
Mentor Technical Manual v 8.1 1

.

.

. .
Contents

1 Getting Started . 13
Introduction. 13

1.1 WHAT IS MENTOR?. 13
1.2 BENEFITS OF USING MENTOR . 13

Complex Feature Set . 14
Powerful Command Language . 15
Advanced Database capabilities . 16
Integration of Survent And Mentor . 17
Ease of Use . 18

1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS . 19
1.5 SUMMARY OF THE CHAPTERS . 22
1.6 GETTING TECHNICAL SUPPORT . 24

2 Preparing Your Data. 27
Introduction. 27

2.1 OVERVIEW OF THE CLEANING PROCESS. 27
Cleaning Steps . 27

2.2 CLEANING DATA . 28
2.2.1 Other Types of Data Files . 29
2.2.2 Why Clean the Data? . 29
2.2.3 Understanding The Questionnaire . 30

2.3 CLEANING SPECIFICATIONS. 32
Generating A List Of Error Messages . 33
Sample Error Listing . 37
Program-Generated Error Messages . 40

2.3.1 Cleaning Examples . 41
Cleaning Punch Data . 43

2.3.2 Correcting Errors. 66
Manually Cleaning The DATA. 66
Auto-fixing The Data . 71

Contents

2 Mentor Technical Manual

2.3.3 Subsequent Cleaning Runs. 76
2.4 CLEANING WITH SURVENT VARIABLES . 77

A Sample Survent Questionnaire . 79
Cleaning Specifications Generated By A Compile . 80
Alternate CLN File . 82
Custom Cleaning Specifications . 82
Condition And Branching Statements . 83
Variable Modifiers. 85
Generating A List Of Error Messages . 87
Program-Generated Error Messages for Survent questions . 89

2.4.1 Correcting Errors. 91
Using Survent-type Cleaning Screens . 91
Modifying TEX Question Responses . 93
Auto-fixing The Data . 94

2.4.2 Subsequent Cleaning Runs. 97
2.5 REFERENCE. 98

2.5.1 Quick Reference: Cleaning Commands And Examples . 98
. 104
Example CHECK Statements . 104

2.5.2 Sending Error Messages To A Print File . 107
2.5.3 Specifying More Than One Command Per Line . 109
2.5.4 Additional Commands . 109

3 Reformatting Your Data . 111
Introduction. 111

3.1 WHY REFORMAT DATA? . 111
The Overall Structure . 111
Rules For Manipulating Data . 112

3.1.2 Blanking Data . 114
3.1.3 Printing Text and Data Fields . 114
3.1.4 Data Manipulation for Punch, String, and Numeric Variables 118

Direct Data Moves. 118
3.1.5 Data Manipulation for Predefined Variables . 133
3.1.6 Relational Operators . 146
3.1.7 Formatting Data Elements. 151

Zero-Filling Data . 151
Decimal Points in Data . 153

. .
 .

. .C O N T E N T S

Mentor Technical Manual 3

Spreading Multi-Punched Data . 154
Transforming Numbers Into Strings. 156
Recoding 10-Point Scales . 156
Recoding To Exclude Selected Responses . 157
Recoding To Reverse A Scale Question . 157

3.1.8 Data Manipulation in the ~CLEANER Block. 158
3.2 Creating Subsets of Data Files . 159

HOLD_OUTPUT_UNTIL_SUBSET . 159
~EXeCUTE Do_subset . 160
Sampling=#n and sampling=.n . 160
Try_for_sampling=#n and try_for_sampling=.n. 161
Select= . 161
Casewritten . 161
Combining options . 162
Num_sample_cases= . 164
Repeatable Subset Results. 165

3.3 Mentor EQUIVALENTS TO SPL . 165

4 Basic Tables . 169
Introduction. 169

4.1 PARTS OF A TABLE. 169
4.2 TABLE BUILDING BASICS. 172
4.3 DEFINING TABLE ELEMENTS . 174

4.3.1 Assigning Variable Names. 178
Default Varname Generation. 180

4.3.2 Changing Table Element Defaults (The DEFINE EDIT Statement) 181
The Three Levels of EDIT . 184

4.3.3 Changing Table Processing Defaults (The SET Statement) 185
4.4 TABLE BUILDING (The INPUT and EXECUTE statements) . 188

Printing Individual Tables (Using TABLE_SET or TABLE=) . 189
Storing Tabsets in the DB file (Using STORE_TABLES) . 190
Making Several Tables (Using MAKE_TABLES). 193

4.5 META COMMANDS. 195
The DB File . 196

4.6 DEFINING DATA . 197
Data Types. 203
Using Punctuation to Create Categories . 205

Contents

4 Mentor Technical Manual

Joiners . 207
4.6.1 Summary of Rules for Defining Data . 208

Samples of Data Field Locations. 208
Punctuation Used In Referencing Data Field Locations . 210
Category Definitions Using Caret (^) For Punch Data . 210
Punctuation Used In Defining Punch Data . 212
Category Definitions Using Pound Sign (#) For ASCII And Numeric Data 213
Punctuation Used In Defining ASCII And Numeric Data . 214

4.7 DEFINING THE BANNER . 215
4.8 FORMATTING BANNER TEXT . 218

Sample Specifications And Table . 220
The STUB TABLE_SET. 221
Formatting A Banner Wider Than 80 Columns . 223
Editing the Banner. 227

4.9 GENERATING BANNER SPECS. 227
How to create a banner using make_banner format . 237

4.10 DEFINING INDIVIDUAL TABLES . 245
How To Add Ranking To A Table . 246
How To Add A Base To A Table . 247
How To Add Summary Statistics To A Table. 249

4.11 SAMPLE SPECIFICATION FILES. 251
Using the DB File . 251
Putting It All Together. 254
Sample Table . 264
Defining a Procedure for Complex Banners . 266

4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES 268
CAT Question . 273
FLD Question . 273
Survent specs . 274
Mentor tabset . 274
Mentor tabset . 275
NUM Question . 276
Survent specs . 277
Mentor tabset . 278
Survent specs . 278
Mentor tabset . 279
Changing What Appears in the DEF File . 279
!MISC option. 280

. .
 .

