth)_ascii
This controls whether or not ASCII files on the HP3000 are built with a variable
length or fixed length.
>-Var_len_ascii (with the minus) will make them a fixed length.
 Appendix A

 Appendix B
• • • • • •

 Allowed Abbreviations

COMMANDS AND ABBREVIATIONS
This is an alphabetical list of all CfMC commands and their abbreviations. There
may be other abbreviations of the commands that the program will accept, but
these are the abbreviations that have been tested. The reference number will tell
you what type of command it is and which manual to look it up in: Survent (ref.
no. 1-10), Mentor (ref. no. 11-22) or Utilities (ref. no. 31). Here are the basic rules
for abbreviations:

• Underscores used to separate words are always optional. For example:
CHECK_EXIST can be abbreviated CHECKEXIST.

• Plural commands can be abbreviated without the S. For example, COLORS can
be abbreviated COLOR.

• Functions can be abbreviated, but must always include the open parenthesis. For
example, STRING_LENGTH (is abbreviated STRLEN).

• Standard abbreviations are:

CLEAN CLN
COLUMN COL
ERROR ERR
LENGTH LEN
NUMBER NUM
PRINT PRT
TOTAL TOT
WIDTH WID
WEIGHT WT
Version 8.1 145
•
•
•
•
•
•

146

•
•
•
•
•
•

The following table provides Survent and Mentor references:

Survent Mentor

1 Study Header option 11 Tilde commands

2 Interview Control
(3.2.1)

12 CLEANER keywords
allowed in a
procedure

3 Compose Control
(3.2.2)

13 CLEANER keywords
not used in
procedure

4 Compile Control
(3.2.3)

14 DEFINE main
keywords

5 Data Control (3.2.4) 15 Print #information#
in printed text

6 Data Entry Question
Types (2.4)

16 Procedure controls

7 Control Statements
(3.1)

17 Variable types

8 Composing and
compiling questions
in PREPARE (2.3.1)

18 Constants

9 The PHONE
Statement (6.1.1)

19 Objects

20 Functions

21 Region keywords

22 Spec generation
control (4.7)

31 Meta
 Appendix B

LIST OF ABBREVIATIONS
An alphabetical list of abbreviations is available on CfMC’s BBS.

Item Abbreviation Reference
Absolute_value ABS(20
Adjust ADJ 11

Input_text_location INTEXTLOC
New_length NEWLEN
Number_of_cases NUMC
Output_text_location OUTTEXTLOC

All ALL 21
Allow_abort ABORT 1,2
Allow_all_character ALLOWALLCHAR 31
Allow_backup ALLOWBACKUP 2
Allow_indent ALLOWIND 31
Allow_monitor ALLMON 2
Allow_reset ALLOWRESET 2
Allow_retake ALLOWRETAKE 2
Allow_suspend ALLOWSUSP 2
Allow_terminate ALLOWTERM 2
Allow_text_edit ALLOWTEXEDT 2
Alter_flag ALTFLAG 18
Answer_length= ANSLEN= 1
Automatic_increment INC 1
Auto_punches AUTOP 3
Auto_response_code AUTORESP. 3
Auto_return AUTORET 2
Average(AVG(20

Backup_here BACKUPH 2
Backup_where_at BACKUPW 2
Balance(BAL(20
Batch_job BATCH 31
Beep BEEP 31
Blank_lines= BLANKLINE= 3
Allowed Abbreviations 147
•
•
•
•
•
•

148

•
•
•
•
•
•

Item Abbreviation Reference
Block BLOCK 5
Boolean B 17
Boss_dot= BOSSDOT= 31
Box BOX 31
Browse BROWSE 31
By BY 21

Cache_message.. CACHEMSG 31
Call_dos DOS 31
Card_format= CARD= 1
Cascade(CASCADE(20
Case_compare(CASECOMP(20
Case_id. CASEID 18
Case_id= ID= 1
Case_length LEN 1
Case_number CASENUMBER 18
Case_written CASEWRITTEN 18
Categories C 17
Categories(CATS(18
Category CAT 6
Category_function(CFUNC(20
Cfmc_file_extension CFMCEXT 31
Check_column_overlap CHKOVERLAP 4
Check_exist CHECKEXIST 31
Check_file CHK 1
Cleaner CLN 11

Alter ALT 12
Assign_delete_flag DELETE 12
Assign_error_flag ASSIGNERR 12
Blank B 12
Check CHK 12
Check_columns CHKCOL 12
Choose_file CHOOSE 12
Clean CLN 12
Clear_error_flag CLRERR 12
 Appendix B

Item Abbreviation Reference
Copy COPY 12
Create_table CREATE 12
Define DEF 13
Display_ascii D 12
Display_binary DB 12
Display_column DC 12
Display_text DT 12
Do_meta META 12
Do_set SET 12
Do_tables TAB 12
Drop DROP 13
Dump_variables DUMP 12
Edit EDIT 12
End_when ENDWHEN 12
Enter ENTER 12
Erase_tex ET 12
Error ERR 12
Execute EXC 12
Execute_any EXANY 12
Execute_data EXDATA 12
Execute_eof EXEOF 12
File FILE 13
Fill FILL 12
Find F 13
Find_flagged FF 13
Find_flagged_redo FFR 13
Find_redo FR 13
Fix_up FIX 12
Goto GOTO 12
Halt HALT 12
Hun H 13
Interview INT 12
Load_tables LOAD 12
Make_data KDATA 12
Modify M 12
Allowed Abbreviations 149
•
•
•
•
•
•

150

•
•
•
•
•
•

Item Abbreviation Reference
Modify_ascii MA 12
Modify_binary MB 12
Modify_column MC 12
Modify_text MT 12
New_case NEW 12
Next N 12
Next_redo NR 13
No_update NOUPDATE 12
Null NULL 12
Ok_columns OKCOL 12
Pause PAUSE 12
Print_lines PRT 12
Print_tables PRTTAB 12
Print_to_data PRTDATA 12
Put_id PUTID 12
Redo R 13
Restore RESTORE 13
Say S 12
Set SET 13
Show SHOW 12
Show_tables SHOWTAB 12
Skip_to SKIP 12
Store_table STORE 12
Terminal_print TERMPR 12
Terminal_say TERMSAY 12
Terminate TERM 12
Transfer T 12
Undelete UNDELETE 12
Unload_tables UNLOAD 12
Update UPDATE 13
Upshift UP 12
View VIEW 13
When WHEN 12
Write_case WRITE 12
Write_qsp WRITEQSP 12
 Appendix B

Item Abbreviation Reference
Yes_update YESUPDATE 12
Zspc ZSPC 12

Clear_screen CLS 31
Close_db CLOSEDB 31
Close_qff CLOSEQFF 31
Colors COLOR 31
Column COL 5
Column_kick COLKICK 5
Comment COM 11
Complete(COMPLETE(20
Control_y_quiet CTRLYQ 31
Convert(CVT(19
Copy COPY 11

Keep_deletes KPDEL
Copy COPY 31

Dashboard DASHBOARD 1
Data_compare(DATACOMP(20
Data_location_required LOCREQ 1
Date_time DATETIME 18
Db_file DB 1
Db_sizes= DBSIZE= 31
Db_status DBSTATUS 31
Db_to_file DBTOFILE 31
Define DEF 31
Define DEF 11

Axis= AXIS= 14
Base BASE
Break BRK
Break_control= BRKCTRL=
Do_statistics STAT
Effective_n EFFN
Frequency FREQ
Maximum MAX
Mean MEAN
Allowed Abbreviations 151
•
•
•
•
•
•

152

•
•
•
•
•
•

Item Abbreviation Reference
Mean_frequency MFREQ
Median MED
Minimum MIN
Net_overlay NOLAY
Null_break NULLBRKKCTRL=Do_
Overlay OLAY
Percentile= PTILE=
Raw_count RAWCOUNT
Se SE
Std STD
Sum SUM
Variance VAR
Weight WT

Banner= BAN= 14
Edit= EDIT= 14

All_possible_pairs_test ALLPAIRTEST
Anova ANOVA
Anova_scan ANOVASCAN
Bottom_margin= BOTM=
Call_table= CALLTAB=
Check_cells CHKCELL
Chi_square CHISQ
Chi_square_anova_formatCHISQANOVAFORM
Clear_sub_totals CLRSUBTOT
Column_info= COLINFO=

Blank B
Column= C=

Column_statistics
_values COLSTAT

Cumulative
_percent CP

Frequency FREQ
 Appendix B

Item Abbreviation Reference
Frequency
_decimals= FD=

Horizontal
_percent= HP=
Leave_table_openLVTABOPEN
Minimum_base= MINB=
Number_format= NUMFORM=
Percent_decimals=PD=
Percent_sign PS
Put_characters= PUT=
Statistics_column S
Statistics_decimals=SD=
Vertical_percent VP
Width= W=

Column_mean MEAN
Column_median= MED=
Column_na COLNA
Column_se SE
Column_sigma SIG
Column_statistics_values=COLSTAT=
Column_std STD
Column_tna COLTNA
Column_variance VAR
Column_width= CWID=
Continued_Location= CONT=

Bottom_centered BOTC
Bottom_left BOT
Bottom_right BOTR
None NONE
Top_centered TOPC
Top_left TOP
Top_right TOPR

Continued_Number= CONTNUM=
After_continue AFTERCONTINUE
Allowed Abbreviations 153
•
•
•
•
•
•

154

•
•
•
•
•
•

Item Abbreviation Reference
After_table_name AFTERTABLENAME
None NONE

Cumulative_percent CPER
Data_indent= DATAIND=
Do_printer_statistics PRTSTAT
Do_statistics STAT
Do_statistics_tests= STATTEST=
Empty_cells= EMPTYCELL=
Extra_rows_ok XROWOK
Extra_stubs_ok XSTUBOK
Fisher FISHER
Flag_minimum_base_cellFLAGMINBASE
Frequency FREQ
Frequency_decimals= FDEC=
Frequency_only. FREQONLY
Horizontal_percent HPER
Leave_enhancements_onLEAVEENHANCEMENTSON
Leave_page_open LVPGOPEN
Leave_table_open LVTABOPEN
Mark_chi_square MARKCHISQUARE
Minimum_base= MINBASE=
Minimum_for_printing= MINFORPRT=
Minimum_frequency= MINFREQ=
Minimum_indent_left MININDLEFT
Minimum_percent= MINPER=
Newman_keuls_test NKTEST
Number_format= NUMFORM=
Number_of_cases NUMC
Overline= OLINE=
Page_length= PGLEN=
Page_number PGNUM
Page_width= PGWID=
Paired_variance PAIREDVAR
Percent_decimals= PDEC=
Percent_sign PERSIGN
 Appendix B

Item Abbreviation Reference
Pooled_variance POOLEDVAR
Prefix= PREF=
Print_alpha_table_namesPRTATABNAME
Print_blank_percent_linesPRTBLKPER
Put_characters= PUTCHAR=
Rank_column_base= RANKCOL=
Rank_if_indicated RANKIFIND
Rank_level= RANK=
Rank_order= RANKORDER=

Ascending A
Descending D

Row_mean ROWMEAN
Row_median= ROWMED=
Row_na ROWNA
Row_se ROWSE
Row_statistics_values= ROWSTAT=
Row_std ROWSTD
Row_tna ROWTNA
Row_variance ROWVAR
Running_lines= RUNLINE=

Save_rank_info= SAVERANK=
Separate_variance SEPARATEVAR
Show_significance_only SHOWSIGONLY
Significance_level SIGLEV
Skip_lines= SKIP=
Star_percent= STARPER=
Stats_footnote STATSFOOTNOTE
Statistics_decimals= SDEC=
Statistics_percent_error STATPERERR
Statistics_percent_warn STATPERWARN
Status STATUS
Stub_default= STUBDEF=
Stub_extra= STUBEX=
Stub_indent= STBIND=
Stub_preface= STUBPREF=
Allowed Abbreviations 155
•
•
•
•
•
•

156

•
•
•
•
•
•

Item Abbreviation Reference
Stub_rank_indent= STUBRIND=
Stub_suffix STUBSUF=
Stub_width= SWID=
Stub_wrap_indent= STUBWIND=\

Word WORD
Subtotal_1 SUBTOT
Subtotal_2 SUBTOT2
Subtotal_3 SUBTOT3

Subtotal_4 SUBTOT4
Subtotal_5 SUBTOT5
Suffix= SUF=
Suppress_rows_base= SUPBASE=
Table_tests= TABTEST=
Tcon= TCON=

Footer FOOT
Header HEAD
Indent= INDENT=
Print_page_numbers PRTGNUM
Table_names TABNAME
Tcon_page_numbersTCONPGNUM
Title TITLE
Title_2 T2
Title_4 T4
Title_5 T5

Tfrp TFRP
Title_4_for_base T4BASE
Top_margin= TOPM=
Underline= ULINE=
Use_rank_info= USERANK=
Vertical_percent VPER

Edit_variable= EDITVAR= 14
Footer= FOOT= 14
Header= HEAD= 14
Lines= LINE= 14
 Appendix B

Item Abbreviation Reference
Date DATE 15
Page_number PGNUM 15
Table_name TAB 15
Time TIME 15
Variable= VAR= 15

Prepare= PREP= 14
Procedure= PROC= 14

Else ELSE 16
End_if ENDIF 16
End_while ENDWHILE 16
If IF 16
While WHILE 16

Statistics= STAT= 14
Stub= STUB= 14

Base_row BASE
Column_statistics_valuesCOLSTAT
Comment COM
Cumulative_percent CPER
Data_indent= DATAIND=
Density DENSITY
Do_sig_t SIGT

Print_mean PRTMEAN
Do_statistics= STAT=

All_possible_pairs ALLPAIRTEST
Anova_scan ANOVASCAN
Fisher FISHER
Kruskall
_wallis_test KWTEST
Newman
_keuls_test NKTEST
Repeated_measuresRM

Do_t_test TTEST
Print_mean PRTMEAN

For_out_table FOROUTTABLE
Frequency FREQ
Allowed Abbreviations 157
•
•
•
•
•
•

158

•
•
•
•
•
•

Item Abbreviation Reference
Frequency_decimals= FDEC=
Frequency_only FREQONLY
Horizontal_percent HPER
Keep_rank_control= KR=
Keep_subtotal_1 KPSUBTOT
Keep_subtotal_2 KPSUBTOT2
Keep_subtotal_3 KPSUBTOT3
Keep_subtotal_4 KPSUBTOT4
Keep_subtotal_5 KPSUBTOT5
Lines_left= LINELEFT=
Long_comment LCOM
Minimum_frequency= MINFREQ=
Minimum_percent= MINPER=
New_page NEWPG
Number_format= NUMFORM=
Overline OLINE
Percent_decimals= PDEC=
Percent_sign PERSIGN
Print_row= PRT=

Any_response AR
Chi_square CHI
Mean M
Median MED
No_answer NA
Se SE
Sigma SIG
Std STD
Subtotal_1_clear SUBTOT
Subtotal_2_clear SUBTOT2
Subtotal_3_clear SUBTOT3
Subtotal_4_clear SUBTOT4
Subtotal_5_clear SUBTOT5
Subtotal_1
_no_clear SUBTOTNC
Subtotal_2
 Appendix B

Item Abbreviation Reference
_no_clear SUBTOT2NC
Subtotal_3
_no_clear SUBTOT3NC
Subtotal_4
_no_clear SUBTOT4NC
Subtotal_5
_no_clear SUBTOT5NC
Super_sigma SSIG
Suppressed SUP
Total TOT
Unweighted_any
_response UAR
Unweighted_no
_answer UNA
Unweighted_total UTOT
Variance V

Put_characters= PUTCHAR=
Rank_level= R=
Rank_pre_group RPREG
Reprint_base PRTBASE
Sigma SIGMA
Skip_lines= SKIP=
Statistics_decimals= SDEC=
Statistics_row STAT
Stub_extra STUBX
Stub_indent= STBIND=
Subtotal_1 SUBTOT
Subtotal_2 SUBTOT2
Subtotal_3 SUBTOT3
Subtotal_4 SUBTOT4
Subtotal_5 SUBTOT5
Suppress SUP
Suppress_if_edit_frequencySUPFREQ
Suppress_if_edit_
no_frequency SUPNOFREQ
Allowed Abbreviations 159
•
•
•
•
•
•

160

•
•
•
•
•
•

Item Abbreviation Reference
Suppress_rows_base= SUPBASE=
Underline ULINE
Vertical_percent VPER

Table= TAB= 14
Table_set= TABSET= 14
Table_specs= TABSPEC= 14
Title= TITLE= 14
Variable= VAR= 14

Delete DEL 31
Delete_db_item DELDBITEM 31
Delete_flag DELFLAG 18
Demo DEMO 31
Disk_room DISKROOM 31
Display DISP 7, 22
Do_all DOALL 31
Do_mentor DOMentor 4
Do_mentor Mentor 22
Do_variables VARS 4
Drop DROP 21
Dud DUD 18
Dump DUMP 31
Dump_level DUMPLEVEL 31
Duplicate_labels DUPLAB 1

Echo ECHO 1, 31
Echo_cats ECHOCATS 2
Echo_defines ECHODEF 31
Edit (header option) ED 1
Edit (question type) EDI 7
Edit (question type) EDT 7
Edit EDIT 3, 31
Edit_errors EDITERR 3
Edit_file EDITF 31
Edit_previous EP 31
Else ELSE 31
 Appendix B

Item Abbreviation Reference
Else_if ELSEIF 31
End_block ENDBLOCK 5
End_grid ENDGRID 2
End_if ENDIF 31
End_loop ENDLOOP 7
End_of_file EOF 31
End_remove ENDREMOVE 4
End_repeat ENDREP 31
End_resume ENDRES 2
End_rotate ENDROT 2
End_special ENDSPECIAL 2
End_suspend ENDSUSP 2
Eof_data. EOFDATA 18
Error_beep BEEP 1
Error_flag ERRFLAG 18
Errors ERRORS 18
Error_line_number ERRLNNUM 31
Error_stop ERRSTOP 4
Execute= EXC 11

Banner= BAN=
Base= BASE=
Build_tables BUILDTAB
Close_page CLOSEPG
Column= COL=
Column_short_weight= COLSHORTWT=
Column_weight= COLWT=
Drop_chain DROPCH
Edit= EDIT=
Filter= FIL=
Footer= FOOT=
Global_edit= GLOBALEDIT=
Header= HEAD=
Load_table= LOAD=
Local_edit= LOCEDIT=
Make_tables MKTAB
Allowed Abbreviations 161
•
•
•
•
•
•

162

•
•
•
•
•
•

Print_all PRTALL
Print_run PRTRUN
Print_table PRT
Procedure= PROC=
Read_procedure= RDPROC=
Reset RESET
Retab= RETAB=
Row= ROW=
Row_short_weight= ROWSHORTWT=
Row_weight= ROWWT=
Run_chain RUNCH
Set SET
Show_chain SHOWCH
Statistics= STAT=
Status STATUS
Store_table= STORE=
Stub= STUB=
Stub_preface= STUBPREF=
Stub_suffix= STUBSUF=
Table= TAB=
Table_set= TABSET=
Table_specs= TABSPEC=
Title= TITLE=
Title_2= T2=
Title_4= T4=
Title_5= T5=
Weight= WT=

Exclusive XCLUSIVE 22
Exponent(EXP(20
Expression EXP 7

Fake_time FAKETIME 31
False FALSE 18
Field FLD 6
File_compare(FILECOMP(20
File_to_db FILETODB 31
 Appendix B