. .C O N T E N T S

Mentor Technical Manual 5

NUM_EXCEPTIONS=stubtitle,stubtitle . 281
USING E-TABS . 305

More E-Tab Options . 308

5 Intermediate Tables . 309
Introduction. 309

5.1 Expressions and Joiners . 309
Logical Joiners. 310
Vector Joiners . 310
Math Joiners . 311

5.1.1 Logical Joiners . 312
5.1.2 Vector Joiners . 315

WITH. 315
BY . 315
WHEN . 316
INTERSECT . 317
NET . 317
OTHERWISE . 318
JOIN . 319

5.1.3 Mathematical Joiners And Operators . 325
5.2 Axis Commands/Cross-Case Operations . 326
5.3 Changing Table Specifications . 330

Global Print Options . 331
 Column Print Options. 332
Row Print Options . 332
Sample Table Printed With Default Options. 333
Print Options . 335
Changing Percent Base Within A Stub . 360

5.4 Printing Multiple Banners For Each Table Row . 363
5.5 TABLE NAMES . 366

Printing Leading Alpha Character. 367
Specify Starting Name. 368
Printing Name With Prefix Or Suffix . 369
Replacing “Table” . 369
Specifying Unique Table Names. 370
Printing Different Table Names . 372

5.6 Reprinting Tables . 372

Contents

6 Mentor Technical Manual

Accessing The DB File . 374
Defining A New Edit Statement And Table Header . 374
Reprinting The Tables . 375
Adding Statistics Rows To Finished Tables . 377

6 Advanced Tables . 381
Introduction. 381

6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES. 381
6.1.1 Top Box Tables with Constant Percentage Base . 382
6.1.2 Top Box Tables with a Changing Percentage Base . 386
6.1.3 Ranking of Top Box Tables . 389

6.2 SUMMARY STATISTICS (MEANS) . 392
6.2.1 Means on Rating Scales Using the Variable Definition . 393

With No Recoding Needed . 393
With A Numeric Don't Know Excluded . 398
With The Scale Reversed . 401
With The Scale Reversed And DK/NA Coded As Numeric. 403
With 10 Coded As A Zero, An X, Or Y . 404

6.2.2 Means For Range Type Variables . 407
Interpolated Medians . 408

6.2.3 Means For Numeric Data . 412
With No Recoding Necessary . 412
With Don't Know Coded As A Number . 415
With A Numeric Value Coded As A Non-Numeric . 416

6.2.4 Summary Statistics in the Column Variable . 419
Summary Statistics In Both The Column And The Row . 421

6.2.5 Means And Medians Using The EDIT Options . 424
Means On A Rating Scale . 425
Means On A Rating Scale With Rows In The Middle That Need To Be Excluded 427
Means On A Range Variable. 429
Changing The Default Print Options. 430
Column Medians . 433
Percentiles . 443

6.2.6 Mean Summary Tables . 446
Rating Scales With No Recoding . 446
Rating Scales With Recoding Needed. 449
Rating Scales With The Don't Know Coded As A Numeric. 449

. .
 .

. .C O N T E N T S

Mentor Technical Manual 7

Rating Scales With The Scale Reversed . 451
Rating Scales With The Scale Reversed and Don’t Know Coded As A Numeric 452
Rating Scales With 10 Coded As A Zero (0) . 453
Range Variables. 454
Numeric Data With The Don't Know Coded As A Non-Numeric . 455
Numeric Data With The Don't Know Coded As Numeric . 457
Numeric Data With A Numeric Value Coded As A Non-Numeric Code. 457
Using the “BY” joiner . 459

6.2.7 Means Scattered Throughout The Table . 461
Mean/Frequency Summary Table . 465

6.2.8 Summary Statistics with Arithmetic . 467
6.3 WEIGHTED TABLES. 470

6.3.1 Weighting with Weight Value already Stored in the Data. 472
6.3.2 Weighting using the SELECT Function . 476
6.3.3 Printing Both a Weighted and an Unweighted Total Row . 476
6.3.4 Storing the Weight in the Data. 479
6.3.5 Assigning Different Weights to Different Banner Points . 481
6.3.6 Printing Both a Weighted and an Unweighted Total Column 484
6.3.7 Assigning Different Weights To Different Rows . 487

6.3.8 WEIGHTING USING MULTIPLE FACTORS . 490
6.4 SUMMARY TABLES (MARKET SHARE) . 490
6.5 HOLECOUNT AND BREAK TABLES . 493

6.5.1 Holecount Table with Different Brands (Locations) in the Banner 495
6.5.2 Holecount Table with Rating Scales (Different Values) in Banner 498
6.5.3 Holecount Table with a Varying Percentage Base. 501
6.5.4 Break Table with a Multi-level Banner. 504

6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES) 507
6.6.1 Simple Multiple Location Tables . 509
6.6.2 Tables With Both the Row and the Base Overlayed. 517
6.6.3 Overlay Tables With Summary Statistics (Means) . 520
6.6.4 Tables with the Banner and the Row Overlayed. 523

6.7 LONG BRAND LISTS . 526
6.7.1 Producing Net Categories . 526
6.7.2 Ranking With Nets And Sub-Nets . 529
6.7.3 Suppressing Blank Rows in a Large List . 538
6.7.4 Collapsing Low Mentions into another Category . 544
6.7.5 Printing Subtotal Rows . 549

Contents

8 Mentor Technical Manual

6.8 MASTER-TRAILER PROCESSING. 554

7 Tables Viewable Through a Browser . 565
Introduction. 565

WebTables Overview . 565
Browser Compatibility . 566
Example Mentor Files Available Online. 566