Item Abbreviation Reference
Fill_defines_inside_quotes FILLDEF 31
First_case FIRSTCASE 18
First_value(FIRSTVAL(20
Fix FIX 2
Flag_disallowed_cats FLAG 1
Flip(FLIP(20
Fone_text_length= FONETEXT= 1
Freak FREAK 11
Frequency FREQ 11
Fsig(FSIG(20
Function(FUNC(20
Generate GEN 7
Goto GOT 7
Goto (tilde) GOTO 11
Grid GRID 2
Group GRP 2
Halt HALT 31

Any ANY
Error ERR
None NONE
Warning WARN

Hard_code HARDCODE 4
Hard_copy HARDCOPY 4

All ALL
Date DATE
Lines= LINE=
Page PG
Page_length= PGLEN=
Page_title= Top/Bottom PGT=TOP/BOT
Printer= PRT=
Show_cat_as SCATA
Show_cat_ns SCATN
Show_labels SLAB
Show_logic SLOGIC
Show_qq_nums SQQNUM
Allowed Abbreviations 163
•
•
•
•
•
•

164

•
•
•
•
•
•

Item Abbreviation Reference
Show_sameas SSAMEAS

Hardcopy_file HRD 1
Help HELP 31
Help_cat HELPCAT 10
Help_display HELPDISP 10
Help_echo_m HELPECHOM 10
Help_echo_single HELPECHOS 10
Help_edit HELPEDIT 10
Help_fld HELPFLD 10
Help_grid HELPGRID 10
Help_hilite_multi HELPHILITEM 10
Help_hilite_single HELPHILITES 10
Help_num HELPNUM 10
Help_reset HELPSET 10
Help_text HELPTEXT 10
Help_var HELPVAR 10
Help_var_l HELPVARL 10
Help_var_n HELPVARN 10
Hide_all. HIDEALL 4
Highlight_cats HILT 2
High_point HIPT 5

If_defined IFDEF 31
Include INCLUDE 8
Info_between INFOBETWEEN 1
Input IN 11

Allow_new. NEW
Allow_update UPDATE
Ascii= ASCII=
Backup BUP
Binary= BIN=
Buffer_size BUFSIZE
Case_location CASELOC
Comment COM
Create CR
 Appendix B

Item Abbreviation Reference
Dots DOT
Drop_blank_line DROPBLK
Drop_changes DROPCHANGE
Dta_format DTA
Exclusive XCLUSIVE
Ignore_directory IGNOREDIR
Join=(JOIN=(
Maybe_backup MAYBEBUP
Maybe_create MAYBECR
New_buffer NEWBUF
Number_input_buffers NUMBUF
Number_of_cases NUMC
Protect= PROTECT=
Quit_on_blank_lines QUITONBLK
Read_control= RDCTRL=
Read_first_case READCASE
Records_per_case RECSPERCASE
Salvage_data SALVAGE
Select SELECT
Server_acces SERVER
Share SHARE
Short_line_warn SHORTWARN
Stop_after STOP
Study_name= STUDY=
Swapped_binary= SWAPBIN=
Text_location TEXTLOC
Total_length TOTLEN
Uncompressed UNPRESS
Use_deleted USEDEL
Verify VERIFY
Work_length LEN
Write_share WRITESHARE

Interview INT 11, 21

Join_columns JOINCOL(20
Allowed Abbreviations 165
•
•
•
•
•
•

166

•
•
•
•
•
•

Item Abbreviation Reference
Join_rows(JOINROW(20
Julian_date JULIANDATE 18

Key_delay KEYDELAY 31
Lang= LANG= 1
Last LAST 21
Last_case LASTCASE 18
Last_value(LASTVAL(20
Line_number LNNUM 18
List_db_contents LISTDB 31

Append APPEND
Pattern= PAT=
Sort= SORT=
Template= TEMP=
Type= TYPE=

All ALL
Tables TAB
Variables VAR

Loaded(LOAD(20
Location_format LOCFORM 31
Logarithm(LOG(20
Logging LOG 1
Loop LOO 7

Make_asq MKASQ 21
Make_boolean(MKB(19
Make_categories(MKC(19
Make_number(MKN(19
Make_read_control MKRDCTRL. 11
Make_specfiles SPEC 4
Make_string(MKS(19
Make_vector(MKV(19
Math_values MATHVALUES 18
Maximum_labels= MAXLAB = 1
Maximum_quota_number= MAXQ= 1
 Appendix B

Item Abbreviation Reference
Maximum_qfile_size MAXQFILESIZE 1
Maximum_question_size MAXQSTSIZE 1
Maximum_subscript(MAXSUB(20
Maximum_value(MAX(20
Mentor_cln_file MentorCLN 22
Mentor_def_file MentorDEF 22
Mentor_demo MDDEMO 31
Mentor_spec Mentor 22
Mentor_tab_file MentorTAB 22
Minimum_subscript(MINSUB(20
Minimum_value(MIN(20
Missing MISSING 18
Modify_caseid MODID 1
Modify_fone_file MODFONE 1
Modify_quota_file MODQUO 1
Monitor MONITOR 1
Na NA 21
Net(NET(20
New NEW 11
Next NEXT 11
Next_case_id= NEXTID= 1
Not NOT 19
Number N 17
Number_adjustment NUMADJ 31
Number_function(NFUNC(20
Numbering NUMBER 4
Number_of_cases= NUMCASES= 1
Number_of_columns(NUMCOL(20
Number_of_items(NUMITEM(20
Number_of_rows(NUMROW(20
Numbers_from_table(NUMFRTAB(20
Numeric NUM 6
Numeric_width_required NUMWR 1

One_interview ONEINT 1
Allowed Abbreviations 167
•
•
•
•
•
•

168

•
•
•
•
•
•

Item Abbreviation Reference
Output OUT 11

Ascii ASCII
Binary BIN
Cards_image CARD
Case_length LEN
Comment COM
Dta_format DTA
Hex. HEX
Maybe_create MAYBECR
Number_of_cases NUMC
Omit_directory OMITDIR
Study_name= STUDY=
Swapped_binary SWAPBIN
Swapped_hex SWAPHEX
Trim_blanks TRIMBLANK
Uncompressed UNPRESS
Write_now WRITENOW........

Page_number PGNUM 18
Password= PASS= 1
Phone PHO 9
Practice PRACTICE 11
Prepare PREP 8

Compile COMPILE
Cleaning_specs CLN
C_mentor_specs CMentor
C_survent_specs CSPEC
Persee_specs PERSEE
Quantum_specs QUANTUM
Specs SPEC
Spl_mentor_specs SPLM
Spl_survent_specs SPLS
Spss_specS SPSS

Disk_based_response_list DBR
Make_spec_files MKFILE

Check_file CHK
 Appendix B

Item Abbreviation Reference
Hardcopy_file HRD

Qsp_file QSP
Sum_file SUM

Print_file PRTF 31
Append APPEND
Bottom_margin= BOT=
Copies= COPIES=
Echo ECHO
File_name= FILENAME=
Form_feed FF
Forms= FORMS=
Header_page HEADPG
Laser_control LASERCTRL

Bold_off BOLDOFF
Bold_on BOLDON
Close_string= CLOSESTR=
Color_background_black=CBBLK=
Color_background_blue= CBBLU=
Color_background_cyan=CBCYAN=
Color_background_default=CBDEF=l
Color_background_green=CBGRN=
Color_background
_magenta= CBMAGENTA=
Color_background_red= CBRED=
Color_background_white=CBWHT=
Color_background
_yellow= CBYEL=
Color_foreground_black= CFBLK=
Color_foreground_blue= CFBLU=
Color_foreground_cyan= CFCYAN=
Color_foreground_default=CFDEF=
Color_foreground_green=CFGRN=
Color_foreground_magenta=CFMAGENTA=
Color_foreground_red= CFRED=
Allowed Abbreviations 169
•
•
•
•
•
•

170

•
•
•
•
•
•

Item Abbreviation Reference
Color_foreground_white= CFWHT=
Color_foreground_yellow=CFYEL=
Control_size= CTRLSIZE=
Escape_character= ESCCHAR=
Extra_width= XTRAWID=
Flashing_off= FLASHOFF=
Flashing_on= FLASHON=
Initial_file= INITFILE=
Initial_size= INITSIZE=
Initial_string= INITSTR=
Inverse_off= INVERSEOFF=
Inverse_on= INVERSEON=
New_line= NEWLN=
New_page= NEWPG=
Page_length= PGLEN=
Page_width= PGWID=
Underline_off= ULINEOFF=
Underline_on= ULINEON=
User_a_off= USERAOFF=
User_a_on= USERAON=
User_b_off= USERBOFF=
User_b_on= USERBON=
User_c_off= USERCOFF=
User_c_on= USERCON=
User_d_off= USERDOFF=
User_d_on= USERDON=
User_e_off= USEREOFF=
User_e_on= USEREON=
User_f_off= USERFOFF=
User_f_on= USERFON=
User_g_off= USERGOFF=
User_g_on= USERGON=
User_h_off= USERHOFF=
User_h_on= USERHON=
User_i_off= USERIOFF=
 Appendix B

Item Abbreviation Reference
User_i_on= USERION=
User_j_off= USERJOFF=
User_j_on= USERJON=
User_k_off= USERKOFF=
User_k_on= USERKON=
User_l_off= USERLOFF=
User_l_on= USERLON=
User_m_off= USERMOFF=
User_m_on= USERMON=
User_n_off= USERNOFF=
User_n_on= USERNON=
User_o_off= USEROOFF=
User_o_on= USEROON=
User_p_off= USERPOFF=
User_p_on= USERPON=
User_q_off= USERQOFF=
User_q_on= USERQON=
User_r_off= USERROFF=
User_r_on= USERRON=
User_s_off= USERSOFF=
User_s_on= USERSON=
User_t_off= USERTOFF=
User_t_on= USERTON=
User_u_off= USERUOFF=
User_u_on= USERUON=
User_v_off= USERVOFF=
User_v_on= USERVON=
User_w_off= USERWOFF=
User_w_on= USERWON=
User_x_off= USERXOFF=
User_x_on= USERXON=
User_y_off= USERYOFF=
User_y_on= USERYON=
User_z_off= USERZOFF=
User_z_on= USERZON=
Allowed Abbreviations 171
•
•
•
•
•
•

172

•
•
•
•
•
•

Item Abbreviation Reference
Wide_off= WIDEOFF=
Wide_on= WIDEON=

Laser_number LASERNUM
Page_length= PGLEN=
Page_width= PGWID=
Top_margin= TOP=
User USER

Print_file_defaults PRTFDEF 31
Print_repeat PRTREP 31
Prn PRN 31
Purge PURGE 31
Purge_same PURGESAME 31
Put_characters= PUTCHAR= 31

Qff_file QFF 1, 11
Qff_file_name= QFF= 1
Qsp_file QSP 1
Queue= QUEUE= 31
Qui QUIT 31
Quota QUO 7
Quota_file QUO 1

Random_category(RANDOMCAT(20
Random_seed= RANDOMSEED= 31
Random_sequence(RANDOMSEQ(20
Random_value RANDOMVAL 18
Rank_table_columns RANKTABCOL 20
Read READ 31
Read_named_quotas READNAMEDQUOTAS2
Reformat RFT 11

Append_cat_data APPEND
Card_image CARD
Check_file CHK
Cleaning_specs CLN
C_mentor_specs CMentor
 Appendix B

Item Abbreviation Reference
Core_block_size= CORE=
C_survent_specs CSPEC
Do_non_text_data DONTEX
Do_text_data DOTEX
Expand_single_cats EXPAND
Hardcopy_file HRD
Lotus_format LOTUS
Map_file MAP
Persee_specs PERSEE
Qsp_file QSP
Quantum_specs QUANTUM
Single_cat_response RESPONSE
Specs SPEC
Spl_mentor_specs SPLM
Spl_survent_specs SPLS
Spss_specs SPSS
Sum_file SUM
Text_hold_size= TEXHOLD=

Region R 17
Remove REM 4
Rename REN 31
Repeat REP 31
Repeat_vars_alpha_only REPVARA 31
Replicate(REP(20
Reset (question type) RSE 7
Reset (tilde command) RESET 11

Read_cases READCASE
Reset_column RESETCOL 5
Response_on_right RESPRIGHT 3
Restore RESTORE 11
Restore_column RESTORECOL 5
Resume RES 2
Resume_here RESUMEH 2
Resume_where_at RESUMEW 2
Rft_cat_01 RFTCAT01 5
Allowed Abbreviations 173
•
•
•
•
•
•

174

•
•
•
•
•
•

Item Abbreviation Reference
Rft_cat_punch RFTCATP 5
Rft_cat_response RFTCATR 5
Rft_cat_spread RFTCATS 5
Rft_on RFTON 5
Rft_save_loops RFTSAVEL 5
Rft_unwind_loops RFTUNWINDL 5
Rotate ROT 2
Run_label= RUNLAB= 31
Safe_specs SAFESPEC 1
Save_as_db SAVEASDB 31
Save_as_file SAVEASFILE 31
Save_column SAVECOL 5
Save_keys SAVEKEY 31
Screen_lines= SCREEN= 1
Select_value(SELECT(20
Set SET 11

Allow_edit_change EDITCHANGE
Allow_multiple_weight_stats MULTIWT
Automatic_new_line AUTONEWLINE
Automatic_new_page AUTONEWPG
Automatic_reset AUTORSET
Automatic_tables AUTOTAB
Begin_table_name= BGNTAB=
Bottom_margin= BOT=
Case_sensitive CASESENSITIVE
Clean_allow_blanks CLNAB
Clean_error_number CLNERRNUM
Cleaner_definition= CLNDEF=
Column_repeat= COLREP=
Column_repeat_override COLREPOVERRIDE
Confirm_blanked_columns= CONFIRMBLANK=
Delimited_tables DELIMTAB

Banner BAN
Column_width CWID
Delimiter= DELIMTER=
 Appendix B

Item Abbreviation Reference
Delimited_mode DELIMMODE
Do_table_name TABNAME
Footer FOOT
Header HEAD
Labels LABELS
Stub STUB
Stub_width SWID
Title TITLE
Title_2 T2
Title_4 T4
Title_5 T5

Double_space_errors DOUBLESPACEERRORS
Drop_banner. DROPBAN
Drop_base DROPB
Drop_column DROPCOL
Drop_column_short_weight DROPCOLSHORTWT
Drop_column_weight DROPCOLWT
Drop_filter DROPFIL
Drop_footer DROPFOOT
Drop_header DROPHEAD
Drop_local_edit DROPLOCEDIT

Drop_row DROPROW
Drop_row_short_weight DROPROWSHORTWT
Drop_row_weight DROPROWWT
Drop_stat DROPSTATS
Drop_stub DROPS
Drop_stub_preface DROPSTUBPREF
Drop_stub_suffix DROPSTUBSUF
Drop_table_set DROPTABSET
Drop_title DROPT
Drop_title_2 DROPT2
Drop_title_4 DROPT4
Drop_title_5 DROPT5
Drop_weight DROPW
Echo_tables ECHOTAB
Allowed Abbreviations 175
•
•
•
•
•
•

176

•
•
•
•
•
•

Item Abbreviation Reference
Edit_dump EDITDUMP
Edit_run_chain EDITRUNCH
Enhanced_default_titles ENHDEFT
Error_limit= ERRLIM=
Error_process ERRPRO
Error_review ERRRE
Error_stop ERRST
Errors_to_print_file ERRPRT
Error_summary ERRSUM
Ignore_suppress IGNORESUP
Leave_room= LVROOM=
Logging LOG
Loopkickout LOOPKICKOUT
Maximum_past_cases= MAXPASTCASE=
Max_statistics_size= MAXSSIZE=
Max_variable_size= MAXVSIZE=
Mean_statistics_only MEANSTATONLY
Next_column= NEXTCOL=
Page_length= PGLEN=
Page_number= PGNUM=
Page_number_increment= PGNUMINC=
Page_width= PGWID=
Print_all_errors_stop PRTALLERRST
Print_specs= PRTSPEC=
Print_tcon PRTTCON
Procedure_dump PROCDUMP
Production_mode PROD
Region_coding_mode= REGIONCOD=
Reset RESET
Save_table= SAVETAB=
Sequential_read EQUENTIALREAD
Show_memory SHOWMEMORY
Stack_1= STK1=
Stack_2= STK2=
Start_tcon STARTTCON
 Appendix B

Item Abbreviation Reference
Statistics_base_AR STATBASEAR
Statistics_dump STATSUMP
Status STATUS
Table_drop_mode= TABDR=
Table_drop_warn= TABDRWARN=
Table_dump TABDUMP
Table_effort= TABEFFORT=
Table_field= TABFLD=
Table_lines= TABLINE=
Table_missing_mode= TABMISS=
Table_modify_mode= TABMOD=
Table_name= TABNAME=
Table_number_adjustment TABNUMADJ
Table_present= TABPRES=
Table_set_match_error TABSETMATCHERR
Table_set_match_warn TABSETMATCHWARN
Table_store_mode= TABST=
Testing_mode TEST
Top_margin= TOP=
Training_mode TRAIN
Unweighted_top UNWTTOP
Variable_name VARNAME
Work_room= WORKROOM=
Zero_fill ZF

Set_quota. SETQUO 4
Show SHOW 11
Show_core_farmark SC 31
Show_defines SHOWDEF. 31
Show_key= SK= 31
Show_question_labels SHOWQLAB 2
Show_question_labels SHOW 1
Sort SORT 11

Ascending= A=
Break_variable= BV=
Descending= D=
Allowed Abbreviations 177
•
•
•
•
•
•

178

•
•
•
•
•
•

Item Abbreviation Reference
Shut_down_console SHUTDOWNCON
Skill_level SKILL
Spec_files SPEC 11

Line_length= LINELEN=
Spec_rules SPECRULE 11

Base BASE 22
Base_comment BASECOMMENT 22
Cln_check CLNCHK. 22
Column_mean= MEAN= 22
Do_loops LOOP 22
Justify= JUSTIFY= 22
No_base NOBASE 22
Store_tables STORETAB 22
Stub_default STUBDEF 22
Table_set TABSET 22
Use_print_enhancements USEPRTENHANCE 22

Spec_width= SPECWID= 1
Special (block) SPECIAL 2
Special (Information) SPC 7
Spl_data_locations_ok SPLOK 1
Square_root(SQRT(20
Standard_deviation(STD(20
Statistics STAT 22
Status STATUS 31

All ALL
Db DB
Files FILES
Input IN
Output OUT

S_time STIME 31
Stop_watch SW 21, 31
String S 17
String_from_number(STRINGFROMNUM(

20
String_length STRLEN(20
 Appendix B

Item Abbreviation Reference
Strip(SRIP(20
Study_name STUDY 31
Subscript(SUBSCRIPT(20
Substitute(SUBSTITUTE(20
Sum(SUM(20
Summary_file SUM 1
Suspend SUS 1
Suspend SUSP 2
System SYS 31

Table_from_numbers(TABFRNUM(20
Table_name TABNAME 18
Tab_warn TABWARN 31
Target TARG 4
Terminal_pause= TERMPAUSE= 31
Text TEX 6
Text_area_status TEXSTATUS 8
Text_help TEXHELP 1
Text_start= TEXT= 1
Time_stamp TIMESTAMP 1
Time_zone= TZ= 1
To TO 21
Total TOTAL 8, 21
Translate TRANS 11,31

Ascii ASCII
Binary BIN
Cards_image CARD
Dots DOT
Dta DTA
Hex HEX
In IN
No_directory NODIR
Out OUT
Stop_after STOP
Swapped_binary SWAPBIN
Allowed Abbreviations 179
•
•
•
•
•
•

180

•
•
•
•
•
•

Item Abbreviation Reference
Swapped_hex SWAPHEX

Uncompressed UNPRESS
Triple_quotas TQ 1
True TRUE 18
Tsig(TSIG(20

Undefine UNDEF 31
Update UPDATE 11

Values(VALS(18
Variable VAR 6
Variable_exists(EXIST(20
Vector V 17
Vector_function(VFUNC(20
Version VER 31
View VIEW 11
View_execute VIEWX 4
View_quota VIEWQUOTA 2
Wait WAIT 31
Word_matches(MATCH(20
Word_starts(START(20
Work_start= WORK= 1
Write_specs WRITESPEC 11

C_mentor_specs= CMentor=
C_specs= CSPECS=
Persee_specs= PERSEE=
Quantum_specs= QUANTUM=
Spl_mentor_specs= SPLM=
Spss_specs= SPSS=
Table= TAB=
Text= TEXT=

X(X(20
 Appendix B

This is another reference table for Survent and Mentor:

Survent Mentor

1 Study Header option 11 Tilde commands

2 Interview Control
(3.2.1)

12 CLEANER keywords
allowed in a
procedure

3 Compose Control
(3.2.2)

13 CLEANER keywords
not used in
procedure

4 Compile Control
(3.2.3) Survent

14 DEFINE main
keywords

5 Data Control (3.2.4) 15 Print #information#
in printed text

6 Data Entry Question
Types (2.4)

16 Procedure controls

7 Control Statements
(3.1)

17 Variable types

8 Composing and
compiling questions
in PREPARE (2.3.1)

18 Constants

9 The PHONE
Statement (6.1.1)

19 Objects

20 Functions

21 Region keywords

22 Spec generation
control (4.7)

31 Meta
Allowed Abbreviations 181
•
•
•
•
•
•

182

•
•
•
•
•
•

 Appendix B

 Appendix C
• • • • • •

 Glossary

GLOSSARY OF CFMC TERMS
Abort To terminate abnormally.
ABORTJOB An HP MPE command used to stop a process (job). See Stream

Job.
Alias A name or label used as an alternative means of referring to someone or

something, in Survent, used to reference the answer given to a previous question.
For an example, see Appendix Z of the Survent manual. See Back-reference.