7.1 Basic WebTables. 566
Writing Specs . 567
Managing Your Specs . 567
Using Set Commands in tabs.spx . 567
Global Edit Statements in the tabs.spx . 568

Files Needed to Create WebTables . 570
Files Produced by the Mentor Run . 571

Note for Windows/DOS clients. 571
When manually testing and preparing to Go Live. 571

Basic steps to Running a Live Mentor 8.1 Job . 572
Setting up Directories and Running WebTables . 572
Automating or Running Tables on a Set Schedule . 572
7.2 Complex WebTables . 573

Basic Colors. 573
Helpful Internet Websites for Choosing Colors . 574
Sources for CSS Help . 574
Validation Websites. 574

Basic Commands with and without Cascading Style Sheet . 575
Example Files and How They Work . 576

The tabs.spx file. 576
The banner_a.def File . 580
The rrunr_x.def file . 581
The index.html file . 584
. 586
Example Output of a WebTable . 587

Custom CfMC Scripts . 587
THE WebPass ScRIPT . 587

7.3 ON-DEMAND TABLES . 589
7.3.1 Installation Requirements. 589
7.3.2 Installation requirements . 590

. .
 .

. .C O N T E N T S

Mentor Technical Manual 9

. 590
Setup . 590

7.3.3 Editing . 596
WEBTAB.ADD. 597

7.3.4 Adding a Base or Weight . 600
Adding a File on the Command Line . 603
Using the Define Box . 604
edit options . 606
. 608
Files Created . 608

7.3.5 Creating On-Demand Tables . 609
On-Demand Selection Screen . 609
Final Output of Tables. 612

Preparing Mentor Output Files For Post Processing. 612
Augmenting Prepare Specs to Enhance Tables. 625

8 Statistics (Significance Testing) . 627
Introduction. 627

8.1 SIGNIFICANCE TESTING TO MARK CELLS . 628
8.1.1 The STATISTICS Statement . 628
8.1.2 Independent, Dependent, Inclusive, and Printable Tests . 630

new protection value in significance testing . 630
8.1.3 Setting the Confidence Level . 631
8.1.4 Standard Significance Testing. 633
8.1.5 Changing the Confidence Level . 637
8.1.6 Bi-Level Testing (Testing at Two Different Confidence Levels) 640
8.1.7 Using Nonstandard Confidence Levels. 642
8.1.8 Inclusive T Tests . 643

8.2 Changing the Statistical Base . 644
8.2.1 Changing to the Any Response Row. 644
8.2.2 Changing to Any Row in the Table. 649
8.2.3 Changing in the Middle of a Table . 651

8.3 Changing the Statistical Tests . 654
8.3.1 The All Possible Pairs Test . 654
8.3.2 The Newman-Keuls Test Procedure . 655
8.3.3 Other Testing Procedures . 660

Contents

10 Mentor Technical Manual

Repeated Measures Option . 662
Example One - using the All Possible Pairs test . 664
Example Two - using the anova_scan and repeated measures . 670
Example Three - using the Fisher test and Repeated Measures . 677

8.3.4 Changing the Variance . 683
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES . 684

8.4.1 Weighted Tables with Different Weights. 691
8.5 PRINT PHASE STATISTICAL TESTING. 695

8.5.1 EDIT Options . 696
8.5.2 Changing the Confidence Level and the Type of Test . 700
8.5.3 Changing the Type of Test by Row . 701

8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING 705
8.6.1 Testing Mean Rows Only. 706
8.6.2 Excluding any Row from Statistical Testing. 709
8.6.3 Excluding Columns with Low Bases from Statistical Testing 713

8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES. 719
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING). 726

8.8.1 Direct Comparison Testing . 727
8.8.2 Distributed Preference Testing . 732

8.9 CHI-SQUARE AND ANOVA TESTS. 735
Discussion Of Output . 750
Other ANOVA And Chi-square Options . 753

8.10 NOTES ON SIGNIFICANCE TESTING . 756
8.10.1 What Can and Cannot Be Tested . 756
8.10.2 Degrees of Freedom . 758
8.10.3 Verifying Statistical Tests . 759
8.10.4 Error and Warning Messages . 761
8.10.5 Commands Summary . 764

9 Specialized Functions . 767
Introduction. 767

9.1 GENERATING SPECIALIZED REPORTS . 767
The PRINT_LINES Command . 772
Line Printing Control Codes . 772
Codes Used To Print Information From The Data Or A Variable . 773
Codes To Print Specific Characters. 775

. .
 .

. .C O N T E N T S

Mentor Technical Manual 11

Variable References. 777
9.1.1 Printing a Report Footer using WHEN BOTTOM . 789

9.2 TABLE MANIPULATION . 791
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS 822

9.3.1 System Constants . 823
Variable Constants. 825
Case Reading Constants . 828
System Information Constants . 832

9.3.2 Functions . 836
ARITHMETIC FUNCTIONS. 837
VECTOR FUNCTIONS . 840
NUMBER RETURNING FUNCTIONS . 843
LOGICAL FUNCTIONS . 850
TABLE RELATED FUNCTIONS . 852
INTEGER FUNCTIONS. 855
STRING FUNCTIONS . 858

9.4 PARTITIONING DATA FILES. 862
Preliminaries . 877
Basic Sums and Statistics . 877
Sets of Variables: Newman-Keuls Preliminaries . 878

9.4.1 The Newman-Keuls Procedure . 882
9.4.2 Statistical Testing In Mentor . 883
9.4.3 TABLE-BUILDING PHASE. 884

Notations And Miscellaneous Facts . 884
Estimate For Means, Standard Deviations, Standard Errors and Correlations 886
More Estimates . 887
FORMULAS FOR STATISTICS CREATED DURING TABLE BUILDING (ROW=) . . . 888
. 890
FORMULAS FOR STATISTICS CREATED DURING THE PRINT PHASE (EDIT=) . . . 890
T and Z Tests . 891
WALKER T-Test . 892
. 892
RANK SUM/WILCOXEN TEST . 892
More references: . 893

Contents

12 Mentor Technical Manual

Version 8.1 MENTOR -13

.

. .
G E T T I N G S T A R T E D 1

. .I N T R O D U C T I O N
his chapter provides an introduction to the benefits and features of
Mentor, and a summary of each chapter in this manual. It also provides
an overview of the process of producing tables from data. For more

information go to “1.3 THE BASIC STEPS OF THE REPORT/TABBING
PROCESS”.

If you need a definition of any terms or concepts, a glossary of terms is included in
the Utilities manual. Users of Survent, CfMC’s interviewing package, will be
familiar with many of the concepts and terms used in this manual.

1.1 WHAT IS MENTOR?

Mentor is a reporting and cross-tabulation program designed for companies in
market analysis, telemarketing, market research and related fields. In addition,
Mentor comes with various supporting utilities.

1.2 BENEFITS OF USING MENTOR

There are many advantages to using Mentor, including:

• Complex feature set

• Powerful command language

• Advanced database capabilities

• Integration with Survent

• Ease of Use

Each of these benefits is explained in the following sections.

T

G E T T I N G ST A R T E D
1.2 BENEFITS OF USING MENTOR

-14 MENTOR

COMPLEX FEATURE SET

Mentor’s primary function is to create tables, but it also does the following:

• clean data

• create variables

• create a database, which includes:

♦ variables

♦ procedures

♦ table elements

♦ tables

• specify bases and filters

• weight the data in tables

• use IF-THEN-ELSE logic

• run statistics, such as:

♦ Mean

♦ Standard Deviation

♦ Standard Error

♦ Newman-Keuls

♦ T-tests

♦ Chi-squares

♦ All-possible-pairs significance testing

• list open-ends

• show frequency distributions

• input and output multiple data types, such as:

♦ CfMC System files

♦ ASCII

♦ Binary

♦ swapped-binary

. .
 .

. .G E T T I N G ST A R T E D
1.2 BENEFITS OF USING MENTOR

MENTOR v 8.1 -15

♦ hex

• sort data files

• concatenate data files

• merge data files

• create subsets of data files

• print tables in various formats

This is only a partial list of features, and new features are being added with each
release. See the section “1.6 GETTING TECHNICAL SUPPORT” at the end of this
chapter to see how to get the latest information about Mentor and how to submit a
request to the CfMC programming staff.

POWERFUL COMMAND LANGUAGE

Mentor is a full-featured, cross-tabulation and reporting system. It is a program that
gives users direct command-line capabilities with which to process research
information. This complex program is efficient for the highly skilled spec writer
who wishes to use the spec language directly. (New users may want to generate
their tables using SCAN, a utility program described in the Utilities manual.)

While simple, straightforward jobs are easy to produce, Mentor also allows you to
handle large, complicated jobs as well. You can create boiler-plate specification
files and then tailor them for specific jobs. You can also create libraries of questions
or specifications for specific clients or jobs.

One powerful feature of the Mentor command language is the ability to join data
locations in a variety of ways. Data locations can be combined using a variety of
joiners (or connectors) including arithmetic joiners (add, subtract, multiply, divide),
vector joiners (WITH, BY), logical joiners (AND, OR, NOT), relational joiners (>,
<, =, and < >), and combinations of these. Joining variables allows you to create
complex expressions that can be used for table banners, for example. This
combining of simple variables into more complex expressions is efficient because

G E T T I N G ST A R T E D
1.2 BENEFITS OF USING MENTOR

-16 MENTOR

the building blocks, once defined as variables, can be reused repeatedly, simply by
referring to them by variable name, once they are in the database file.

You can create new categories or manipulate the data using Survent screens or at
the spec line. You can combine existing variables to create complex combinations
of categories, and give these definitions their own variable names as well. Your
definitions can include bases, weights, statistics and significance testing. You also
have several different formatting and printing options. You can print a table to your
screen, revise it as needed, and then print it again, saving it this time to a print file
or sending it to a printer.

The utilities are user-friendly menus that prompt a beginning user through building
a simple cross-tab or defining a questionnaire. You can use Survent and Mentor to
create your own utilities or interfaces that are tailored to the specific needs of your
own shop or clients.

ADVANCED DATABASE CAPABILITIES

Mentor creates and uses a database contained in a DB file. The DB file acts as a
library, maintaining definitions of all the various elements processed throughout a
complete job. The Mentor database significantly reduces processing time and
makes the administration of large, repetitive jobs (such as tracking studies) much
easier.

DB files can be used by more than one job. For example, you may have the same
exact demographic questions for each study. Once those question variables exist in
a DB file, you can reference those definitions and use them as they are, or modify
them (i.e., perhaps the column location has changed) and optionally save the
changed variables in a new DB file. Up to ten user-defined DB files can be
referenced at the same time during a single job.

The advantages of Mentor DB files are:

. .
 .

. .G E T T I N G ST A R T E D
1.2 BENEFITS OF USING MENTOR

MENTOR v 8.1 -17

• anything created by the program (variables, table elements, tables) can be saved
into a DB file for future use;

• items stored in a DB file can be retrieved quickly and easily;

• tables stored in a DB file can be recalled and given minor modifications without
having to reprocess them;

• items stored in a DB file take up less disk storage space;

• since complex elements are stored by a simple name, it is easier to generate ad
hoc tables;

• experienced users can generate large numbers of historical tables efficiently.

INTEGRATION OF SURVENT AND MENTOR

A principal feature of this software is the extensive integration of Survent and
Mentor. For example, you can write a questionnaire to create your own user
interface for Mentor. This means that it is possible to have a questionnaire, written
for Survent, which asks a person what variables to tabulate, and then automatically
produces the tabulation. (CfMC’s utility SCAN is an example of this.) Many other
scenarios are possible, including retab systems, and specifications that interact with
a specific database. You can design client-specific questionnaires with Survent, or
CfMC can create questionnaires for your company on a contractual basis.