All Possible Pairs (Mentor) Statistical test that is a significance test between-
multiple means or percents. Tests all pairs of columns individually. Most likely of
all Mentor statistics tests to find columns significantly different. See NEWMAN-
KUELS, Fisher.

Ampersand In To call the contents of another file into the current file. This is
done by putting an ampersand symbol in front of a file name, for example
"&file2".

ANOVA (Mentor) Statistical test that is a significance test among multiple
means.

ANOVA Scan (Mentor) Statistical test that is a significance test among multi-
ple means, that is a two step process to quickly determine if there is a difference
between multiple means. A refinement of the All Possible Pairs test.

Answer Array (Survent) An area in memory where Survent keeps track of
answers so they can be displayed later in an interview. See alias and back-refer-
ence.

ASCII Pronounced "askee"; acronym for American Standard Code for Infor-
mation Interchange. A coding scheme that assigns numeric values to letters, num-
bers, punctuation marks and special characters. ASCII files are generally
transportable across all computer systems. ASCII files are sometimes called a text
files, text-only files or flat files.

Autodialer Hardware that opens a telephone line and dials a stored telephone
Version 8.1 183
•
•
•
•
•
•

184

•
•
•
•
•
•

number.
Auto Fixing (Mentor) A type of cleaning method. Done in batch mode, when

cleaning errors are encountered they are automatically fixed based on dictates in
the cleaning specifications. See Data Lookup.

Awareness Grid A list of items that are repeated for a series of questions. Often
a list of brand names, and a record is kept for the number of times each of the
brands is mentioned.

Axis The vertical or horizontal variable in a cross-tabulation table.
Back-reference (Survent) Showing the answer to a previous question.

Bang Computer slang for the exclamation point(!). If tech support tells you to
“type bang dataloc,” they mean “[!5/10.2]”.

Banner The text at the top of a table, made up of the headings for each of the
columns.

Banner Point The headings for columns in a table. All the banner points
together make up the banner at the top oSurventf a table.

Base Subset of a total sample. Mentor allows you to exclude respondents from
a table. Often used as a verb, as in "Do you want to base this table?"

Batch File A file that contains a list of commands that, when executed, carries
out the commands without user intervention.

Binary (1) The numbering system based on twos (just as the decimal system is
based on tens). Numbers are represented using only the digits 0 and 1. (2) IBM360
column binary coding which is the format for CfMC System files. Also see
SWAPPED BINARY. (3) When data is stored as multiple punches in each col-
umn, also called multipunched data.

Block Commands See Tilde Block.
Blow Error Errors that occur when Survent terminate abnormally or "blow

up." See a list of Blow Errors in the Survent manual, Appendix D.
Boolean A condition or variable that returns either TRUE or FALSE. In Men-

tor, the Boolean joiners are AND, OR and NOT. (Also called logical joiners.)
Bottom Box See Top Box/Bottom Box.
Break Table (Mentor) A table that splits one long variable into a series of

rows or columns. Different from regular tables, Mentor writes the data vertically
for a defined rows (horizontally for columns) until it reaches a break command
and then wraps to the top of the next column to continue writing data. This type of
table is often used to put information that would appear on separate tables onto
one page.

Bucket An area to hold information. In Survent, phone numbers with the same
calling schedule are called stacks. Stacks of phone numbers are sorted into buck-
ets.
 Appendix C

Callback When an interview has been interrupted and the interviewer has
scheduled a time to call back and complete the interview. Also known as a sched-
uled callback. See Suspend.

Call Disposition See Call Status.
Call History (Survent) Information about a phone call for a verbal question-

naire, such as the call's start and stop times, the interviewer ID and its status.
Call Status (SurveSurventnt) A status code for a phone number stored in the

phone file. Each time Survent gets a phone number, it will return the number to
the phone file with a call status, such as resolved (completed interview, non-work-
ing number, etc.) or call back (no answer, busy).

CAPI Computer Assisted Personal Interviewing, face-to-face interviewing.
Card See Record.
Case An individual set of data from a data file; a respondent.
Case Header (Mentor) A piece of each data case that holds case information,

such as the internal case ID. If you want to change a record's case ID, you must
change BOTH the data in the columns for the assigned case ID and the internal
case ID in the case header.

Case ID A record identification number, usually used to distinguish respon-
dents. CfMC data files have both an assigned case ID and an internal case ID. The
assigned case ID is usually sequential and often stored in the first four columns of
data of a record. See Case Header.

Case Flag A flag is a marker used by a computer in processing information. In
Mentor, case flags are set for deleting, cleaning and updating cases. An error flag
is set by any CHECK, CLEAN, EDIT, or ERROR statement that is true for that
case.

Category A specifically defined division of the data field. A category can rep-
resent a single group of respondents or be “netted” to represent more than one
group.

CATI Computer Assisted Telephone Interviewing, what Survent does.
Cell The intersection of a row and a column. In a Mentor table, a cell shows

the respondents who satisfied the conditions for inclusion in a table. Cells can be
printed as frequencies and/or percentages.

Character One symbol of a set of elementary symbols. The set usually
includes letters A-Z, digits 0-9, and other various special symbols.

Chi-Square (Mentor) Statistical test that tests for independence. A cross-tabu-
lation test. Tests the significance between parts of a column (banner points) with
parts of a row(stub). This test is often used when means are not applicable.

Cleaning To validate the integrity of data based on user defined instructions.
Can be done interactively or in batch mode.
Glossary 185
•
•
•
•
•
•

186

•
•
•
•
•
•

Cleaning Specs A batch file that has a list of commands to clean data.
Codebook The layout of data locations for a questionnaire.
Code List A list of categories created from a list of open-ended responses.

Coding (1) The process of categorizing the answers from open-ended questions.
Results in a code list. (2) The act of programming.

Coding Mode (Survent) A type of existing case mode, that is, Survent picks up
a completed cases in a data file and allows you to verify and/or modify them. This
requires that you write a Survent questionnaire that interrogates a data file. See
Existing Case Mode.

Column When used generically, it refers to an individual category in the verti-
cal axis. When used as a keyword, it refers to the data definition for the entire ver-
tical axis. It can also refer to a data location where the answer, or part of the
answer, for a particular question is stored.

Comment Out To temporarily disable one or more lines of code from a pro-
gram by proceeding them with by a comment symbol. In Survent or Mentor, you
can comment out a single line by putting two apostrophes('') at the beginning of
line, or in Mentor, you can comment out a whole tilde block by placing a minus
sign after the tilde and before the command (e.g. ~-DEFINE).

Compile To translate a high level code to a lower-level, machine-readable for-
mat. The PREPARE module compiles a questionnaire specification file (usually
with the file extension QPX) into a file that Survent can read (with the file exten-
sion QFF).

Compiler Command (Survent) Commands that control questionnaire functions.
Compiler commands are in enclosed in curly braces and preceded with an excla-
mation point, e.g. {!ALLOW_SUSPEND}.

Condition The state of an expression or a variable--for example, when a result
can be either true or not true or equal or not equal. IF conditions are used in data
cleaning and table building to cause an action. For example, IF the answer to
question six is "yes," then check to make sure the answer to question seven is one,
two or three.

Confidence Interval An estimation of the range of where the mean will fall
with repeated sampling. A 95% confidence interval means that, under the assump-
tion of normality, 95% of the time the mean will fall within that range.

Constant See System Constant.
COSI A software program that creates statistical table cross-tabulations and

graphs. Runs under Windows.
Control Statement (Survent) A question type that does not prompt for a

response from the interviewee, but rather controls the interview process, such as
displays information to the interviewer or does internal data generation. See Data
 Appendix C

Entry Statement.
Cross-Tabulation An action that produces a table that reflects the intersections

of two variables.
Data Entry Statement (Survent) A question type for collecting data, it displays

a screen and prompts for a response. See Control Statement.
Data Variable A definition of the type of data in the field specified and its cat-

egories. Always contained inside square brackets [].
Data Layout The location, in rows and columns of data in a data file. You can

hard code, that is, specify the data locations for the answers for a questionnaire or
let Survent do the data layout for you.

Dataloc Data location. In brackets, written in a card/column.column width for-
mat. E.g. [1/10.3] Indicates card one, column ten for a width of three, i.e. columns
ten, eleven and twelve.

Data Lookup (Mentor) A type of cleaning method. Done interactively, when
you encounter a cleaning error, you go back and look up the answer on the origi-
nal (paper) survey. See Auto Fixing.

Day Parts (Survent) The times of day the phone system uses to schedule calls.
DB Entry An item stored in the DB(database) file. When Mentor builds tables,

it generates and stores information such as data definitions as DB entries for
future use.

DB File The database file. A machine-readable file generated by a Survent or
Mentor compilation that stores variables for future use. It can also store labels,
data cleaning and generating procedures, and tables themselves.

Default A word used as both noun and verb in reference to the choice made by
a program when the user does not specify an alternative.

Delimiter A character that separates items in a data file. Mentor can allows
you to in input or output delimited data.

Delimited Data Data that is separated by a delimiter, often from a database or
spreadsheet program. In the following example, commas separate the fields in a
database record:

Jones,801 Haight Street,San Francisco,CA,94117.

Demo Deck A data file that contains general information about respondents,
usually has an ID number field in common. Like a deck of cards, it can be shuffled
or sorted.

Dialing Parameters See Shop File.
Directory A place where files and other directories are stored on disk. In a

hierarchical file system, the topmost directory is called the root directory. Directo-
ries within directories are called sub-directories. In the Windows, X-windows and
Glossary 187
•
•
•
•
•
•

188

•
•
•
•
•
•

Macintosh operating systems, directories are represented graphically by file fold-
ers.

Disk-based Response List (DBR) (Survent) When a response list is stored as a
separate file. This allows for large response lists, up to 10,000 categories.

Disk-based Recode Table (DBR) (Mentor) When a response list is stored as a
separate file. This allows for large recode tables, up to 10,000 categories.

Dot Computer slang for period(.). If tech support tells you to "Type star dot
star," they mean "*.*"

Dotting When periods (dots) appear sequentially on a computer screen, usu-
ally to indicate that a process is running. This is used when the SERVER module
of Survent is running, and when Mentor is processing data.

DTA File A CfMC data file from an older SPL version of the software.
End-of-File (EOF) A code placed by a program after the last byte in a file. An

EOF character is a marker that tells the computer's operating system that no addi-
tional data follows.

Environment Variable Settings for specifications for the software, such as the
command path (where to look for files). Use the SET (DOS) or ENV (UNIX)
commands to see how the environment variables are currently set.

Existing Case Mode (Survent) When you write data out to or modify existing
cases in a data file, opposed to interviewing mode. See Coding mode, View mode
and Phone Sys Data Rec mode.

Expression (Mentor) A complex variable made up of two or more variables.
Joiners connect variables to form expressions. See Joiner.

Field A location in a data record in which a particular type of data is stored.
Filter (Mentor) A variable that is used in table specifications to only include a

subset of responses. A filter runs across a whole study, while a base is for individ-
ual tables.

Fisher (Mentor) Statistical test that is a significance test between multiple
means (analysis of variance). A refinement of the All Possible Pairs test.

Flag A marker used by a computer in processing information. See Case Flag.
Flat File See ASCII.
Folder See Directory.
Footer Text that prints at the bottom of each page. A table-building option in

Mentor.
Function (Mentor) A type of joiner used to get special values or translate one

type of element to another. The five function types are: arithmetic, vector, num-
ber-returning, logical, table-related, integer and string. See Chapter 8 of the Mentor
manual.
 Appendix C

Gen A process that generates something. In Survent, GEN is a statement and a
question subtype, often used to generate multiple questions using the same ques-
tion list, but requiring different responses depending on a prior response.

Global Scratch See Scratch. Grid Question (Survent) Having more than one
question on the screen at a time, the respondent can answer in any order.

Group A place where files are stored on disk in the HP MPE operating sys-
tem. Equivalent to a directory or folder.

Header Text that prints at the top of each page. A table-building option in
Mentor.

Hierarchical Processing See Master-Trailer Processing.
Hexadecimal(Hex) The numbering system based on 16 digits. These include 0-

9 and A-F.
Holecount The frequency of punches for designated columns. Can be gener-

ated by Mentor specifications or the HOLE utility.
ID See Case ID.
Inbound Dialing When the respondent initiates the call to a phone center, as

opposed to outbound dialing.
Indexed Phone File (Survent) A phone file that is organized for easy for easy

retrieval. Often used for inbound dialing.
Indexing A way to sort a data file for quicker accessing of information.

Results in an indexed data file. Mentor allows you to select items or sections of
data for faster access with the ~MAKE_READ_CONTROL command.

Interviewer ID (Survent) This is used to identify the interviewer in the data;
has to be four characters or less.

Interviewing Mode (Survent) The normal operation of Survent, that is, a new
case and case ID is generated and written to the data file when a case is com-
pleted. See Existing Case Mode.

IPC file (Survent) A file used by networked devices that serves as a mailbox
for internal network messages. Each network entity, such the SERVER and each
interviewing station has their own IPC file. You can check for the existence of
these files, but cannot read them.

Joiner (Mentor) Commands used to connect variables to form an expression.
Often used to put data from different data locations(questions) on the same row.
Joiners can be relational operators, arithmetic, axis, vector or Boolean.

Key A small piece of hardware that attaches to a PC's parallel or serial port
that allows you to run Survent or Mentor. Used to prevent unauthorized distribu-
tion or use of CfMC software.Survent

Keyword Options to tilde commands that have their own options.
Kick To increment by one. Also see Page Kick.
Glossary 189
•
•
•
•
•
•

190

•
•
•
•
•
•

KRUSKAL-WALLIS (Mentor) Statistical test that is a significance test between
two rows. A variation of a rank-order test. This test only works on independent
rows. A non-parametric order test. Can be used for rating scales, but treats ratings
as ordinals rather than values (i.e. 1 means 1st rather than the value one).

Label The name given to variable definition, used for future reference. In Sur-
vent, you can assign a label to a question so you can refer to it later in the inter-
view or in Mentor specifications.

LDEV (Logical Device) A numeric identifier that the HP MPE operating sys-
tem uses for devices, such as terminals or printers. Each external device is
assigned a unique logical device number.

Likert Scale Any scale of polar opposites, classically:

(1) Excellent

(2) Very Good

(3) Good

(4) Fair

(5) Poor

 List File Where the output (error messages, tables, etc.) goes from a Mentor
(or Survent) run. The list file can go to a file, or directly to a printer, or the screen.

Local Scratch See Scratch.
Loop Any process or series of variables that repeats.
Loop Variable (Mentor) A type of variable that looks at data in multiple loca-

tions.
Overlay tables are a report of loop variables. See Overlay Table.
Marginal Another name for a holecount. See Holecount.
Master-Trailer Processing Table generation for a type of study where a primary

(or master) questionnaire collects general information and then secondary (or
trailer) questionnaires collect additional information. For example, household data
is collected in the master questionnaire and then questions for each person in the
household is collected in a secondary questionnaire. Tables from this type of study
can then display information based on households, individuals, or a combination
of information from both groups. Also called Hierarchical Processing.

Mean Summary Table A table that shows the average response to a question
or questions, usually used when you have many scalar questions with the same
response set in a group. (Also known as Summary of Means Table.)

Meta Command High-level commands, most that work in both Survent and
Mentor. They are preceded with the greater than (>) sign. Meta commands that are
specific to Survent are defined in the Survent manual, and the rest are defined in
the Utilities manual.
 Appendix C

Monitor (1) (Survent) Person running SURVMON, a utility that allows monitor-
ing of interviews from outside SURVSUPR. (2) A computer screen. Sometimes
called a display.

Multipunch When multiple answers appear in one column of data. Also called
binary or punch data.

Nest To insert a command between the beginning and end of another com-
mand. A nested loop is when a loop is completely contained within another loop.
Commands that are often nested are REPEAT, ROTATE and IF-THEN-ELSE.

Net A total. Often used in table building for respondents who said at least one
of a group of responses. Subsets of nets are called subnets.

NEWMAN-KUELS (Mentor) Statistical test that is a significance test between
means (analysis of variance). This test estimates which of the two columns are
most likely to be different and tests them first. Less likely to find significance that
ALL POSSIBLE PAIRS test. See All Possible Pairs.

Numbered Quota (Survent) One of the three types of quotas. This method uses num-
bers rather than quota names. If you have over 450 quotas, you must use
numbered quotas. You can have up to 32,000 numbered quotas. See Quota.

Numeric Distribution See Frequency.
On the fly The ability to change something while a program is running. For

example, Survent allows you to change the language questions and answers are
displayed in on the fly.

Operators Relational that which compares two variables or a constant with a
variable or a function with a variable: >, <, <=, >=, =, <, >. Logical - connectors of
variables or locations; also called Joiners.

Open-ended Question A survey question that does not provide a list of answers
to choose from. See verbatim.

Overflow Error See Stack Overflow.
Overlay Table (Mentor) A table that looks at data from multiple locations. It

shows multiple responses from individual respondents. See the Advanced Tables
chapter in the Mentor manual.

Page Kick The character or sequence of characters that tells a printer to eject a
page.