Because you can mix the modules of Survent and Mentor commands, complex,
hierarchical studies are much easier to manage (this also called master-trailer
processing). It is possible to write specifications in which there are master records
(i.e., families), first-level detail information (i.e., family members), second-level
detail information (i.e., trips made by family members), and so on. Each level of
information has its own questionnaire, and during the interviewing process, Survent
passes information to and from Mentor as necessary.

Any process that you need to use to capture data can be a Survent-Mentor
application, including those not traditionally thought of as market research. Many
companies can take advantage of the ability to do high-quality interviewing. For
example, the software could be used with a list of clients, with each client having an

G E T T I N G ST A R T E D
1.2 BENEFITS OF USING MENTOR

-18 MENTOR

array of tests to be done (some more than once). You could use CfMC software for
the workers who need to review and manage the testing process. You can use
Survent to control the content and location of informational text on the screen.
Users see text written in language they understand, and you can reduce errors by
controlling responses. Mentor manages the data. We call this ZTCS, Zero Training
Custom Software, and it provides limitless possibilities.

EASE OF USE

CfMC software allows you to create readable, accurate, and fully labeled tables
easily from a data file. Using the utilities, you can produce a wide range of tables
just by responding to a set of menus. To indicate what information you want on
your tables, you can use either data locations or names of variables from the study.
You can also use the utilities for generating and manipulating data (including
sorting, merging, and creating subsets from data files) and writing reports.

If you have Survent, it will take text and data locations from the original
questionnaire and generate specifications that include all the basics of a table (the
title, banner, stub labels) that you can use as is or modify. This way, you can
produce a wide range of tables just by knowing the names of the questions to
tabulate. For example, you can tell Mentor you want the answers from the question
“OWN” cross-tabulated with the answers from the question “YESNO.” Here is
the table Mentor would create:

TABLE 001

BANNER:4. Do you currently own or rent your home?

STUB:1. Do you, or any member of your household, have credit cards?

TOTAL OWN RENT DK/NA

TOTAL 201 107 91 3

100% 100% 100% 100%

. .
 .

. .G E T T I N G ST A R T E D
1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS

MENTOR v 8.1 -19

Yes 150 88 61 1

 75% 82% 67% 33%

No 47 16 29 2

23% 15% 32% 67%

DK/NA 4 3 1 -

2% 3% 1%

Mentor is an extremely flexible tool. The menu-driven interfaces of the utilities
allow its use by minimally trained staff, enabling the advanced spec writer time to
develop more complex processes needed for specific applications.

1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS

Processing a tabulation job typically consists of several key steps:

1 Setting up the data file

2 Defining the data descriptions

3 Cleaning the data

4 Generating new data from existing data

5 Building and printing the report-ready tables

These steps are detailed in the following sections.

6 Setting up the Data File

Data files need to be in the CfMC System file format for Mentor to access it. Your
data file can come from Survent or other interviewing or data entry software.
Survent data files are already in the CfMC System file format. You can use the
utilities to covert other types of files (ASCII, binary) to a System file.

G E T T I N G ST A R T E D
1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS

-20 MENTOR

When converting a data file, you can also sort it on very simple or complex
criteria. You can also check for and make corrections for duplicate case IDs,
duplicate data, or missing data. If you need to create a subset of the data (often
used to test cleaning or table specifications), you can also select a specific portion
of a larger data file (this is similar to using a base, but more efficient in terms of
processing time).

7 Defining Data Descriptions

Data definition can be done in two different, but not exclusive, ways: use Survent’s
DB and/or DEF files, or use command language to create specification files. The
definitions consist of a variable name or label, question and response text, data
location and width, and type of question. These elements are then used by the
program when performing the other phases of the job.

Mentor is very efficient. Once data has been defined, the remaining phases -
cleaning, generating, and table building - are able to use these data definitions. The
DEF and DB files can be preserved, modified, and/or added to, allowing quick and
easy processing.

8 Cleaning the Data

At the start of the cleaning process, you probably want to generate a holecount
(marginal) to find out what is in your data file and get an idea about how much
cleaning it requires. You can generate a holecount and other reports about the data
with the utilities, see the Utilities manual.

Data cleaning involves systematically examining the data along with some logic
specifications. With Mentor, you can clean your data interactively or in batch
mode. (Data collected by Survent would typically need little, if any, cleaning.)

Specifications tell Mentor which data is valid and which have errors for each case.
You can develop cleaning instructions dealing with linked responses (skip patterns,
conditionals) or non-linked responses. Both will check for valid responses, check
that no more than one of the responses was entered (for single-response questions),
or might check to be certain that combinations of answers make sense. You can

. .
 .

. .G E T T I N G ST A R T E D
1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS

MENTOR v 8.1 -21

choose to have the program automatically “fix” the data for you all at once, or get a
report of errors and fix them interactively.

Mentor’s cleaning commands are comprehensive. You can use IF-THEN-ELSE
structures, and you can nest these structures. You can use GOTO statements for
skip patterns or branching. You can also provide your own text for error messages
to make error messages easier to understand.

9 Generating New Data

Once the data is clean, you may want to combine or otherwise manipulate your data
to create new categories (this is commonly called recoding). Mentor provides a
number of ways for combining data, performing arithmetic calculations and other
data manipulation. You move data around to provide consistency between cases in
different data files (i.e., across different waves of a tracking study). You can also
combine data to form new items. For example, you might, for efficiency, want to
create a single category for females over 35 who drive sports cars.

You can create new data by doing calculations on existing data items. For example,
you may have numeric data on how many miles a car has been driven and gallons
of gas it used. You can combine these figures to compute a miles-per-gallon figure.
You can also add entirely new items to the data file, such as weighting factors or
you can remove the rotation from data for series of questions that were rotated and
stored in different fields.

10 Building and Printing Tables

Mentor produces tables using already defined question variables located in the DEF
and DB files and, if necessary, more complex variables. These complex definitions
can consist of any combination of other variables. You can use text-type variables
to specify the format of items, such as titles, headings or complex banners. You can
also use variables to dictate the printing options, such as whether to include vertical
or horizontal percentages.

Variables are the fundamental units of processing with Mentor. The simplest
variable consists of all of the valid answers to a single question from a
questionnaire. You may already have variables from Survent. You can define your

G E T T I N G ST A R T E D
1.5 SUMMARY OF THE CHAPTERS

-22 MENTOR

own or other variables, such as a base that includes only males, or a variable for
specific numeric ranges.

Changing how the data appears on your tables is easy. Your options include
whether or not to include frequencies, percents or statistics. Percentages can be
based on a specific row, or you can have the percent base change mid-table.
Percents can print with from zero to two decimal places of significance.
Frequencies can print as whole numbers, or with one or two decimal places (for
weighted data, for instance). You can also have your choice of different levels of
decimal significance with generated statistics. You can have each row in the table
print in a different format; for example, you can have some rows that have
frequency and percents, but also have other rows that just print as frequencies
(statistics, for example).

You can edit any text on your tables and reprint your tables without having to re-
process the data in the tables. You can also use a variety of options to tailor the
overall page format your tables. Again, these parameters can be changed between
tables (i.e., do it one way for the first ten tables, do it another way for the next
ten.). Options include the length of the page (number of lines per page), the width
of columns in the banner, the width of row labels, the spacing between rows,
whether or not to print summary rows and columns (Total, No Answer), and page
numbering.

1.5 SUMMARY OF THE CHAPTERS

The chapters in this manual help you with the standard steps of a reporting or
tabulation project. The exception to this is the supporting utility programs that are
covered in a separate volume. We recommend that you read all chapters of this
manual, even if you feel that you are already familiar with some of it or don’t need
those particular features for your operation. Each chapter builds upon previous
chapters, especially the table building chapters (Chapters 4, 5, and 6). Here is a
short description of what is covered in each chapter:

Chapter One: Getting Started. This chapter provides a basic overview of Mentor
and a summary of the reporting process.

. .
 .

. .G E T T I N G ST A R T E D
1.5 SUMMARY OF THE CHAPTERS

MENTOR v 8.1 -23

Chapter Two: Cleaning the Data. Using Survent or your own variables, you can
check and correct your data.

Chapter Three: Reformatting your Data. From your existing data, you can use the
format of your data and create new categories of data for processing purposes.

Chapter Four: Basic Tables. This chapter teaches you how to produce simple
tables. It also includes an explanation of the table defaults.

Chapter Five: Intermedite Tables. This chapter teaches you how to make changes
to the default settings for tables, including printing settings.

Chapter Six: Complex Tables. This chapter explains how to add statistics (mean,
standard deviation, and standard error) to your table, how to create top-box/bottom-
box tables, how to weight your tables, how to use loop variables, and how to create
break tables. It includes many examples of specification files and completed tables.

Chapter Seven: Customizing specifications for viewing tables via a browser. This
chapter describes Mentor programs such as WebTables, On-Demand tables, etc.

Chapter Eight: Statistics. This chapter explains how to add T-tests, chi square, and
ANOVA tests to your tables.

Chapter Nine: Specialized Functions. This chapter explains how to generate
specialized reports and manipulate tables with System constants and special
functions.

Appendices: The appendices are in a separate volume and cover several topics.
Appendix A shows the formulas Mentor uses in statistical testing. Appendix B is
the largest appendix, and it is a listing of all the tilde commands (tilde command
begin with a “~”) including the syntax and a list of options for the command.

G E T T I N G ST A R T E D
1.6 GETTING TECHNICAL SUPPORT

-24 MENTOR

1.6 GETTING TECHNICAL SUPPORT

We hope you find this manual useful. CfMC is always looking for feedback about
our software, our manuals, and our technical support. Below is a list of ways to
contact us, depending on what your needs are.

If you want to: Contact: Voice: Email:

get general information Receptionist (415)777-0470 info@cfmc.com

lease CfMC software

add more users

get an upgrade

(East region) Marketing (212)777-5120 joycer@cfmc.com

(West region) Marketing (415)777-0470 sales@cfmc.com

get help with using the software

have a suggestion for the software

want a new feature added to the software

want to report a bug

(East region) NY Tech Support (212)777-5120 denised@cfmc.com

(Midwest) Texas Tech Support (409)775-7732 mcblair@cfmc.com

(West region) SF Tech Support (415)777-2922 support@cfmc.com

get training Training (415)777-0470 train@cfmc.com

get additional copies of the manuals

have corrections for the documentation

Documentation (415)777-0470 doc@cfmc.com

. .
 .

. .G E T T I N G ST A R T E D
1.6 GETTING TECHNICAL SUPPORT

MENTOR v 8.1 -25

get the latest CfMC news

CfMC Newsletter (415)777-0470

CfMC-SF web site http://www.cfmc.com

talk to other users of CfMC software

Spec-talk discussion group spec-talk@cfmc.com

pick up files from CfMC

send files to CfMC

Bulletin Board System (415)896-2362 bbs@cfmc.com

 (modem)

or CfMC FTP site ftp://ftp.cfmc.com

get a quote from the San Francisco service bureau

San Francisco office (415)777-0470 sf_sb_mgr@cfmc.com

or CfMC-SF web site http://www.cfmc.com

get a quote from the Denver service bureau

Denver office (303)860-1811 denver@cfmc.com

or CfMC-Denver web site http://www.cfmc.com/denver

get a quote from the New York service bureau

New York office (212)777-5120 denised@cfmc.com

Our mail address is:

Computers for Marketing Corporation

547 Howard St.

San Francisco, CA 94105

Company: 415-777-0470

Fax: 415-777-3128

Tech Support: 415-777-2922

G E T T I N G ST A R T E D
1.6 GETTING TECHNICAL SUPPORT

-26 MENTOR

Version 8.1 MENTOR -27

.