Parameter A value given to a variable. It can be text, a number, or an argu-
ment name assigned to a value that is passed from one routine to another.

Path The route followed by an operating system to store and retrieve files on a
disk. In a hierarchical filing systems (DOS,UNIX), the path starts at the root
directory and then lists all the subdirectories that lead to the file. For example, the
following indicates that the file myfile.spx is located in a directory called Mentor,
Glossary 191
•
•
•
•
•
•

192

•
•
•
•
•
•

which is located in a directory called cfmc.

\cfmc\mentor\myfile.spx

Phantom File (Mentor) A dummy input file used to test table specifications.
Phone File (Survent) A file that contains a record for each phone number, plus

the call parameters copied from the shop file.
Phone Sys Data Rec Mode (Survent) A type of existing case mode, that is, Sur-

vent picks up a case that already has ID information in it and then writes inter-
viewing information to it when the case is complete. This requires that you write a
Mentor job that creates a "blank" case for each phone number in the phone file.
See Existing Case Mode.

Platform The combination of hardware and operating system that software
runs on, often just identified by the operating system. CfMC software runs on the
DOS, SCO UNIX, and HP MPE-IX platforms.

Point Scale A numbered list of answers ranging from high to low, often
(1)excellent (2)good (3)fair (4)poor. See Likert Scale.

Point Scale Reversal (Mentor) A process to reverse the meaning of numbers in
a point scale. This is done because during interviewing, "excellent" comes first in
the point scale and therefore the lowest number on the point scale, and in tables,
"excellent" is associated with the highest number on a point scale.

Prepare A module of CfMC software(both Survent and Mentor) that compiles
questionnaires and creates files .

Print File (Mentor) An ASCII file that contains the output generated by a
Mentor run (usually tables). You can also direct error messages to the print file.
See List File.

Proc A group of commands that you want a program to execute. In Mentor,
PROCEDURE= (or PROC=) is a an option to the ~DEFINE command that allows
you to perform some operation on the every case in a data file or some specified
subset of the data file.

Prompt A character, symbol or group of characters that appear onscreen, indi-
cating that the program or operating system is waiting for your input. In DOS,
"the C prompt" means the letter of the disk drive appears on screen (as "C:") and
the operating system is waiting for your command.

Punch See Multipunch.
Punches The possible values for a column: 1-9, 0, X, and Y.
QPX file (Survent) A questionnaire specification file, usually given a file

extension of QPX. The PREPARE module compiles a QPX file into a file that
Survent can read (with the file extension QFF).

Quota (Survent) Counters that are kept across interviews (or interviewers)
that are usually used to determine whether to continue an interview based on a set
 Appendix C

of questions asked at the beginning of the interview. Survent has three types of
quotas: standard, triple and numbered.

Ranking A way to organize rows of a table into a hierarchy. Done by assigning
rank level to stubs. Includes the use of nets and subnets.

Rating Scale See Point Scale.
Recode A Survent utility that lets you add, change or recode data in a CfMC

data file.
Recode Table A table showing response text (answers) and their associated

codes or punches. Also called a Response List.
Record 80 columns of data. Each data case can be divided into 80 column

records. By default, Mentor references a data field by its record number, column
and width. Multiple records from one respondent is called a CASE..

Reformat (1) In Survent, a utility that reads a questionnaire file (QFF) and data
file (TR) to produce an ASCII data file. Sometimes called "spread data" because it
takes multipunched answers in a single column and spreads them across multiple col-
umns. (2) In Mentor, any way you manipulate data across all cases.(3) In data
storage, to prepare for reuse a disk that already contains data, effectively destroy-
ing the existing contents. (4) In word processing to change the look of a document
by altering stylistic details.

Relational Operators See Operators.
Relops See Relational Operators.
Respondent One person who answered a set of questions; their set of answers

makes up one data case.
Response List See Recode Table.
RDG (Random Data Generator) (Survent) An option used to generate random

responses to questions, used to test questionnaires and create dummy data files.
RPG (RePort Generator) (Mentor) Using the PRINT_LINES command to gen-

erate specialized reports from a data file, rather than tables.
RFT See Reformat.
Row (1) Generically, an individual category in the horizontal axis. (2) In

Mentor, a table building command that refers to the data definition for the entire
horizontal axis.

Run The execution of a program.
Sampling Gathering data from a representative subset of a larger group (called a
population).

Scale See Likert Scale or Point Scale.
Scalar Table A table that shows the answers to a point scale question or ques-

tions.
Glossary 193
•
•
•
•
•
•

194

•
•
•
•
•
•

Scratch Generically, a memory region or a file used by a program as place to
keep work in progress. Survent uses both a local scratch and a global scratch.
Local scratch is an area in memory that holds information between interviews for
a particular interviewer. Global scratch is a place in the quota file used to hold
information other than quota numbers. Mentor allows for a scratch area at the end
of each record.

Server On a local area network(LAN), a computer running administrative
software that controls access to resources such as disk drives or printers.

SERVER A Survent module that oversees the communications among net-
worked interviewing stations.

Shell A piece of software that provides communication between the user and
the operating system. The Macintosh Finder is a shell, and COMMAND.COM is
an MS-DOS shell. UNIX shells include Borne shell (sh), Korn shell (ksh) and the
C shell (csh).

Shell Script A file that is executed by the shell of an operating system. The
term is usually used to refer to scripts that are executed on UNIX systems.

Shop file (Survent) A file used by the Survent phone system. It contains the
initial parameters used to dial phone numbers, such as time zones, times available
to call, and number of calls to make.

Skip Pattern In interviewing, to set up a path, depending on how a person
answers a question, for which question they get asked next (and which questions
get skipped). Mentor allows you to set up cleaning specifications to check that
there are not answers on questions that should have been skipped. This is also
called "verifying skip logic."

Sort Key A field (commonly called a key) used to sort a data file. The COPY-
FILE utility can sort data files on up to five different sort keys.
Spec File A file that contains the commands for executing a procedure in batch-
mode.

Spread Data See Reformat.
Squiggly CfMC slang for a curly brace. ({)
Stack (Survent) A group of phone numbers with the same calling schedule.

See Bucket.
Stack Overflow An error that occurs when there is problem with an area of

memory. This occurs when Mentor has more data than columns to put it in, and
then the columns in the data file will be filled with asterisks. Or, software or the
operating system can run out of memory. This problem usually requires that you
change the configuration of your computer (add memory and/or change configu-
ration files).

Standard Quota (Survent) One of three types of quotas. See Quota.
 Appendix C

Star Computer slang for asterisk (*). If tech support tells you to "Type star dot
star," they mean "*.*". Sometimes called splat.

Station Number (Survent) A code used to identify the personal computer or
terminal used for an interviewing session.

Statistical Significance The confidence with which you can state that your
results could not have happened randomly. Consult a statistics textbook for a dis-
cussion of this concept.

Statistical Summary Table A table that shows summary data for several ques-
tions, rather than frequencies for individual questions.

Stream Job A process (job) running on an HP MPE computer. From the MPE
STREAM command. See ABORTJOB.

String A sequence of letters, numbers and symbols.
String Variable An arbitrary name assigned to a string of characters so the con-

tents of the string can be called by just using the variable name.
Stub The text on the vertical axis (rows) of a table. Usually the answers to

questions, either a response list item or a numeric range.
Student Newman-Keuls (SNK) See Newman-Keuls.
Study Code (Survent) The name assigned to as study. Also called a Study

Header.
Study Server See SERVER.
Subnet See Net.
Summary Table See Mean Summary Table.
Supervisor See SURVSUPR.
SURVSUPR A control program for Survent interviewing.
Suspend When a respondent wants to stop in the middle of an interview. Usu-

ally, the interviewer schedules a time to call back and complete the interview. See
Callback.

Swapped Binary A type of file where the first and last bits are swapped. You
can recognize this type of file when seeing sixes and sevens where you would
expect to see zeros and ones (binary punches 01-9XY are swapped binary punches
6-9YX012354). If you transfer a standard IBM-360 column binary file from the
HP3000 to the PC, you should treat it as a swapped binary file.

System Constant (Mentor) Commands that allow you get current information
from your computer or from data files, such as the case number, the date or the
number of errors for a particular run. Mentor has three types of constants: vari-
able, case-reading, and system information.

System File A specially formatted CfMC file that holds data. In a system file,
one record is the length of an entire case, no matter how many columns of data are
Glossary 195
•
•
•
•
•
•

196

•
•
•
•
•
•

in the case. In addition, it has a special segment (called the case header) in each
record that holds the internal case ID and flags for deleting, cleaning and updating
the case. System files have an extension of TR.

T-test (Mentor) Statistical test that is a significance test between two means
(analysis of variance). See Z-test.

Table The format by which the tabulated data is presented, usually a two-axis
rectangle of numbers.

Table Title Text that describes what is in a table. In Mentor it prints below the
table heading but before the banner text.

Tabulation The process that utilizes computer technology to prepare, summa-
rize and present data that has been collected into a table format. The function of
Mentor.

Tab Specs A batch file that Mentor uses to generate tables, perform statistics
and format results.

Table Set (Tab Set) (Mentor) A section of Mentor specs that defines the ele-
ments of an individual or group of tables, such as the banner, header, column and
row. Typically, you will have a global tab set for the elements that are the same
across all (most) tables, such as the banner and headers, and individual tab sets for
each question, which provides the title (the question text), stubs (the answer
text)and row definitions (data location of the answers). See the Mentor command
~DEFINE TABLE_SET.

Text Area Where data from Survent text questions is stored. It is stored in for-
mat compressed at the end of the data file.

Text Pointer A pointer is variable that contains the memory location of some
data rather than the data itself. Survent and Mentor use pointers for the answers to
text questions.

Text Variable A definition that specifies table text labeling, preceded by a
command to identify where it will be used in the table, e.g. HEADER= .

Tilde Block Some Mentor tilde commands when issued start a section of the
program that allows you to enter a group or block of options and sub-options with-
out issuing the tilde command again. This is known as a tilde block. Tilde block
commands are CLEAN, DEFINE, and SET.

Tilde Command Mentor commands that start with the tilde(~) symbol. Tilde
commands are listed in Appendix B of the Mentor manual.

Topline Report A tally of closed-end question responses.
Top Box/Bottom Box A row on a table that is a total of the highest (top box) or

lowest ratings (bottom box) for a brand or attribute. This row is in addition to each
individual rating. Usually combines the top two or bottom two categories, for
example "excellent" and "very good" are combined into a row labeled "top box."
 Appendix C

TR File See System File.
Triple Quota (Survent) One of three types of quotas. This method uses three

separate counters for each quota, and allows you to change target values easily.
See Quota.

Upkick Computer slang for caret(^). If tech support tells you to "Type two
upkick one," they mean "2^1".

Utilities CfMC menu-driven programs used to accomplish repetitive tasks,
such as sorting data files, or creating basic reports such as holecounts.

Variable A named storage location capable of containing a certain type of data
that can be modified during program execution.

Verbatims The responses to open ended questions in which the responses have
been recorded word for word, or verbatim.

Vector An axis; a group of categories.
Vector Joiner (Mentor) A type of joiner that connects multiple categories. Vec-

tor joiners are WITH, BY, WHEN, INTERSECT, NET, and OTHERWISE.
Vertical Axis On a table, a row that contains a stub and row data.

View Mode (Survent) A type of existing case mode, that is, to look at completed
cases in a data file to verify and/or modify them. This is done with the SURVIEW
utility. See Existing Case Mode.

Wave Study A study that interviews the same people or asks the same ques-
tions of different people over time. Each reiteration of the study is called a wave.

Weight An assigned value that changes the value of a frequency in proportion
to a sample. Weighting a table means assigning a weight to each answer, often
based on assumptions about a population.

Work Area (Survent) A user-specified area in a data file used to place data
from an interview that is kept separate from the rest of the data. Often used if you
want to add additional questions or control statements to a questionnaire without
changing the existing data layout.

Z-test (Mentor) Statistical test that is a significance test between two means
(analysis of variance). This test assumes a normal population. A variance of the T-
test.

Zone Table (Survent) Used by the phone system, a file that has area codes and
exchanges assigned to time zones across the U.S.
Glossary 197
•
•
•
•
•
•

198

•
•
•
•
•
•

 Appendix C

 Appendix D
• • • • • •

 CfMC Conventions

Comment Out (‘ ’)
Two single apostrophes are used to “comment out” the remaining portion of a line.
All entries from the two apostrophes to the end of the line will be ignored by the
program, but will print out in your program listing for those programs that list
their specs (Mentor, for example). This must be two single apostrophes, not one
double quote. Only one apostrophe is needed if it appears in column one.

Spec file
Programs containing a SPEC FILE prompt allow that particular program to be run
either from an interactive session or as a batch job (i.e., Mentor, DBUTIL). If the
user plans to enter each line individually, while the program is prompting, only
Enter is pressed when the screen displays the message:

SPEC FILE-->

By entering one program statement at a time, the program can check the syntax of
each line as it is entered, and will display an error message and request for re-
entry of the command if a mistake has been made. It is also possible to create a
spec file that will hold all or part of the desired program commands.
This is useful if the user is very familiar with the syntax necessary on all program
statements and needs to create a long and complex program run. Statements can
be entered and checked before ever running the program, and this allows the
repeated rerunning of the program, without wasting time re-entering many com-
mands. A spec file is created in the manner of any other editor file.
The spec file is the file containing questionnaire or tabulation specifications along
with other commands. It must be an ASCII file, with a line length of 5000 charac-
ters or less. It must not contain format-control characters often created by word
processors. If it contains tabs, a warning will print at every line with tabs unless
you precede the lines with a >-TAB_WARN command. The program reads the file
Version 8.1 199
•
•
•
•
•
•

200

•
•
•
•
•
•

line by line.
If you have a file, you would enter the file name, or the drive and directory or
group and account) of the file if they differ from your current drive and/or direc-
tory, with the file name.
The syntax for the file name is:

Drive letter:\Directory1\SubDirectory1\ filename.Extension
(DOS)

/Directory1/SubDirectory1/ filename . (UNIX)

filename.group.account (MPE)

The drive letter is first, followed by a colon (:). The default is the drive of the
computer you are currently signed on to. If the file is located in a directory and/or
subdirectories other than the one you are signed on in, enter the directories sepa-
rated by backslashes (\). Then comes the file name, which must be from one to
eight characters long, starting with a letter.
The extension is a naming convention that is up to you.We suggest you use an
extension on the file name to specify the type of file it is. The file name extension
can be from one to three characters (preceded by a period in DOS). The only
required element is the file name. You can extensions to identify ‘types’ of files. For
example, you could use QPX for your PREPARE specification files, or SPX for
your Mentor specification files. Be careful not to use standard DOS or CfMC
extensions to identify your files.
The spec file can include references to other files, bringing in separate portions of
specifications.
If you want to enter commands line by line, press Enter at the Spec File prompt to
tell the program that the input for this run will come from your keyboard.

List File
The List File is where the list of program commands processed and resulting mes-
sages go. Press Enter to tell the program that you wish to see these at your screen.
Specifying PRN as the list file will send the output to the printer on most DOS
machines; LP or LJ works on most MPE systems. You may also specify a file
name and the output will be stored in a disk file of that name. A minus sign (-)
before the name will purge a same named file. >PURGE_SAME does not affect
the List File. The List File also has parameters for the page width, page length, top
margin and bottom margin. See >PRINT_FILE for information on these.

Example:

ACME.LFL,TOP_MARGIN=5,BOTTOM_MARGIN=5
 Appendix D

When you specify the list file name, if you put a plus (+) before the name then
you’re asking to append to the file if there is one, else to create a new one.
The spec file and list file may also be specified as part of the command line on
DOS or UNIX machines:

Example:

PREPARE BANK.QPX -BANK.LFL (DOS, MPE)

Example:

PREPARE BANK.QPX "-BANK.LFL" (Windows NT, UNIX)

Because the spec file (BANK.QPX) and the list file (BANK.LFL) are specified,
you would not be prompted for them. The program would process the commands
from BANK.QPX and display the commands processed and resulting program
messages in the file BANK.LFL. If BANK.LFL already exists, it will be purged
and replaced with the new version because of the dash preceding the name.
The keyboard and console(computer screen) can also be specified as the spec
and/or the list file on the command line. “CON” is the file name used for this type
of standard input and output:

Example:

Mentor CON CON

If you give a file name as the spec file, Mentor expects to read that file only (and
any references within that file) and then exit. If you want to read a file to start a
questionnaire building session and then continue interactively from the end of that
file reference on, you can use an ampersand(&) [DOS] or ampersand and the file
name in quotes [Windows NT, UNIX].

Example:

PREPARE &BANK.SPX CON (DOS)

Example:

PREPARE "&BANK.SPX" CON (Windows NT, UNIX)

In these examples the file would be read and processed to the end, then the pro-
gram would prompt for more commands.

Command Line Keywords
Several parameters can be specified for any CfMC program from the operating
system command line. Windows NT/UNIX users, be sure to put these keywords in
quotes to protect them from being interpreted by the operating system.
CfMC Conventions 201
•
•
•
•
•
•

202

•
•
•
•
•
•

Example:

Mentor "&FILE.SPX" "-FILE.LFL" "CORE=2500000"

Here is a list of the command line keywords, they are explained in detail below.

CONFIG:<config file>
CORE:bytes
DEFINE:@<keyword>=<value> DEFINE:@<keywordn>=<valuen>
DUMP:switch
INFILE:<spec file>
LDEV:num (MPE and DOS only)
LISTFILE:<list file>,option1,...
SPEC_WID=###

CONFIG:<configfile>
This is used to override the default configuration file that CfMC programs must
read to start up. Each release has an INITEXAM and MENTEXAM files (in the
cfmc\control directory) that are examples of initial and mentinit files. They have
many different options and a short explanation of them. To use these files, take the
comment marks off the beginning of the line of the command(s) you want to use,
and rename the file to INITIAL or MENTINIT. The command(s) will be in effect
each time you use CfMC software (the initial file) or Mentor (the mentinit file).
You can have more than one initial file. Here is the order in which initial files are
read, by platform:

If you have only one initial file, it must be in the CFMC CONTROL direc-

Platfor
m

Read first Read second Read last

DOS \CFMC\CONTROL\INITI
AL

Not applicable INITIAL in
current dir

MPE INITIAL.CONTROL.CF
MC

INITIAL.CONTROL.
account

INITIAL in
current grp

UNIX /cfmc/control/initial $HOME/initial initial in current
dir
 Appendix D

tory/group. On UNIX and MPE, this hierarchy of initial files allows you to have
an initial file that sets defaults for your site, and in addition, you then can have an
initial file for personal preferences, and you can also have an initial file that
applies only to a particular project.

CORE:<bytes>
Specifies the amount of memory (in bytes) that the program will use. In general,
more memory allows faster processing. The keyword CORE: is required, but can
occur in any position on the command line. The core value defaults to approxi-
mately 2,000,000 bytes for all programs. You can increase core, but you are lim-
ited by available system memory. To see how much core is available type the
>VERSION command after loading the program. On line five the first number
inside the parentheses indicates available core.

Example:

Prepare v.7.1 (1,29Jul97)(con,out) ... 7.2 (C) CfMC 1978 -
1995

>version

Message file: 'c:\cfmc\control\msg9705'

Date line: 9705 24july97

System versions: 725 ... 671 ... 0 ... 9601

CfMC program Prepare v.7.1 (1,29Jul97) (562838,19205)

CALLNAME="Prepare", FORCE_CON: 0, indlevel: 0, random:

12051205,0

...version info: CfMC version 7.2

...language: fr=french sp=spanish ge=german

ldev :205:

In this example, the PREPARE program has 562,838 bytes of core available.

DEFINE@<keyword>=<value> (=<valuen>)
Sets the value of a keyword. <keyword> can be any 1 to 16 character word that is
then referenced inside a Mentor run. Keywords cannot include spaces.

Example:

Mentor con con DEFINE:@PATH=!CFMC!

This will put the environment variable or PATH into the current run.
CfMC Conventions 203
•
•
•
•
•
•

204

•
•
•
•
•
•

DUMP:switch
Specifies a dump switch to be used during the current session. The switch may be
any >DUMP parameter.

INFILE:<spec file>
Specifies the spec file name to be used during the current session. The keyword
INFILE: is optional if the spec file name is entered as the first parameter follow-
ing the program name.

LDEV:#
In MPE, this specifies the logical device number used to run a job on a terminal
other than the current user’s terminal.
In DOS, it specifies the communications file number for supervised Survent. Pro-
grams will open a file named @IPC#.PUB in the directory named by the environ-
ment variable CFMCCFG, where @ can be S, B, W or M. This is used by
networks other than ARCNET.
UNIX: not used
The keyword LDEV: is required.

LISTFILE:<listfile>,option1 ...
This specifies the list file name and optional printing parameters to be used during
the current session. The keyword LISTFILE: is optional if the list file name is
entered immediately following the spec file name. The list file name can be speci-
fied as NULL or $NULL to eliminate program output. This option could be used
to test program specifications.

Example:

Mentor myspecs lplist

or

Mentor con con

or

Mentor INFILE:myspecs LISTFILE:lplist

or

PREPARE job1.spx NULL
 Appendix D

or

Mentor myspecs LP

*<filename>
In MPE, this specifies a filename that back-references a file equation. In the fol-
lowing example, LIST FILE output is sent to LDEV 41, but the LDEV is refer-
enced by a name, "JANE", preceded by an asterisk (*).

Example:

:FILE JANE:DEV=41

.

.

:List file-->*JANE

List file options
The following options may be used with the list file: (see >PRINT_FILE for more
information on these):

APPEND Causes the old file to be opened and added to (Default =
FALSE)

BOTTOM_MARGIN=# Number of blank lines at bottom of page (Default =3)
COPIES=n In MPE, this specifies the number of times to print a

spool file.
ECHO Displays lines written to a file also to the screen.
FORMS="forms message" In MPE, this specifies the forms message for spool

files.
HEADER_PAGE Prints a leading header page with the following information:
Note: Specify this option in either the INITIAL or MENTINIT file to make it
the default for all sessions, as follows:
>PRT; HEADER_PAGE.

LASER_CONTROL=<filename> Specifies the name of a control file for a laser
printer. The control file must be in the current directory or group, or in the CFMC
CONTROL directory or group.
This file name can have an extension, e.g.,LJTABLES.LSR. The control file con-
tains either the initial string or specifies the name of an initial file. It can also con-
tain the strings to control printing of standard text enhancements such bold,
CfMC Conventions 205
•
•
•
•
•
•

206

•
•
•
•
•
•

underline, or color when the corresponding backslash (\) command is encountered in
text. You can also specify up to 26 different user-defined strings to control special
printing needs when the corresponding user-defined backslash (\~<letter>) is
encountered in text.
When the program encounters a given backslash (\) option in the text it is replaced
by the appropriate print string specified in this file. If there is no corresponding
print string specified, then the backslash command is not passed to the print file.
When an end enhancement code (e.g., \E or \-~<letter>) is seen, the OFF string for
the ON item in effect at that time is used.
If no laser control file is specified, backslash (\) codes in the text are not passed to
the print file.
You can have multiple laser control files that reference the same initial file or
string, but supply different details for printing standard text enhancements and/or
user-defined enhancements. Likewise, you could have a primary laser control file
and multiple initial files to control printing in different fonts and pitch for
instance.
You would have to edit the control file to specify the name of a different initial
file.
Many of the keywords listed below expect a string to be specified after the equal
sign (=). In general, a string must be defined inside quotes (" ") if it contains spe-
cial characters or spaces. You might be able to omit the quotes, but this could
cause an error from the program or unexpected results in the print file.

Note: You may specify either an INITIAL_FILE or an INITIAL_STRING, but
not both in the same control file.

Control file keywords
CLOSE_STRING= Specifies the string to write out when this file is closed,

e.g., to reset the printer back to its default settings.
CONTROL_SIZE=# Specifies how much room (in bytes) to allocate in core

memory for the aggregate of all control strings other than the initial string. The
default is 3000 and can be a minimum of 100 for smaller memory machines.
Adjust this number only if you encounter memory problems.
ESCAPE_CHARACTER= Specifies the character to convert to ESCAPE. The
default is asterisk (*).

EXTRA_WIDTH=# Specifies how many additional characters to allow per
printed line for control codes. The default is 100. This might be needed for long
print strings that could cause the text line plus the escape sequence to overflow the
maximum line length.

INITIAL_FILE= Specifies the name of another file that has the initial informa-
 Appendix D

tion in it. If the name starts with an exclamation (!) then the program will look in
the CFMC CONTROL directory or group for the file named here.

INITIAL_SIZE=# Specifies how much room (in bytes) to allocate in core
memory for cracking the initial string. The default for INITIAL_FILE is 300 and
can be a minimum of 80 for smaller memory machines. The default for
INITIAL_STRING is 1000 and can be a minimum of 300. Adjust these numbers
only if you encounter memory problems.

INITIAL_STRING= {<escape sequences>} Specifies the initial control string.
This string is defined within left and right braces { } and may continue to more
than one line.

Note: For HP Laser printer escape sequences, break lines so the each new
line begins with an escape character; otherwise, the printer will not know
that it is supposed to do something special with the characters and will
simply print them.

NEW_PAGE= Specifies what to do for a new page instead of <Ctrl>-L.
NEW_LINE= Specifies what to do for a new line.
PAGE_LENGTH=# Specifies page length if it has not been specified on either

>PRINT_FILE or LISTFILE. Page length specified on either >PRINT_FILE or
LISTFILE always overrides this value.

PAGE_WIDTH=# Specifies page width if it has not been specified on either
>PRINT_FILE or LISTFILE. Page width specified on either >PRINT_FILE or
LISTFILE always overrides this value.

SPECIAL_BACK_SLASH Allows you to put out a backslash (\) character for
Microsoft Rich Text Format. The default is off, i.e., SPECIAL_BACK_SLASH.
The following keywords affect how the standard text enhancements \B, \F, \I, \U,
and \W will be converted. If you specify an ON control string then you must spec-
ify the corresponding OFF control string.

BOLD_ON= Specifies the string to use for \B.
BOLD_OFF= Turns \B off when either an end bold (\-B) or an end enhance-

ment (\E) is encountered.
FLASHING_ON= Specifies the string to use for \F.
FLASHING_OFF= Turns \F off when either an end flashing (\-F) or an end

enhancement (\E) is encountered.
INVERSE_ON= Specifies the string to use for \I.
INVERSE_OFF= Turns \I off when either an end inverse (\-I) or an end

enhancement (\E) is encountered.
UNDERLINE_ON= Specifies the string to use for \U.
UNDERLINE_OFF= Turns \U off when either an end underline (\-U) or an end
CfMC Conventions 207
•
•
•
•
•
•

208

•
•
•
•
•
•

enhancement (\E) is encountered.
WIDE_ON= Specifies the string to use for \W.
WIDE_OFF= Turns \W off when either an end wide (\-W) or an end enhance-

ment (\E) is encountered.
Note: These text enhancements are automatically turned off at the point
where a stub label would wrap, and turned back on for continuation stub
label lines. Only the stub label is enhanced and not the entire row. Likewise,
these enhancements are turned off either at the end of a banner or a title.
For banners and titles, this means you do not have to specifically supply a
\E in the text except where you specifically want to turn an enhancement off.

The following keywords control color enhancements. \C, \D, and \DD are all con-
trolled with these keywords. You must specify control strings for all the color key-
words. A \E in the text ends the current color enhancement and resets it to the
default.

• The following turn off foreground color and returns to the default setting.

COLOR_FOREGROUND_BLACK=

COLOR_FOREGROUND_BLUE=

COLOR_FOREGROUND_GREEN=

COLOR_FOREGROUND_CYAN=

COLOR_FOREGROUND_RED=

COLOR_FOREGROUND_MAGENTA=

COLOR_FOREGROUND_YELLOW=

COLOR_FOREGROUND_WHITE=

COLOR_FOREGROUND_DEFAULT=
 Appendix D

• The following turn off background color and returns to the default setting.

COLOR_BACKGROUND_BLACK=

COLOR_BACKGROUND_BLUE=

COLOR_BACKGROUND_GREEN=

COLOR_BACKGROUND_CYAN=

COLOR_BACKGROUND_RED=

COLOR_BACKGROUND_MAGENTA=

COLOR_BACKGROUND_YELLOW=

COLOR_BACKGROUND_WHITE=

COLOR_BACKGROUND_DEFAULT=

The following keywords control up to 26 (A-Z, case-insensitive), different user-
defined enhancements. The appropriate ON control string is substituted for each
\~<letter> encountered in the text; \-~<letter> ends the
user-defined enhancement and the corresponding OFF control string is used. You
must supply both an ON and an OFF string for every \~<letter> and \~-<letter>
specified in the text. User-defined enhancements are never
turned off by the program until the corresponding \~-<letter> is seen.

USER_<A-Z>_ON= Specifies the string for \~<A-Z>.
USER_<A-Z>_OFF= Specifies the string for \~-<A-Z>.

Example laser control file for a HP LaserJet printer:

ESCAPE_CHARACTER=*

''Print Tables

INITIAL_STRING={

^[E^[&l1o66p5e1L^[(8U^[(s0p16.66h0s-
3b0T^[&a8L^[&l5.4545C^[&k7H }

BOLD_ON="*(s3B"

BOLD_OFF="*(s0B"

CLOSE_STRING="*E"

What follows is the laser control file needed to create Microsoft Rich Text Format
(RTF) files. The enhanced text file will contain embedded escape sequences
(specified here) to control text enhancements, fonts, etc., and will main tain these when
CfMC Conventions 209
•
•
•
•
•
•

210

•
•
•
•
•
•

the file is imported into word processing software.

PAGE_LENGTH= 59

PAGE_WIDTH= 132

EXTRA_WIDTH= 100

SPECIAL_BACK_SLASH

INITIAL_SIZE= 400

INITIAL_FILE= !lasrinit

'INITIAL_STRING= {

'This is where the initial string

'would be specified. It might

'contain multiple lines.

'}

CONTROL_SIZE= 3000

''wide used to control shadow

WIDE_ON = "\shad "

WIDE_OFF = "\shad0 "

UNDERLINE_ON = "\ul "

UNDERLINE_OFF = "\ulnone "

''inverse used to control outline

INVERSE_ON = "\outl "

INVERSE_OFF = "\outl0 "

''flashing used to control italic

FLASHING_ON = "\i "

FLASHING_OFF = "\i0 "

BOLD_ON = "\b "

BOLD_OFF = "\b0 "

COLOR_FOREGROUND_BLACK = "\cf0 "

COLOR_FOREGROUND_BLUE = "\cf1 "

COLOR_FOREGROUND_GREEN = "\cf3 "

COLOR_FOREGROUND_CYAN = "\cf2 "

COLOR_FOREGROUND_RED = "\cf5 "
 Appendix D

COLOR_FOREGROUND_MAGENTA = "\cf4 "

COLOR_FOREGROUND_YELLOW = "\cf6 "

COLOR_FOREGROUND_WHITE = "\cf7 "

COLOR_FOREGROUND_DEFAULT = "\cf0 "

''setting background color does nothing in RTF files
COLOR_BACKGROUND_BLACK = ""
COLOR_BACKGROUND_BLUE = "\cb1 "
COLOR_BACKGROUND_GREEN = "\cb3 "
COLOR_BACKGROUND_CYAN = "\cb2 "
COLOR_BACKGROUND_RED = "\cb5 "
COLOR_BACKGROUND_MAGENTA = "\cb4 "
COLOR_BACKGROUND_YELLOW = "\cb6 "
COLOR_BACKGROUND_WHITE = "\cb7 "
COLOR_BACKGROUND_DEFAULT = "\cb0 "
NEW_PAGE = "\page "
NEW_LINE = "\par "
CLOSE_STRING = "}"
''USER_A_ON = "USER-A-ON"
''USER_A_OFF= "USER-A-OFF"

 LASER_NUMBER= # Specifies which laser printer to use (LJET1, LJET2,
etc.). This option is only applicable to the MPE operating system. Your laser print-
ers must be configured as LJET1, LJET2, etc., and the number (#) specified here
will be appended to “LJET” to indicate the device to use.

LP In MPE, this specifies the line printer for output from a run instead of a
file.

Example:

List file-->LP

PAGE_LENGTH= # Sets the total number of print lines on a page (Default
=66)

PAGE_WIDTH= # Sets the number of characters per print line (Default
=132)

TOP_MARGIN= # Sets the number of blank lines at top of page (Default = 3)
Example:

Mentor myspx mylist,ECHO,LASERC=ljtables,LASERN=2
CfMC Conventions 211
•
•
•
•
•
•

212

•
•
•
•
•
•

In MPE, if the “Listfile” is “LP”, then LASER_NUMBER= redirects the output to
the device called LJET1, LJET2, etc.

SPEC_WID:###

Sets the spec file width for up to 5000 characters. The default file width is 5000.
Example:

Mentor "file.spx" "-file.lst" "spec_wid:500"

Using DOS Variables in the File Name
You can set a variable at the DOS level i.e., ‘SET DRIVE=C:’, and reference it
wherever you can reference a file name in CfMC programs. This would be at the
Spec or List File prompts, or when using &filename references. To reference the
variable ‘DRIVE’, put exclamation points (!) around it at the start of the file name
reference, e.g., !DRIVE!Myfile.LST would look for C:Myfile.LST.
The variable named ‘CFMC’ has a special meaning. Do not use it for other uses.
Wherever you set it is where the program(s) look for CFMC files. The default for
the variable CFMC is “\CFMC\”.

Program-Generated File Extensions
Mentor, PREPARE, and the utility programs produce some files automatically,
and some when you request them. Here the files thatCfMC software can create if
your study name is DEMO:

Extension File type File name: DOS
UNIX

MPE:

ASC ASCII DEMO.ASC DEMOASC

BIN Binary output DEMO.BIN DEMOBIN

CHK Data list DEMO.CHK DEMOCHK

CLN Cleaning specs DEMO.CLN DEMOCLN

CNT FREQ raw count DEMO.CNT DEMOCNT
 Appendix D

CSP C specs from SPC DEMO.CSP DEMOCSP

DB database DEMO.DB DEMODB

DEF Tab set definitions DEMO.DEF DEMODEF

DLM Delimited output DEMO.DLM DEMODLM

DTA SPL data file DEMO.DTA DEMODTA

FNX Phone index 1 DEMO.FNX DEMOFNX

FNY Phone index 2 DEMO.FNY DEMOFNY

FNZ Phone index 3 DEMO.FNZ DEMOFNZ

FON Survent phone file DEMO.FON DEMOFON

FRQ FREQ print file DEMO.FRQ DEMOFRQ

HRD Hardcopy DEMO.HRD DEMOHRD

HOL Holecount DEMO.HOL DEMOHOL

HPS SPL Survent specs DEMO.HPS DEMOHPS

LAB SPL Labels DEMO.LAB DEMOLAB

LPR Print and load DEMO.LPR DEMOLPR

LST List output DEMO.LST DEMOLST

PRT Print file DEMO.PRT DEMOPRT

QSP Survent specs in ASCII DEMO.QSP DEMOQSP

QFF Survent questionnaire DEMO.QFF DEMOQFF

QUO Quota DEMO.QUO DEMOQUO

RCD RECODE changes list DEMO.RCD DEMORCD

RFL REFORMAT data
locks

DEMO.RFL DEMORFL

RFT REFORMAT output DEMO.RFT DEMORFT

Extension File type File name: DOS
UNIX

MPE:
CfMC Conventions 213
•
•
•
•
•
•

214

•
•
•
•
•
•

Ampersand Referencing (&<specfile>)
Sometimes you may want to keep parts of a specification separate (keep a demo-
graphic section of a questionnaire separate, for instance, so that you can call it into
several jobs), but need to call in the pieces when you do the complete run.
You can do this by using the ampersand (&). When working interactively (having
pressed Enter to the SPEC FILE prompt, or having specified CON on the program
line), you call in a file by entering the ampersand followed by the file name.

Example:

-->&demos

This example will call in the file DEMOS at that point in the program run. The
ampersand reference can include a path reference if necessary.
When accessing files with the use of the ampersand “&”, it is possible to control
where the statements being accessed will print. This is accomplished, optionally,
by the use of a plus “+” or minus “-” sign after the ampersand (before the file-
name). The plus sign lists the file both at the location requested at the LIST FILE
prompt and on the terminal in use (“+” signifying more than one location); the
output from the run, however, will print where you've specified on your LIST
FILE prompt. The minus sign tells the program not to list these lines anywhere (“-
” signifying less than one location).
If the file you are accessing has an extension (DOS/UNIX only), then you may
want to use a caret (^) in place of the standard dot (.) before the extension. For
example, demo.DEF becomes demo^DEF. In this way, the file referenced can be
read in by any CfMC-supported operating system. Using our example, the MPE
operating system would correctly understand the file name as demoDEF and not
demo.DEF.
Use the meta command >ALLOW_INDENT if you prefer to indent &specfile ref-

SCN Scan output DEMO.SCN DEMOSCN

SUM Question list DEMO.SUM DEMOSUM

SWB Swap binary file DEMO.SWB DEMOSWB

TAB Table specs DEMO.TAB DEMOTAB

TR Data file DEMO.TR DEMOTR

Extension File type File name: DOS
UNIX

MPE:
 Appendix D

erences in the specifications file or Mentor procedure from which it will be called.

Ctrl-Y or Ctrl-C or Ctrl-<intr>
Ctrl-Y shows you current information on a program run and prompts you as to
whether you want to break out of programs. This guarantees that all files are
closed properly on any system, and all work done to that point is saved.

You can modify the interrupt key in unix using the ‘stty intr’ command. In DOS
the interrupt key is Ctrl-C.

Ctrl-Y behaves differently depending on which CfMC program you are running,
and what the program is doing at the point Ctrl-Y is issued.

In Mentor, Ctrl-Y works as follows:
• If the program is reading a data file then Ctrl-Y will print the record number of

the current case and its ID. Setting >CONTROL_Y_QUIET would allow you to
check the current case without having to respond to the terminate confirmation.

• If the program is defining variables (~DEFINE) then Ctrl-Y will print the name
of the last variable defined.

• If you are reading cases interactively (~CLEANER NEXT, FIND, HUNT, or
FIND_FLAG) then Ctrl-Y will print “you stopped case reading so no case in
core” and resets the input file to the beginning of the file.

In PREPARE, Ctrl-Y will terminate the compile (after getting confirmation) and
exit to the operating system.

For the phone system, Ctrl-Y works as follows:
• For SURVSUPR or STDYSRVR it will give you a prompt so that a command

can be entered.
• For FONEUTIL it will print the current record number of the total number of

records and then prompt for confirmation before terminating the process.