. .
P R E P A R I N G Y O U R D A T A 2

. .I N T R O D U C T I O N
his chapter provides information on how to prepare and clean a data file.
It is important to become familiar with your data in order to write
procedures that tell Mentor what the data should look like. Mentor

compares the existing data format to your revision of the data format, identifies
errors, and provides several ways to correct these errors. You can check and
correct the data interactively, one case at a time, or you can have Mentor
automatically check and modify all the cases at once.

This chapter also describes how to correct data by modifying it, transferring it to a
new location, or combining data elements in the file.

2.1 OVERVIEW OF THE CLEANING PROCESS
If you don’t have any cleaning experience, and you just need to make a few
changes to a data file, use the CLEANIT utility, which is described in the Utilities
manual. If you already have a list of data corrections to make and you have some
experience with the Mentor ~CLEANER block, you can skip to “2.5.1 Quick
Reference: Cleaning Commands And Examples”.

CLEANING STEPS
Task Program

1) Make a backup copy of the data file DOS or UNIX copy
command

2) Translate raw data file into a COPYFILE
CfMC System file MAKECASE

3) Generate marginals HOLE
FREQ

4) Write and run cleaning specs Your word processor
 Mentor
5) Take error listing and change data Mentor
6) Repeat steps 3 through 5 until data conforms to cleaning specs

T

P R E P A R I N G YO U R D A T A
2.2 CLEANING DATA

-28 MENTOR

2.2 CLEANING DATA
Once you have collected your data, you should check it for errors. This section
summarizes the steps necessary to clean data which are described in detail in the
rest of this chapter. If you are using Survent to collect your data, Survent can also
automatically generate cleaning specifications for you. See section “2.4
CLEANING WITH SURVENT VARIABLES”.

1 Make a backup copy of data file. Always have a copy of the data in its original
form before you start cleaning.

2 Translate your raw data file into a file that Mentor can read. Mentor data files are
referred to as System files, and have an extension of "tr". There are two menu-
driven CfMC utility programs you can use, MAKECASE and COPYFILE, to
translate raw data files. They are described in the Utilities manual. The
MAKECASE utility converts 80 column ASCII or binary card image files into
Mentor System files. The COPYFILE utility converts files with records longer
than 80 columns and other file types. You can also use these utilities to sort the file
and check for duplicate case IDs.

3 Generate reports that provide an overview of the data (these reports are commonly
called "marginals"). Use the HOLE utility to generate a holecount, a count of the
punches in the data for each column. This can help you spot obvious problems
with the data. Use the FREQ utility to generate frequency distributions, or a list of
which ASCII characters are in specified locations in the data. This is useful to look
at short, multiple column data, such as zip codes.

4 Write and test a procedure(usually referred to as "cleaning specs") that will check
the data. To test the procedure, you can tell Mentor to only look at a certain
number of cases, and see what errors it produces. You may need to modify your
cleaning specs based on these results. Running the procedure on all of the cases in
the data file will then generate a list of errors, or locations in the data that need to
be checked.

5 Clean the data, based on the errors generated by the cleaning specifications. When
data looks incorrect, you can choose to delete it, change it by referring back to the
original survey, or change it based on guidelines that you have established.

6 Repeat steps three through five until you consider the data clean. (You can also use
a final holecount to check the tables you generate from your data file.)

. .
 .

. .P R E P A R I N G YO U R D A T A
2.2 CLEANING DATA

MENTOR v 8.1 -29

2.2.1 Other Types of Data Fi les
While we recommend that you do so, you do not have to convert your data file to a
CfMC System file. You can write a procedure to have Mentor read and generate a
data error report on a different type of data file. Mentor can read ASCII, binary,
swapped binary or DTA files directly. The disadvantages to working with a data
file that has not been converted are:

• Processing will be slower because Mentor must convert each case before
reading it.

• Cases cannot be flagged for errors or deletion.

• You cannot modify the data interactively using Mentor.

If, however, you have a small ASCII file, it may be easier to write a Mentor
procedure to read and check the data file and then edit it in a word processing
program. Your procedure can also include some data checking and modification.
The basic specifications would look something like this:

~DEFINE PROCEDURE= {name:
 data checking or modification commands
 }
~INPUT file, ASCII=length (or other file type option)
~OUTPUT newfile, ASCII=length (or other file type option)
~EXECUTE PROCEDURE= name
~END

See “2.3 CLEANING SPECIFICATIONS”, and “2.3.2 Correcting Errors” for
examples of procedures that read and modify raw data. CORRECTING ERRORS,
Auto-Fixing The Data contains two example procedures that modify data in batch
mode. You can also refer to Appendix B: TILDE COMMANDS under the specific
command for information.

2.2.2 Why Clean the Data?
The cleaning process is one of the most important steps in data tabulation. Human
error occurs during data collection, especially in a paper and pencil study that has
been manually keypunched. There is considerable advantage in using a CRT-type
interviewing package such as Survent since it makes and checks its own data file.
No matter what measures you take to prevent errors, some will occur. Serious

P R E P A R I N G YO U R D A T A
2.2 CLEANING DATA

-30 MENTOR

problems can jeopardize the validity of a study. If the logic of the questionnaire is
flawed (e.g., causing multiple responses to single-response question), you may
have to do replacement interviews or do the entire study over. Let’s assume that
your questionnaire has good logic and your data collection methods are
conservative.

You must assume any data file you have not already looked at is dirty. A dirty data
file is one that may have errors in it. These errors may be isolated to one column or
question (more than one answer in a single answer question, number answers
outside of the defined range, etc.) or across several columns or questions (skip
patterns not followed, respondent asked about brands that they have never heard
of, open-ends coded incorrectly, keypunch error, etc.). Data received from the field
must be put through a cleaning process to increase its accuracy.

To adequately clean a data file, you must be able to change the information in the
file. You need the ability to add or remove characters from columns, move data
from one location to another, or blank columns altogether. You may choose to
manually change one case at a time (interactive cleaning), or have the computer
modify all of the cases automatically ("auto-fixing"). Interactive cleaning is the
safest way to clean data, because you refer back to the original survey to make
corrections. Auto-fixing is faster, but you must be careful that your modifications
do not compound your errors. A combination of interactive cleaning and auto-
fixing can give you both accuracy and speed. You can choose to have Mentor auto-
fix simple problems and correct complex errors manually.

When you are through with the cleaning process, your data is it is not 100%
accurate, it merely conforms to the cleaning procedures you have written. There is
no such thing as data that is completely accurate. The cleaning process is merely
an attempt to minimize errors, and increase the accuracy of your data.

2.2.3 Understanding The Quest ionnaire
Before you do any cleaning, take the time to read through your study to make sure
you understand its framework and specifics. Once you have written your cleaning
specifications, run them on part of the data file to list out all errors before the data
is altered. This will expose any questionnaire execution problems or specification
errors. If the same error occurs frequently, make sure that it is actually an error in
the data (by examining a few cases) and not a specification error. If you confirm

. .
 .

. .P R E P A R I N G YO U R D A T A
2.2 CLEANING DATA

MENTOR v 8.1 -31

the error, your decision will be whether to discard these questions or
questionnaires, or to salvage them. Generating the initial error listing is a key step
that can save you time.

Below is a sample questionnaire. Make sure you understand the questionnaire's
logic by asking yourself two questions.

1 Who should answer each question?

2 How should each question be answered?

The questions below are meant to appear as they would on a self-administered
questionnaire, collected with paper and pencil.

Example:

Q 1.PLEASE ENTER YOUR NAME.
(5-14) ______________________

Q 2.WHAT DAY OF THE WEEK IS TODAY?
(15-17) MON

TUE
WED
THU
FRI
SAT
SUN

Q 3.DO YOU HAVE ANY SIBLINGS (BROTHERS OR SISTERS)?

(18) 1 YES
2 NO (SKIP TO Q5)

Q 4. HOW MANY SIBLINGS DO YOU HAVE?
(19-20) ________

Q 5. WHAT OTHER MEMBERS ARE IN YOUR IMMEDIATE FAMILY?
CHOOSE ALL OF THE FOLLOWING THAT APPLY:

(21) 1 GRANDMOTHERS
2 GRANDFATHERS
3 GRANDCHILDREN
4 COUSINS

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-32 MENTOR

5 IN-LAWS
6 NEPHEWS
7 NIECES
8 NONE OF THE ABOVE

WHO should answer each question?

The respondents who should answer a question are sometimes called the base of
the question. During the course of a questionnaire, respondents may be excluded
from answering a question and skipped to another section of the questionnaire. The
remaining respondents make up the base of the question. In our sample
questionnaire, respondents who do not have siblings should not answer the
question about the number of siblings.

HOW should each question be answered?

Responses for questions have limits. Word responses must be recoded into a finite
number of numeric or letter codes either by Mentor or manually. Numeric
responses usually have some sorts of boundaries. Answers outside of these
boundaries are either considered errors or the bounds of the questions are
expanded to allow these answers. In the sample questionnaire above, question Q
4. has valid answers of 1-10. The cleaning procedure will report errors on any case
containing numbers or characters outside of these bounds. The same is true for
question Q 5.; valid punches are 1-8.

NOTE: No more than 7 answers may be recorded and 8 (none of the above)
cannot be given with any other answer. All of these parameters must be
checked in cleaning for consistency throughout the data file.

2.3 CLEANING SPECIFICATIONS

Before beginning the cleaning process, make a copy of your CfMC data file!
Always have a copy of the data in its original form, i.e., before you started
cleaning. In fact, if you find you are making changes after each subsequent run of
your cleaning specifications, it is good practice to make interim copies of your data
file. Then if one set of changes must be undone you may only have to go back one
or two copies to get to a place before the last set of data modifications. You can use
your list file and ~SET LOGGING to keep track of the changes you have made.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -33

GENERATING A LIST OF ERROR MESSAGES
Cleaning specifications are a set of instructions (called a procedure in Mentor) that
checks the data for valid responses based on your description of the data. These
data descriptions are called variables. If you do not know how to define variables
refer to “2.3.1 Cleaning Examples”. In the cleaning procedure you will write
statements that tell Mentor which columns to check and to print an error message if
the data does not match your description. For example, you can include statements
to indicate where a skip pattern should have been followed, what the number of
responses should be or how they should be ranked. You will use the list of data
errors to either clean interactively on a case-by-case basis or to modify your
procedure to correct some errors in batch mode.

Here is a cleaning specification file based on the sample questionnaire in section
2.2.1. Refer to “4.2 TABLE BUILDING BASICS” for an explanation of other useful
spec file commands and “4.5 META COMMANDS” for an introduction to meta (>)
commands. Explanations in this section will be limited to those commands
pertaining specifically to cleaning.

NOTE: Two single apostrophes ('') indicate either a comment, or a command
that is optional or not always be needed. Mentor does not process
anything preceded by these marks, which is not a quote (“), rather two
single apostrophes.

>CREATE_DB procs

''>USE_DB procs

~DEFINE
PROCEDURE={showerr:
OK_COLUMNS [1.14]
CHECK [15.3#MON/TUE/WED/THU/FRI/SAT/SUN]"Not a valid code"1

CHECK [18^1/2] "Should be single 1,2"
IF [18^1] THEN
 CHECK [19.2*