Renaming Files ($filename)
Mentor users can specify their own file names for files that normally expect a
standard CfMC file extension (such as TR, DB, or PRT) by preceding the file
name with a dollar sign ($). For example, ~INPUT $JAN.DAT. Length of file-
CfMC Conventions 215
•
•
•
•
•
•

216

•
•
•
•
•
•

name is limited to the maximum allowed by your operating system: eight plus a
three-character extension for DOS; eight for MPE; and 14 for UNIX, although
some newer versions have no character limit.
Where file type can be checked (currently only on MPE) the program will check
and complain if there is a conflict.
The meta command >-CFMC_FILE_EXTENSIONS makes $filename the
default.s

Variables
Variables are used extensively in Mentor, but are also used in the Utilities for
bases, weighting, etc. There are two basic variable types, the punch variable and
the field variable.

Punch (caret) Variables
The caret (^) can be used to create a punch variable that goes across one or more
columns.
Using the following chart we will show how this works without having to enter
each column and its punches individually.
A ^ variable has a maximum of 21 columns of data. It basically converts the
punch to a sequence number, so that the punches in the first column specified are
1-12, in the second column they are 13-24, in the third 25-36, etc.
The numbers must be separated with commas for separate items, or a period or
dash for a range (1,2,3 means 1 or 2 or 3; 1-5 means 1 or 2 or 3 or 4 or 5).

PUNCH 1 2 3 4 5 6 7 8 9 0 X Y

Example: -->[2/5.3^01-10,23,30]

Punch
column

1 2 3 4 5 6 7 8 9 0 X Y

1 1 2 3 4 5 6 7 8 9 10 11 12

2 13 14 15 16 17 18 19 20 21 22 23 24

3 25 26 27 28 29 30 31 32 33 34 35 36
 Appendix D

Field Variables
Field variables are actual numbers signifying real amounts, or values which make
up a character string. When using a field variable, a pound sign (#) separates the
column location and value specifications (replacing the caret of a punch variable).
Sequential values are specified by placing a dash (-) between the first and last of
the series, and commas (,) separate non-sequential values.

Example:

-->[4/10.5#15000-60000]

If the characters specified look like numbers, they will be treated as such. If you
are looking for an exact string of numbers (i.e., 001 not the numeric value of 1),
enclose the characters in quotation marks ([3/4.3#"001"]). If the character
string you’re defining is all alphanumeric characters, quotation marks are unnec-
essary; other characters must be enclosed in quotation marks (i.e.,
[3/30.3#ABC,DEF,"S,Z"]). Numeric values and literals can both be in the
same definition.

Example:

-->[4/17.3#1-10,REF]

If you define a field larger than the number of characters specified, it’s important
that you understand how the program looks in that data location for the match.

• Numbers must be right-justified in the field with optional leading zeroes.
Leading blanks and zeroes are treated the same as long as once a numeric
character is seen, all remaining columns are also numeric. A plus (default) or
minus sign may immediately precede the first numeric character.
Numbers Not numbers
001 - 5
7 0 3
-5 7

• Character strings are searched for by starting in the left-most column of the
field. If you are looking for characters (whether or not they look like numbers),
you should enclose them in quotations for an exact match, otherwise know that
they must be left-justified in the field, must be the only characters in the field
([2/10.4#dk] will match “dk” or “dk ” but not “dkna” or “ dk”), and any
characters that are not alphanumerics must be enclosed in quotation marks. The
search for alpha characters is not case-sensitive.

Complex connectors (for bases, etc.)
It is possible to select cases for analysis which have met the conditions of two or
CfMC Conventions 217
•
•
•
•
•
•

218

•
•
•
•
•
•

more specified criteria. This is done by entering separate variable specifications in
any of the manners explained above. To enter a complex statement, enter a left
bracket “[”, the first variable specifications and a right bracket “]”. This is fol-
lowed by a space then one of four connectors:

1 “AND” requires that both conditions are met.

2 “OR” requires that at least one or the other condition is met.

3 “[connector] NOT” varies depending on the connector (AND, OR) used.

4 “XOR” (for “EXCLUSIVE OR”) requiring that one or the other
condition is met, but both are not allowed.

After typing in the connector, enter a space, then type another left bracket, another
variable specification statement and a right bracket. If you want to use more than
two connectors, enter the information within brackets for each new specification
and add the proper connectors. Use parentheses to control the order in which the
specifications are checked if you use different connectors in the same statement.

Example:

-->[1/5^1-3] AND [3/60.2#CA,NV,AZ,NM]

This example will select only those cases having both a 1, 2, or 3 punch in column
5 AND the letters CA, NV, AZ, or NM in columns 60-61 of record 3. If cases do
not meet both criteria, they are not included.
Mentor users should refer to the Mentor manual for more connectors.

Other Useful Commands

>QUIT
Most CfMC programs will automatically abort at any desired point when >QUIT
is entered after an arrow prompt. This returns you to the operating system.
Use this with care because you will lose changes you have made to any data files
that are currently open.
Example:

-->>QUIT

>DUMP I7
>DUMP 17 saves spec files generated by the utilities. This is useful when you
 Appendix D

want a person unfamiliar with the CfMC software to repeatedly (on a daily basis,
for example) run a utility program without having to answer all the prompts. You
can run the program once yourself, using >DUMP I7 to save your responses, then
have the other person run Mentor using your file as the spec file.

>SYSTEM command
>SYSTEM allows you to access information available from normal operating sys-
tem commands without breaking a CfMC program run (see Appendix A: META
COMMANDS for more information on this command).

>PUT_CHARACTERS
>PUT_CHARACTERS allows you to specify characters that designate how to fill
a field containing zeroes (either integer or floating point) or missing data (see
Appendix A: META COMMANDS for more information on this command).

>LIST_DB_CONTENTS
This command is used to generate a list of items stored in a DB file (see Appendix
A: META COMMANDS for more information on this command).
CfMC Conventions 219
•
•
•
•
•
•

220

•
•
•
•
•
•

 Appendix D

 Appendix E
• • • • • •

 Graphic Characters

Hexadecimal Values may be used to display a variety of special characters
and symbols in question text. See 2.5.2 TEXT ENHANCEMENTS AND
Version 8.1 221
•
•
•
•
•
•

222

•
•
•
•
•
•

GRAPHIC CHARACTERS in the Survent manual or Appendix B: Tilde
Commands ~CLEANER PRINT_LINES in the Mentor manual for informa-
tion on how to use these graphics.
Enter \^and the two-digit hexadecimal value corresponding to the desired
symbol. The first number represents the horizontal value. The second num-
ber represents the vertical value.
In this example, the text is followed by a smiley face (hexadecimal value 01):

THAT CONCLUDES OUR INTERVIEW. THANK YOU \^01

NOTE: CfMC recommends that you use your browser to search for
information regarding Graphic Characters for your particular Operating
System.
 Appendix E

 Appendix F
• • • • • •

 CON and ZSPC Statements

CON Statements
CON statements are Survent commands used to control the passing of statements
to Mentor or other programs to be processed. In this way, you can write utilities
that request input in a Survent-like application, and then execute commands to do
tables, write files, etc. This is how the CfMC utility set is developed.

Syntax:
{<optional label>
!IF <optional condition controlling command>
.<lines to be sent to program>
!CON,<type>,<options>
}

In addition to sending commands, !CON statements can control what happens
after they are executed (whether it stays in Survent, it exits Survent and comes
back to the beginning, it exits Survent and quits, it exits Survent and returns to the
current position in the questionnaire).

!CON,1
Sends textlines to be processed at next !CON 2-4 or end of program, stays in the
program.

Example:
{filename:
Enter the name of your input file:
!var,,70}
{!if filename$<>” “
Version 8.1 223
•
•
•
•
•
•

224

•
•
•
•
•
•

.>purgesame

.~input \:filename:
!con,1}

You use Survent to ask the questions you need to fill in your program, such as the
name of the file to use, and send the !CON statement to the controlling program.
Notice the period at the front of the text line on the !CON,1 statement. That char-
acter is a “holding” character and will not be passed to mentor. It allows you to
have meta commands be sent without them being executed when you compile the
script.
You can save the lines to send into a file in case you want to process them later
instead of immediately when exiting. Here is a list of the !CON types:

!CON,1,<name>Saves a file of the lines to execute to directory "name" with
name 'mnt<yyyymmddhhmmss>.cmd'
!CON,1,file=nameSaves file of lines to execute to local file "name".
!CON,1,file="\:label:" Saves file of lines to execute to local file from the ques-
tion label "name". This way, you can ask for a particular name to save with.
!CON,1,file=[location]Saves file of lines to execute to local file from the data
location "location".
!CON,2 Executes lines from !CON,1 statements and exits
!CON,3 Executes lines from !CON,1 then returns to the top of the questionnaire
!CON,4 Executes lines from !CON,1 then returns to current positon in the ques-
tionnaire

To run questionnaires using !CON statements to control CfMC programs, you
must call the compiled questionnaire script from the “Spec File” prompt using a
“&&&<filename>” reference, for example:

mentor “&&&${CFMC}support/scan.qff” con

This command line will run the “scan” utility in Mentor. The “con” in the list file
position says that input is coming from the “console” which is the case when run-
ning a Survent utility.
Currently you can use !CON statements in Mentor or Survsupr.
 Appendix F

ZSPC Statements
ZSPC statements are used in writing Mentor or Survent utilities or applications to
get more information on data files, DB items, or other system uses, such as
date/time formatting. Both Survent and Mentor use ZSPCs to get immediate
access to system information.

Syntax (Survent):

!ZSPC,type,subtype,[col.1],[col.wid1],[col.wid2],...,[col.widn]

Syntax (Mentor):

ZSPC,type,subtype,[col.1],[col.wid1],[col.wid2],...,[col.widn]

[col.1] is the one column wide field to hold the return code (the 1 is optional)
[col.wid1] is the field holding (or to hold) the information for Argument 1
[col.wid2] is the field holding (or to hold) the information for Argument 2, etc.

For all types, a return code of D means that there is no data case to deal with. A
return code of Z means there were zero arguments.

ZSPC TYPE 1
This type is used for date/time format conversions.

TYPE 1, subtype 1
Converts an ASCII date to a standard date format.

ASCII date format: 07dec97 19:03
Standard date format: 97120719037341
YYMMDDHHMMWJJJ

• Year, month, day, hour, minute, day of week, and Julian date)
• The day of the week is a number from 1 (Monday) to 7 (Sunday).
• The Julian date is the number of days since the start of the year.

Syntax:

ZSPC,1,1,[return code],[arg1],[arg2]

Argument 1 is ASCII date to convert. Multiple date formats are acceptable
(12/7/97, 7dec, 09:00, 9:00). ZSPC 1 will accept the same date and time formats
that you can use with the Phone System's WHEN TO CALL BACK prompt (See
CON and ZSPC Statements 225
•
•
•
•
•
•

226

•
•
•
•
•
•

Survent Manual, Chapter 6).
Argument 2 is location to return the converted standard date format; this must be
6-14 positions wide.

Return codes:
A Not two arguments
1 Bad ASCII date in Argument 1
2 Bad length in Argument 2; should be 6-14
0 All OK

 Type1, subtype 2
This is the reverse of subtype 1.

Syntax:

ZSPC,1,2,[return code],[arg1],[arg2]

Argument 1 is standard date format (see above).
Argument 2 is location to return the converted ASCII date format; this must be
15-22 positions wide.

Return codes:
A Not two arguments
1 Bad standard date in Argument 1
2 Bad length in Argument 2; should be 15-22
0 All OK

TYPE 1, subtype 3
Adds years, days, hours, etc., to the standard date format and returns the new date in
standard format.

Syntax:

ZSPC,1,3,[return code],[arg1],[arg2],[arg3]

Argument 1 is date/time in standard format.
Argument 2 is the same format, with only the items you want to add.
Argument 3 is location to store the new date/time in standard format; this must
have a length from 6 to 14.

Example: Argument 2
YY MM DD HHMMW JJJ
01 adds one year

06 adds six months
 Appendix F

14 adds 14 Days
0318 adds 3 hours, 18 minutes

250 adds 250 days
03 1520 100 adds 3 years, 15 hours, 20

minutes and 100 days

Special conditions on use:
• You can change only one of MMDD or JJJ at a time.
• The Julian date (JJJ) cannot be greater than 255.
Note: When MM is used, the program keeps the day as the last day of the
month if it starts out that way.

Return codes:
A Does not have three arguments
1 Bad standard date in Argument 1
2 Bad standard date in Argument 2
3 Bad length in Argument 3, must be 6-14
0 All OK

ZSPC TYPE 2
This type returns information on data files and other system elements.

TYPE 2, subtype 1
Opens a CfMC TR file and checks whether a particular data case exists in it.

Syntax:

ZSPC,2,1,[return code],[arg1],[arg2]

Argument 1 is the case ID you want to check.
Argument 2 is optional and, if specified, indicates the name of the TR file to be
checked. If argument 2 is not specified then default to the input TR file.

Return codes:
A More than two arguments
1 Case ID length in Argument 1 is more than 10
2 Argument 2 has bad data file name
O Cannot open TR file named
I No input data file and no Argument 2
Y Case found
CON and ZSPC Statements 227
•
•
•
•
•
•

228

•
•
•
•
•
•

N Case not found
F ASCII input data file
B BINARY input data file
D DTA type input data file
S SWAP-BINARY input data file
P Phantom file, no case ID
J Joined files, cannot use

TYPE 2, subtype 2
Checks DB items to see if they exist, and what type of item they are.

Syntax:

ZSPC,2,2,[return code],[arg1],[arg2]

Argument 1 is the name of the DB item to check; it can be 8 or 16 wide.
Argument 2 if specified, is where information about the DB item is to be returned.
The default is do not return.
Argument 3 if specified, is the name of the DB file to look in. Default: any open
DB file. May be 'LOCAL' for the local DB file.

Data returned if argument 2 is specified:
type 6 bytes Variable, table, etc.
gloss1 6 bytes If variable, is type of variable (0-9)
gloss2 6 bytes More info about the item
instance 6 bytes Nth occurrence of this item (if multiple)
entry num 6 bytes This is the directory slot used for this item
byte offset 10 bytes This is the file position of this item
byte count 6 bytes This is the byte length of item as stored
when put 14 bytes This is standard time format when item

stored: YYMMDDHHMMWJJJ
Return codes:
A More than 3 arguments
1 Length in Argument 1 more than 16
2 Length in Argument 2 bad (should be 6-60)
3 Argument 3 is bad file name
F DB file not defined
N Item not in DB file
Y Item is in DB file
 Appendix F

TYPE 2, subtype 3
Returns the last error code seen (i.e. the number you see on error messages such
as:

(ERROR #2640) expected ~INPUT keyword

(ASCII=#, STOP_AFTER=#, SELECT=, etc.)

In this case, the ZSPC,2,3 would return the number “2640”.
Syntax:

ZSPC,2,3,[return code],[arg1.5]

Argument 1 is where to return the error code, and must have a width of 5.
Return codes:
A Not 1 argument
1 Width not 5
0 Value of c->errors is in location

TYPE 2, subtype 4
Returns the name of the next temporary file to be made by the program.

Syntax:

ZSPC,2,4,[return code],[arg1.8]

Temporary file names have the syntax 'TE######' where ###### are sequential
numbers from 1 to n for each file made.
Argument 1 is where the next temporary name will be returned with a width of 8.

Return codes:
A Not 1 argument
1 Width not 8
0 Temporary name is in the location

TYPE 2, subtype 5
Returns whether a file exists, and if it does, it’s fully qualified (i.e., 'directory/file-
name' in UNIX, 'drive:directory\filename' in DOS, and 'filename.group.account'
in MPE) file name.
It interprets most valid CfMC filename specifications; an @name is treated as a
DEFined value, a !name! is treated as a variable set at the operating system level.
Caret (^) is treated as a dot (.) in UNIX or DOS, and as nothing in MPE. Wildcard
characters (*,?,#) for multiple file references are not interpreted, since the com-
mand only deals with one file at a time.
CON and ZSPC Statements 229
•
•
•
•
•
•

230

•
•
•
•
•
•

Syntax:

ZSPC,2,5,[return code],[arg1],[arg2]

Argument 1 is the name of the file to return information on and can include the
CfMC characters described above.
You may include directory/group information, or if not, the program assumes the
file is in the current work area.
Argument 2 Returns the fully qualified filename if used (not required).

Return codes:
A More than two arguments
N File not found
Y File found

TYPE 2, subtype 6
Opens a CfMC TR file and returns detailed information about it.

Syntax:

ZSPC,2,6,[return code],[arg1],[arg2]

Argument 1 is the location for return information. Length controls how much
information to get. Can be from 5 to 50 long, depending on information wanted.
Argument 2 is the name of the TR file to get. The TR part of the name is not
required. It defaults to the currently open TR file.

Return codes:
A More than 2 arguments
Y Got file
O Can't open file
I No input file opened
1 Argument 1 not 5 to 50 columns
2 Argument 2 had a bad file name
D DTA type input data file
F ASCII input data file
B BINARY input data file
S SWAP-BINARY input data file
P PHANTOM file
 Appendix F

Return information

TYPE 2, subtype 7
Returns the amount of available core memory space.

Syntax:

ZSPC,2,7,[return code],[arg1.5]

Argument 1 location for amount of available core. Width must be five.
TYPE 2, subtype 8 Returns the tilde (~) block of Mentor that the user is in.

Syntax:

ZSPC,2,6,[return code],[arg1.2]

Argument 1 is the number of the tilde block currently in:
00 - Not in any block 01 - DEFINE
02 - RESET 03 - SORT
04 - STOP_WATCH 05 - PREPARE
06 - SET 07 - INPUT
08 - CLEANER 09 - RESTORE
10 - MAKE_ASQ 11 - QSP_FILE

Item/Order to get Data Type Length Position

Case length # 5 1-5

Number of cases # 7 6-12

Number of deleted cases # 7 13-19

TR file type (0=standard,
1= indexed)

1 20

Maximum number of
cases (approx.) only if
indexed

7 21-27

Duplicates only if
indexed Y=Yes, N=No

A 1 28

Data file comment A 22 29-50
CON and ZSPC Statements 231
•
•
•
•
•
•

232

•
•
•
•
•
•

12 - QFF_FILE 13 - ADJUST
14 - unused 15 - JCD (debugging)
16 - PRACTICE 17 - unused
18 - OUTPUT 19 - unused
20 - TRANSLATE 21 - COPY
22 - unused 23 - NEXT
24 - EXECUTE 25 - unused
26 - VIEW 27 - CLOSE_STUFF
28 - INTERVIEW 29 - SHOW
30 - unused 31 - FREQUENCY
32 - DROP 33 - COMMENT
34 - unused 35 - unused
36 - CY (debugging) 37 - unused
38 - NEW 39 - WRITE_SPECS
40 - UPDATE 41 - SPEC_RULES

Return codes:
A more than 1 argument
1 Argument 1 not 2 columns wide
Y all OK

TYPE 2, subtype 9
Returns the information off the &&&qfilename command line. This lets you say
something like '&&&HELP INPUT' and have the help system start out at the
INPUT block.

Syntax:

ZSPC,2,6,[return code],[arg1]

Argument 1 is the text that follows the &&&qfilename. The leading spaces are
taken out of the returned text.

Return codes:
A more than 1 argument
1 Argument 1 not long enough to hold text
Y all OK
N not in &&& command

TYPE 2, subtype 10
 Appendix F

Checks printer ports in DOS or UNIX.
There are no arguments.

Return codes:
A more than 0 arguments
Y Printer found online
O Printer found offline
P Printer found out of paper
N Printer not found

ZSPC TYPE 3
Stores or retrieves items in a CfMC DB file.

TYPE 3, subtype 1
Stores ASCII data from a file into a CfMC DB file.

Syntax:

ZSPC,3,1,[return code],[arg1],[arg2],[arg3]

Argument 1 is the name of the DB item to store (the maximum number of charac-
ters in a DB item name is 24).
Argument 2 is the name of the file to store or the location in the currently open
data file.
Argument 3 is optional and is the name of the DB file to store to; the default is the
current DB file opened READ_WRITE. You may say “LOCAL” for local DB file.

Return codes:
A Not 2 or 3 arguments
1 Length of argument is one more than 16
3 Argument 3 is bad file name
E Error in DBstore routine
0 All OK

TYPE 3, subtype 2
Stores binary data from a data file into a CfMC DB file.

Syntax:

ZSPC,3,2,[return code],[arg1],[arg2],[arg3]

Argument 1 is the name of the DB item to store (the maximum number of charac-
ters in a DB item name is 24).
Argument 2 is the name of the data file to store or the location in the currently
CON and ZSPC Statements 233
•
•
•
•
•
•

234

•
•
•
•
•
•

open data file.
Argument 3 is optional and is the name of the DB file to store to;
the default is the current DB file opened READ_WRITE. You may say 'LOCAL'
for the local DB file.

Return codes:
A Not 2 or 3 arguments
1 Length of argument is one more than 16
3 Argument 3 is bad file name
E Error in DBstore routine
0 All OK

TYPE 3, subtype 3
Takes an ASCII DB item and writes it to a new data file.

Syntax:

ZSPC,3,3,[return code],[arg1],[arg2],[arg3]

Argument 1 is the name of the DB item to get (the maximum number of characters
in a DB item name is 24).
Argument 2 is the name of the file to write out or the location in the currently open
data file.
Argument 3 is optional and is the name of the DB file to use; the default is any
opened DB file. You may say “LOCAL” for local DB file.

Return codes:
A Not 2 or 3 arguments
1 Length of argument is one more than 16
3 Argument 3 is bad file name
E Error in DBfetch routine
0 All OK

TYPE 3, subtype 4
Takes a binary DB item and writes it to a new data file.

Syntax:

ZSPC,3,4,[return code],[arg1],[arg2],[arg3]

Argument 1 is the name of the DB item to get (the maximum length of a DB item
name is 24 characters).
Argument 2 is the name of the file to write out or the location in the currently open
data file.
 Appendix F

Argument 3 is optional and is the name of the DB file to use; the default is any
opened DB file. You may say “LOCAL” for local DB file.

NOTE: You still cannot have variable names more than 14 characters. The
only ones that can have these long names are ZSPC,3-created items.

Return codes:
A Not 2 or 3 arguments
1 Length of argument is one more than 16
3 Argument 3 is bad file name
E Error in DBfetch routine
0 All OK

ZSPC TYPE 4
Returns the elements of a built table.

TYPE 4, subtype 1
Returns the starred (*) table elements below and all others only if the user speci-
fied them. (Subtype 2 returns all of them always).

Syntax:

ZSPC,4,1,[return code],[arg1.208]

Argument 1 returns the table elements; it must have a width of 208. The table ele-
ments returned are (in order):
TABLE name, *HEADER, *FOOTER, *TITLE, COLUMN, ROW,*BANNER,
*STUB, WEIGHT, *EDIT, LOCAL_EDIT, BASE and STATISTICS variable.
Each of the 13 elements takes up 16 characters, for a total of 208.

Return codes:
A Not 1 argument
1 Width not 208
0 OK, information returned

TYPE 4, subtype 2
Returns all the table elements below.

Syntax:

ZSPC,4,2,[return code],[arg1.208]

Argument 1 returns the table elements; it must have a width of 208. The table ele-
CON and ZSPC Statements 235
•
•
•
•
•
•

236

•
•
•
•
•
•

ments returned are (in order):
TABLE name, HEADER, FOOTER, TITLE, COLUMN, ROW, BANNER,
STUB, WEIGHT, EDIT, LOCAL_EDIT, BASE, and STATISTICS
variable.
Each of the 13 elements takes up 16 characters, for a total of 208.

Return codes:
A Not 1 argument
1 Width not 208
0 OK, information returned

ZSPC TYPE 5
Checks for information related to a DB item:

TYPE 5, subtype 1
Checks on items with an 8 wide DB name.

Syntax:

ZSPC,5,1,[return code],[arg1.8]

TYPE 5, subtype 2
Checks on items with a 16 wide DB name.

Syntax:

ZSPC,5,2,[return code],[arg1.16]

Argument 1 is the name of the DB item to check.
Return codes:
A Not 1 argument
W Width not 8 or 16 columns
0 Doesn't exist
1 Number (NUMeric question)
2 Categories (CATegory or FieLD question)
3 Vector (or multi-column number)
4 String (VARiable question)
5 Table
6 DB spec file
7 Exists, but is something else altogether VirusScanv
 Appendix F

ZSPC TYPE 7
Sends commands immediately.

TYPE 7, subtype 1
Sends commands immediately (such as META commands).

Syntax:

ZSPC,7,1,[return code],[location to send]

ZSPC TYPE 11
Reads or writes a line of an ASCII file:

TYPE 11, subtype 1
Reads a line of data from an ASCII file.

Syntax:

ZSPC,11,1,<return code>,<filename>,<data area>

Return codes:
BLANK operation successful
A Not two arguments
B Bad subtype
0 file open failure
N Nothing to read (nothing in the file or past end of file)

filename
Data location where the name of the file to read has been put.
data area
Data location to read. Exactly one ASCII line will be read, and data area will be
cleared beyond the end of the line. A maximum of 950 bytes can be read.

TYPE 11, subtype 2
Writes a line of data to an ASCII file. (MPE/UNIX ONLY)

Syntax:

ZSPC,11,2,<return code>,<filename>,<data area>

Return code, filename and data area the same as ZSPC 11, subtype 1.

TYPE 11, subtype 3
CON and ZSPC Statements 237
•
•
•
•
•
•

238

•
•
•
•
•
•

Reads a line of data from an ASCII file into a TEX question.
Syntax:

ZSPC,11,3,<return code>,<filename>,<data area>

Return code and filename the same as ZSPC 11, subtype1. Data area must
be a TEX question.

TYPE 11, subtype 4
Writes a line of data from a TEX question to an ASCII file.

Syntax:

ZSPC,11,4,<return code>,<filename>,<data area>

Return code and filename the same as ZSPC 11,1. Data area must be a TEX ques-
tion.

TYPE 11, subtype 5
Appends a line of data to an existing ASCII file. (MPE ONLY)

Syntax:

ZSPC,11,5,<return code>,<filename>,<data area>

Return code, filename and data area the same as ZSPC 11, subtype 1. This is use-
ful for dumping detail data to a file from many interviewers.

TYPE 11, subtype 6
Reads a line of data sequentially from an ASCII file.

Syntax:

ZSPC,11,6,<return code>,<filename>,<data area>

Return code, filename and data area the same as ZSPC 11, subtype 1. The first
ZSPC 11,6 will read the first record in the data file, the second SPC,11,6 will read
the second record in the data file, etc.

ZSPC TYPE 12
Launches another program from within Survent:

TYPE 12, subtype 1
Runs an external program from within Survent. (MPE ONLY)

Syntax:

ZSPC,12,1,<return code>,<programname>,<arguments>
 Appendix F

Return codes:
BLANK operation successful
A Not two arguments
B CREATEPROCESS failed
C file equation for stdin/stdout failed

programname
Data location of the name of the program to be executed.
arguments
Data locations of arguments to pass to the program. All arguments are passed on
at once, and would look the same as it would as an INFO= command.

TYPE 12, subtype 2
Runs an external command from within Survent. (MPE ONLY)

Syntax:

ZSPC,12,2,<return code>,<location of command> }

Return codes:
BLANK operation successful
A Not two arguments
B CREATEPROCESS failed
C file equation for stdin/stdout failed

location of command
Data location of command to be executed.

Example:

{Command: .30 HIDE

COPY fred.asc mary.asc

!VAR }

{Rcode:.1 HIDE

!VAR }

{ZSPC,12,2,Rcode,Command }

This would copy the file fred.asc to mary.asc and then continue to the next ques-
tion.
CON and ZSPC Statements 239
•
•
•
•
•
•

240

•
•
•
•
•
•

 Appendix F

INDEX
A

Abbreviations 145
Commands 145
Commands, list of 147

Ampersand,Use of 214
APPEND 20
APPEND_ALL 20

C
Cfmcmenu 85
Character sets

Setting for spec files 96
Cleaning

Data 69
Deleting a case 78

Cleanit 69
Input files 70
Procedure 70
Sample session 70

Display ASCII data 71
Display binary data 72
Display text data 73

Clock
Setting 112

Codeedit 82
Command line keywords 201

Asterisk (*) 205
CONFIG: 202
CORE 203
DEFINE@ 203
DUMP:switch 204
INFILE: 204
LDEV:# 204
Listfile 204

Control file keywords 206
Listfile options 205

MPE
Asterisk (*) 205

SPEC_WID: 212
Commands

See Meta Commands 93
Comment Out 199
Complex connectors 217
CON 201
CON Statements 223
Config 202
Console 201
Conventions 199

(Ctrl-Y), Functions of 215
In MENTOR 215
In PREPARE 215

Ampersand Reference (&) 214
Command line keywords 201
Comment Out 199
Complex connectors 217

[connector] NOT 218
AND 218
OR 218
XOR 218

DOS Variables in file name, use of 212
File Extensions 212
List File 200
Other useful commands 218

>DUMP I7 218
>LIST_DB_CONTENTS 219
>PUT_CHARACTERS 219
>QUIT 218
>SYSTEM 219

Renaming files 215
Spec file 199
Using dos variables in file name

Ampersand referencing 214
Variables 216

Field variables 217
 1
•
•
•
•
•
•

•
•
•
•
•
•

Punch (caret variables 216
Copyfile 7

Makevars
Troubleshooting 39

Options 8
Combine 8
Copy 8
Display 10
Print 9
Sort 9
Subset 9
Text 10

Core 203
Ctrl-Y 215
Customizing 85

Cfmcmenu 85
For programmers 87
Makemsg 88
Progmenu 87
Software Menu 86

Customizing CfMC Software 85
D

Data Alteration 69
Cleanit 69
Codeedit 82
Other cleaning commands 78

Defining procedures 79
Deleting a case 78
Finding a case 78
Modifying case IDs 80
Repeat commands 78
Restore a case 80
Show variables 79
View questionnaire 80

Verbedit 83
Data Analysis 47

Hole 47

Options 51
Output files 48

List 62
Input files 63
Output files 63

Scan 54
Sample Output 56

DB file
Creating file 100
List of contents

Options 117
Sorting options 117

Options for creating 100
Sizes 102

Dbutil 24
Options 25

Copy 25
Reveal 25

Define
 203

DUMP
 204

DUMP 17 command 218
Duplicate

Options 101
Duplicated 101

E
Editing text 109
EMPTY_CASE 22

F
Field variables 217
File extensions

Program-generated 212
File Management 7

˜Reformat Options
Use variables 42

Copyfile 7
2

Dbutil 24
Makecase 10

Output Files 11
Makevars

~Reformat Options
Miscellaneous 44

Output files 28
Merge 13
Rawcopy 26
Reformat 27

Spec language,use of 42
Reformat Options 42

Freq
Options

Get counts only 60
G

gapfile 89
GLOSSARY

Of CfMC Terms 183
Graphic Characters 221

Hexadecimal Values 221
H

Help menu 115
Hole 47

Default headings 48
Input files 48
Options 51

Base 51
Density 51
Footer 52
Header 51
Multiple column sets 52
Page format 52
Weight 52

Output files 48
Sample output 48

Holecount report 47

I
INFILE: 204
Introduction 1

J
Julian Year 115

K
Keywords 201

Control file 206
Reserved 138

L
Languages 89

abbreviations 89
List 62

Options 65
Adjust page width 66
Base tables 65
Choose number of blank lines 66
How list organized 66
Print extra variable 66
Write open-end text to file 65

Options menu 67
Output files 63
Sample output 63
Sample report 65

List File 200
LIST_ DB_CONTENTS command 219
LIST_DB_CONTENTS command

Sort Options 116
M

Makecase 10
Default file names 11
Input Files 11
Options 13
Output Files 11
Sample Output 12
 3
•
•
•
•
•
•

•
•
•
•
•
•

Makemsg 88
Input files 90
Language, changing 89
Make small msgfile, diskette 90
Options 89
Output files 90

Makevars
Map file options

Change column headings 34
Output files

Map files (RFL)
Q line question 30
Record types 30

Q line question 30
Record types 30
Spec language, use of 42

Merge 13
APPEND 20
APPEND_ALL 20
Data manipulation 20
Empty_Case 22
Input files 14
MERGE_COPY 20
Merge_defaults 21
Options 16, 23

Data Overwrite messages 24
Duplicate handling 23
Duplicate messages 24
Printed cases 23
Status 16
Written cases 23

Output files 14, 15
Proc= 21
Sample Output 22
Status Command 16

Merge.prt file 22
Meta Commands 93

>ALLOW_INDENT 94

>BATCH_JOB 94
>BEEP 94
>BROWSE 95
>CALL_DOS 95
>CASE_SENSITIVE 95
>CFMC_FILE_EXTENSIONS 96
>CHARACTER_SET= 96
>CHECK_EXIST 97
>CLEAR_SCREEN 97
>CLOSE_DB 98
>CLOSE_QFF 98
>COLORS 98
>CONTROL_Y_QUIET 99
>COPY 100
>CREATE_DB 100
>DB_SIZES= 102
>DB_STATUS 103
>DB_TO_FILE 104
>DEFINE 104
>DELETE 106
>DEMO 106
>DISK_ROOM 107
>DO_ALL 107
>DOS 107
>DUMP 108
>ECHO 108
>ECHO_DEFINES 109
>EDIT 109
>EDIT_FILE 110
>EDIT_PREVIOUS 110
>ELSE_IF 111
>END_OF_FILE 111
>END_REPEAT 111
>-ERROR_LINE_NUMBER 112
>FAKE_TIME 112
>FILE_TO_DB 113
>FILL_DEFINES_INSIDE_QUOTES

114
4

>HALT 114
Options 114

>HELP 115
>IF_DEFINED 115
>JULIAN_YEAR_LENGTH 115
>KEY_DELAY 116
>LIST_DB 116
>Listfile 122
>LOCATION_FORMAT 122
>NUMBER_ADJUSTMENT= 123
>NUMBER_OF_FILES 123
>PASS_comments 123
>PAUSE=n 123
>PRINT_FILE 124

Options 124
>PRINT_FILE_DEFAULTS 127
>PRINT_REPEAT 128
>PRN 128
>PURGE 128
>PURGE_empty_ascii 128
>PURGE_empty_tr 128
>PURGE_SAME 128
>PUT_CHARACTERS= 129
>QUEUE= 129
>QUIT 130
>RANDOM_SEED= 130
>READ 130
>RENAME 130
>REPEAT 131
>REPEAT_VARS_ALPHA_ONLY

133
>RESET_DB 133
>RUN_LABEL= 133
>S_TIME 140
>SAVE_AS_DB 134
>SAVE_AS_FILE 134
>SAVE_KEYS 134
>SHOW_CORE_FARMARK 135

>SHOW_DEFINES 135
>SHOW_KEY

Msgfile block 136
>SHOW_KEY= 135
>STATUS 138
>STOP_WATCH 141
>STUDY_NAME 141
>SYSTEM 142
>TAB_WARN 142
>TRANSLATE 142
>USE_DB 143, 144
>USE_EIGHT_BITS 123
>Var(iable)_len(gth)_ascii 144
Rules of 93
Syntaxes 94

MPE
(Asterisk)*, use of 205

P
Print 127
Proc= 21
Punch (caret) variables 216
Purging files 128
PUT_CHARACTERS command 219

Q
Quit 130
QUIT command 218

R
R line 32
Rawcopy 26

Options 27
Read 130
Reference table 181
Reformat 27

Data Files
Options 38

Spread multi-punch CAT ques-
 5
•
•
•
•
•
•

•
•
•
•
•
•

tions 39
Write card image format 37
Write delimited format 37
Write fixed format with data

definitions 34
Export of SQL readable files 40
Input files 28
Map file options 33

"SAMEAS" 34
Change page length 34
Exclude “from” columns 33
Exclude page breaks 34
Exclude page headings 34

MAXIMUM_DELIMITED_FIELDS
37

Options 33
Category variable 44
Data definition file 44
File type 43
Map file 43
Menu 34
Miscellaneous 43
Text question 44
Use variables 42

Output files 28
Data file (RFT) 29
Map file (RFL) 29
Maximum_delimited_fields option

37
R line descriptions 32
Sample output 29
T line questions 32
Troubleshooting 39
X line questions 31

Rename 130
Renaming files 215
Repeat 131
Repeat commands

Use in cleanit 78
S

Save
DB 134
File 134
Keys 134

Scan 54
Input files 55
Options 57

Add stats 59
Base tables 58
Create a banner 57
Make a header 57
Output 61
Rank tables 59
Specify page format 58
Weight data 58

Output files 56
Sample report 57

Show commands 135
Spec file 199
Spec file commands 42
SPEC_WID: 212
SQL files

REFORMAT, exporting of 40
Status 16

APPEND_LOCation= 19
Command options 17
DISALLOWED_DUPLICATES= 18
DISALLOWED_PRIMARY_DUPLIC

ATES= 19
DISALLOWED_SECONDARY_DUP

LICATES= 19
EXEC_MCOPY_IF_MATCH 19
EXEC_MCOPY_IF_UNMATCHED_

PRIMARY 19
EXEC_MCOPY_IF_UNMATCHED_
6

SECONDARY 19
PRIMARY_DUPLICATES_ALLOW

ED 18
PRINT_MATCHED 18
PRINT_SUMMARY 18
PRINT_UNMATCHED_PRIMARY

18
PRINT_UNMATCHED_SECONDAR

Y 18
SECONDARY_DUPLICATES_ALL

OWED 18
SORT_PRIMARY 17
SORT_SECONDARY 17
WRITE_DISALLOWED_DUPLICAT

ES 18
WRITE_MATCHED 18
WRITE_UNMATCHED_PRIMARY

18
WRITE_UNMATCHED_SECONDA

RY 18
Status meta command 138
Study name 141
Support, Names and Numbers 4
SYSTEM command 219
System commands 142

T
T line 32
Translate

ASCII 142
V

Variables
Field variables 217
Punch (caret) variables 216
Types of 216

W
Weight

Hole option 52
Scan option 58

X
X line 33

Z
ZSPC 236
ZSPC Statements 223, 225

Type 1 225
Type 11 237
Type 12 238
Type 2 227

Return information 231
Type 3 233
Type 4 235
Type 5 236
Type 7 237
 7
•
•
•
•
•
•

	TABLE OF CONTENTS
	Chapter 1
	INTRODUCTION TO UTILITIES
	ABOUT UTILITIES
	File management
	Data Analysis
	Data Alteration
	Customization
	The Appendices

	UTILITY CONVENTIONS
	Screen Navigation
	Menus.
	Fields.
	File Names.

	PLATFORM DIFFERENCES
	Operating system
	Computer Hardware
	File structure
	File names

	MAXIMUM NUMBER OF TABLES
	WHERE DO I GO FROM HERE?
	IF YOU WANT TO:
	CONTACT
	VOICEMAIL
	E-MAIL/WEB SITE
	Chapter 2

	FILE MANAGEMENT
	2.1 COPYFILE
	What it does
	When to use it
	How to use it
	Options
	1 COPY
	2 COMBINE
	3 SORT
	4 SUBSET
	5 PRINT
	6 DISPLAY
	7 TEXT
	Advanced Users Note:

	2.2 MAKECASE
	What it does
	When to use it
	How to use it
	Input Files
	Output Files
	Name
	Ext.
	Description
	Sample Output
	Options

	2.3 MERGE
	What it does
	When to use it
	How to use it
	Input files
	Output files
	Moving Data
	Name
	Ext.
	Description
	Writing MERGE specifications in Mentor
	MERGE options
	Status
	SORT_PRIMARY
	SORT_SECONDARY
	WRITE_MATCHED
	WRITE_UNMATCHED_PRIMARY
	WRITE_UNMATCHED_SECONDARY
	WRITE_DISALLOWED_DUPLICATES
	PRINT_MATCHED
	PRINT_UNMATCHED_PRIMARY
	PRINT_UNMATCHED_SECONDARY
	PRINT_SUMMARY
	PRIMARY_DUPLICATES_ALLOWED
	SECONDARY_DUPLICATES_ALLOWED
	DISALLOWED_DUPLICATES=
	DISALLOWED_PRIMARY_DUPLICATES=
	’DISALLOWED_SECONDARY_DUPLICATES=
	EXEC_MCOPY_IF_MATCH
	EXEC_MCOPY_IF_UNMATCHED_PRIMARY
	EXEC_MCOPY_IF_UNMATCHED_SECONDARY
	APPEND_LOCation=0 until PRIMARY= has been set

	Data Manipulation Statements
	MERGE_COPY
	APPEND
	APPEND_ALL
	Proc=

	MERGE_defaults
	EMPTY_CASE

	Sample output
	Options
	1 Cases to write out
	2 Cases to print out
	3 Duplicate handling
	4 Duplicate messages
	5 Data Overwrite messages

	2.4 DBUTIL
	What it does
	When to use it
	How to use it
	Options
	Copy
	1 To copy a DB file, you must open it first. At the DBUTIL prompt, enter:
	2 To copy the items to another DB file, you must open it in ReadWrite mode. Enter:
	3 Once both the DB files are open, copy the items. Enter:

	Reveal
	1 Open the DB file in ReadWrite mode. Enter:
	2 To show specific items from the DB file, enter:
	3 Enter the name(s) of the item(s) you want to see. You can use an ampersand to continue a list of items on the next line. For example:
	4 Or, for a full list of the items in the DB file, enter:

	2.5 RAWCOPY
	What it does
	When to use it
	How to use it
	Input files
	Output files
	Options

	2.6 REFORMAT
	What it does
	When to use it
	How to use it
	Input files
	Output files
	Sample output
	The data file (RFT)
	The map file (RFL)

	Letter
	Record type
	Q-line question
	Description
	Qff or Db file
	Map and Data File Options
	Map File Options
	1 Exclude “from” columns
	2 Exclude page headings
	3 Exclude page breaks
	4 Change page length
	5 Change page width
	6 Change column headings (delimited files only)
	7 Use “SAMEAS” for duplicate code lists

	Data File Format Options
	1 Write fixed format with data definitions (Mentor, COSI, SPSS)
	a) None
	b) CfMC Survent
	c) CfMC Mentor
	d) COSI
	e) SPSS
	f) SAS
	g) QUANTUM
	h) UNCLE
	i) SQL “readable” files
	j) TRIPLE-S XML
	2 Write delimited format (for spreadsheets)
	3 Write card image format

	Data File Spreading Options
	Troubleshooting
	REFORMAT exports "SQL readable" files

	Using spec language
	1 Use variables option:
	2 File type options:
	3 Miscellaneous options:
	4 Map file options:
	5 Category/Field variable options:
	6 Other question options:
	7 Data definition file (DEF) options:

	Chapter 3

	DATA ANALYSIS
	3.1 Hole
	What it does
	When to use it
	How to use it
	Input files
	Output files
	Sample output
	Heading
	Description
	Options
	1 Make your own HEADER
	2 Print the DENSITY of the columns.
	3 BASE the hole counts.

	Category (CAT) or Field (FLD) variables
	Data Location References
	Category
	Numeric
	Field
	4 WEIGHT the data
	5 Specify the PAGE FORMAT
	6 Do MULTIPLE COLUMN SETS
	7 Make your own FOOTER

	3.2 SCAN
	What it does
	CAT (category) or FLD (field):
	NUM (numeric):
	VAR (variable [open-ended]):
	TEX (text [special format open-ended]):

	When to use it
	How to use it
	Input files
	Output files
	Name
	Ext.
	Description
	Heading
	Description
	SCAN provides both banner points (column headings) and stubs (row labels).
	Options
	1 Make your own HEADER or FOOTER
	2 Create a BANNER
	3 BASE some tables
	4 WEIGHT the data
	5 Specify the Print Options

	Option
	Default
	6 RANK tables high to low
	7 To add STATS at the bottom of the report, enter the number of the item(s) you wish to add in the order you want them displayed.
	8 Frequency Count tables
	9 Output options

	3.3 LIST
	What it does
	When to use it
	How to use it
	Input files
	Output files
	Name
	Ext.
	Description
	Sample output

	Item
	Description
	Options
	1 BASE the tables
	2 Write open-end text to a file.
	3 Print an extra variable.
	4 Specify how you want the list organized:
	5 Choose the number of blank lines between cases:
	6 Adjust the page width

	Chapter 4

	Data Alteration
	4.1 CLEANIT
	What it does
	When to use it
	How to use it
	1 Copy the data file. (DOS/MPE “copy”)
	2 Start CLEANIT. (CLEANIT)
	3 Open the data file, if necessary. (FILE)
	4 Display the data. (DISPLAY ASCII, DISPLAY BINARY, DISPLAY TEXT)
	5 Modify and check the data. (MODIFY ASCII, MODIFY BINARY, MODIFY TEXT)
	6 Move to the next case. (NEXT)

	Input files
	Sample cleaning session
	1 Copy the data file
	2 Start CLEANIT
	3 If you need to open a data file, enter:
	4 Display the data

	a) ASCII DATA
	b) BINARY DATA
	c) TEXT DATA
	5 Modify and check the data

	a) (ASCII)
	b) BINARY:
	c) TEXT
	6 Move to the next case

	Other cleaning commands
	Deleting a case
	Repeating commands
	Finding a case
	Showing variables
	Defining procedures
	Restoring a case
	Viewing a questionnaire
	Modifying case IDs
	4.2 CODEEDIT
	What it does
	When to use it
	Other options

	How to use it

	4.3 VERBEDIT
	What it is
	How to use it

	Chapter 5

	Customizing CfMC Software
	5.1 CFMCMENU
	What it does
	When to use it
	How to use it
	Note:

	Options

	5.2 MAKEMSG
	What it does
	When to use it
	How to use it
	Which message file?
	Options
	Changing the language
	1 Change the message
	2 Make a new message file

	Make a small MSGFILE for Survent on a diskette

	Input files
	Output files
	Points to note
	Error messages:
	MAKEMSG requires TERMTYPE=9 on a MPEXL platform:

	Appendix A

	Meta Commands
	RULES OF META COMMANDS
	META COMMANDS AND THEIR SYNTAXES
	>ALLOW_INDENT
	>BATCH_JOB
	>BEEP
	>BROWSE
	>CALL_DOS
	>CASE_SENSITIVE_<filename>
	>CFMC_FILE_EXTENSION
	>CHARACTER_SET=ASCII (=EXTENDED_ASCII, =MULTIBYTE, =SHIFT_JIS)
	>CHECK_EXIST
	>CLEAR_SCREEN
	>CLOSE_DB
	>CLOSE_QFF
	>COLORS
	Cfb
	>CONTROL_Y_QUIET
	>COPY
	>CREATE_DB

	ENTRIES=
	ECHO
	TEST
	MAYBE_CREATE
	DUPLICATE=dupoption
	ERROR
	QUIET
	REPLACE
	WARN
	SIZES=sizoption
	>DB_SIZES=
	>DB_STATUS
	>DB_TO_FILE
	>DEFINE
	>DELETE
	>DEMO
	>DISK_ROOM
	>DO_ALL
	>DOS
	>DUMP
	>ECHO
	>ECHO_DEFINES
	>EDIT

	>EDIT dbentryname
	>EDIT newname
	>EDIT_FILE
	>EDIT_PREVIOUS

	>ELSE
	>ELSE_IF
	>END_OF_FILE
	>END_REPEAT
	>-ERROR_LINE_NUMBER
	>FAKE_TIME

	day
	month
	year
	time
	>FILE_TO_DB
	>FILL_DEFINES_INSIDE_QUOTES
	>FORCE_HARDCODE
	>HALT

	ANY
	ERROR
	NONE
	WARNING
	>HELP
	>IF_DEFINED
	>JULIAN_YEAR_LENGTH
	>KEY_DELAY

	>KEY_DELAY -1
	>KEY_DELAY -2
	>KEY_DELAY #, #
	>LIST_DB

	dbname
	listname
	SORT=
	LOCATION
	NAME
	QQNUM
	-QQNUM
	APPEND
	TYPE=
	ALL
	TABLES
	TABSETS
	VARIABLES=ALL
	VARIABLES=#
	PATTERN=
	TEMPLATE=
	type = 1
	g1=0015
	g2= 15
	g3= 100
	ver = 1
	>LISTFILE <filename> option1
	>LOCATION_FORMAT
	>MULTIBYTE
	>NUMBER_ADJUSTMENT=
	>NUMBER_OF_FILES
	>PASS_comments
	>PAUSE=n
	>PRINT_FILE

	filename
	#n
	afilename=
	APPEND
	BOTTOM_MARGIN=#
	COPIES=n
	FIXED_FORMAT
	FORM_FEED
	FORMS=
	HEADER_PAGE
	LASER_CONTROL=<filename>
	LASER_NUMBER=#
	PAGE_LENGTH=#
	PAGE_WIDTH=#
	TOP_MARGIN=#
	USER
	1 ON
	2 OFF

	>PRINT_FILE_DEFAULTS
	>PRINT_REPEAT
	>PRN
	>PURGE_empty_tr(files)
	>PURGE_empty_ascii(files)
	>PURGE
	>PURGE_SAME
	>PUT_CHARACTERS=
	>QUEUE=

	letter
	=?
	>-QUEUE
	>QUIT
	>RANDOM_SEED=
	>READ
	>RENAME
	>REPEAT

	$Name=
	item1a
	STRIP=
	>REPEAT_VARS_ALPHA_ONLY
	>RESET_DB
	>RUN_LABEL=
	>SAVE_AS_DB
	>SAVE_AS_FILE
	>SAVE_KEYS

	filename.KEY
	#
	>SHOW_CORE_FARMARK
	>SHOW_DEFINES

	*
	keyword
	letter*letter
	>SHOW_KEY=

	COMMAND:
	MSGFILE BLOCK NUMBER:
	>STATUS
	ALL
	DB
	FILES
	INPUT
	OUTPUT
	>S_TIME
	>STOP_WATCH
	>STUDY_NAME

	name
	>SYSTEM <command>

	<meta command>
	>TAB_WARN
	>TRANSLATE
	>USE_DB

	dbname
	roption
	EC
	DUPLICATE=
	ERROR
	QUIET
	REPLACE
	WARN
	>USE_DB
	>Var(iable)_len(gth)_ascii

	Appendix B

	Allowed Abbreviations
	COMMANDS AND ABBREVIATIONS
	Survent
	Mentor

	LIST OF ABBREVIATIONS
	Survent
	Mentor
	Appendix C

	Glossary
	GLOSSARY OF CFMC TERMS
	Abort
	ABORTJOB
	Alias
	All Possible Pairs
	Ampersand In
	ANOVA
	ANOVA Scan
	Answer Array
	ASCII
	Autodialer
	Auto Fixing
	Awareness Grid
	Axis
	Bang
	Banner
	Banner Point
	Base
	Batch File
	Binary
	Block Commands
	Blow Error
	Boolean
	Bottom Box
	Break Table
	Bucket
	Callback
	Call Disposition
	Call History
	Call Status
	CAPI
	Card
	Case
	Case Header
	Case ID
	Case Flag
	Category
	CATI
	Cell
	Character
	Chi-Square
	Cleaning
	Cleaning Specs
	Codebook
	Code List
	Coding Mode
	Column
	Comment Out
	Compile
	Compiler Command
	Condition
	Confidence Interval
	Constant
	COSI
	Control Statement
	Cross-Tabulation
	Data Entry Statement
	Data Variable
	Data Layout
	Dataloc
	Data Lookup
	Day Parts
	DB Entry
	DB File
	Default
	Delimiter
	Delimited Data
	Demo Deck
	Dialing Parameters
	Directory
	Disk-based Response List (DBR)
	Disk-based Recode Table (DBR)
	Dot
	Dotting
	DTA File
	End-of-File (EOF)
	Environment Variable
	Existing Case Mode
	Expression
	Field
	Filter
	Fisher
	Flag
	Flat File
	Folder
	Footer
	Function
	Gen
	Global Scratch See Scratch.
	Group
	Header
	Hierarchical Processing
	Hexadecimal(Hex)
	Holecount
	ID
	Inbound Dialing
	Indexed Phone File
	Indexing
	Interviewer ID
	Interviewing Mode
	IPC file
	Joiner
	Key
	Keyword
	Kick
	KRUSKAL-WALLIS
	Label
	LDEV
	Likert Scale
	List File
	Local Scratch
	Loop
	Loop Variable
	Overlay
	Marginal
	Master-Trailer Processing
	Mean
	Meta Command
	Multipunch
	Nest
	Net
	NEWMAN-KUELS
	Numbered Quota (Survent) One of the three types of quotas. This method uses
	Numeric Distribution
	On the fly
	Operators Relational
	Open-ended
	Overflow Error
	Overlay Table
	Page Kick
	Parameter
	Path
	Phantom File
	Phone File
	Phone Sys Data Rec Mode
	Platform
	Point Scale
	Point Scale Reversal
	Prepare
	Print File
	Proc
	Prompt
	Punch
	Punches
	QPX file
	Quota
	Ranking
	Rating Scale
	Recode
	Recode
	Record
	Reformat (1)
	Relational Operators
	Relops
	Respondent
	Response List
	RDG (Random Data Generator)
	RPG (RePort Generator)
	RFT
	Row
	Run
	Scale
	Scalar Table
	Scratch
	Server
	SERVER
	Shell
	Shell
	Shop file
	Skip
	Sort
	Spread
	Squiggly
	Stack
	Stack Overflow
	Standard Quota
	Station Number
	Statistical Significance
	Statistical Summary
	Stream Job
	String
	String Variable
	Stub
	Student Newman-Keuls (SNK)
	Study Code
	Study Server
	Subnet
	Summary Table
	Supervisor
	SURVSUPR
	Suspend
	Swapped Binary
	System Constant
	System File
	T-test
	Table
	Table Title
	Tabulation
	Tab Specs
	Table Set (Tab Set)
	Text Area
	Text Pointer
	Text Variable
	Tilde Block
	Tilde Command
	Topline Report
	Top Box/Bottom Box
	TR File
	Triple Quota
	Upkick
	Utilities
	Variable
	Verbatims
	Vector
	Vector Joiner
	Vertical Axis
	Wave Study
	Weight
	Work Area
	Z-test
	Zone Table
	Appendix D

	CfMC Conventions
	Comment Out (‘ ’)
	Spec file
	List File
	Command Line Keywords
	CONFIG:<configfile>
	Platfor m
	Read first
	Read second
	Read last
	CORE:<bytes>
	DEFINE@<keyword>=<value> (=<valuen>)
	DUMP:switch
	INFILE:<spec file>
	LDEV:#
	LISTFILE:<listfile>,option1 ...
	*<filename>
	List file options
	APPEND
	BOTTOM_MARGIN=#
	COPIES=n
	ECHO
	FORMS="forms message"
	HEADER_PAGE
	LASER_CONTROL=<filename>
	Control file keywords

	CLOSE_STRING=
	CONTROL_SIZE=#
	EXTRA_WIDTH=#
	INITIAL_FILE=
	INITIAL_SIZE=#
	INITIAL_STRING=
	NEW_PAGE=
	NEW_LINE=
	PAGE_LENGTH=#
	PAGE_WIDTH=#
	SPECIAL_BACK_SLASH
	BOLD_ON=
	BOLD_OFF=
	FLASHING_ON=
	FLASHING_OFF=
	INVERSE_ON=
	INVERSE_OFF=
	UNDERLINE_ON=
	UNDERLINE_OFF=
	WIDE_ON=
	WIDE_OFF=
	LASER_NUMBER= #
	LP
	PAGE_LENGTH= #
	PAGE_WIDTH= #
	TOP_MARGIN= #

	SPEC_WID:###

	Using DOS Variables in the File Name
	Program-Generated File Extensions
	Extension
	File type
	File name: DOS UNIX
	MPE:
	Ampersand Referencing (&<specfile>)

	Ctrl-Y or Ctrl-C or Ctrl-<intr>
	Renaming Files ($filename)
	Variables
	Punch (caret) Variables
	Field Variables

	Complex connectors (for bases, etc.)
	1 “AND” requires that both conditions are met.
	2 “OR” requires that at least one or the other condition is met.
	3 “[connector] NOT” varies depending on the connector (AND, OR) used.
	4 “XOR” (for “EXCLUSIVE OR”) requiring that one or the other condition is met, but both are not allowed.

	Other Useful Commands
	>QUIT
	>DUMP I7
	>SYSTEM command
	>PUT_CHARACTERS
	>LIST_DB_CONTENTS
	Appendix E

	Graphic Characters
	Appendix F

	CON and ZSPC Statements
	CON Statements
	!CON,1

	ZSPC Statements
	[col.1]
	[col.wid1]
	[col.wid2]
	ZSPC TYPE 1

	TYPE 1, subtype 1
	Type1, subtype 2
	TYPE 1, subtype 3
	ZSPC TYPE 2

	TYPE 2, subtype 1
	TYPE 2, subtype 2
	TYPE 2, subtype 3
	TYPE 2, subtype 4
	TYPE 2, subtype 5
	TYPE 2, subtype 6
	Return information

	Item/Order to get
	Data Type
	Length
	Position
	TYPE 2, subtype 7
	TYPE 2, subtype 9
	TYPE 2, subtype 10
	ZSPC TYPE 3

	TYPE 3, subtype 1
	TYPE 3, subtype 2
	TYPE 3, subtype 3
	TYPE 3, subtype 4
	ZSPC TYPE 4

	TYPE 4, subtype 1
	TYPE 4, subtype 2
	ZSPC TYPE 5

	TYPE 5, subtype 1
	TYPE 5, subtype 2
	ZSPC TYPE 7

	TYPE 7, subtype 1
	ZSPC TYPE 11

	TYPE 11, subtype 1
	TYPE 11, subtype 2
	TYPE 11, subtype 3
	TYPE 11, subtype 4
	TYPE 11, subtype 5
	TYPE 11, subtype 6
	ZSPC TYPE 12

	TYPE 12, subtype 1
	TYPE 12, subtype 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

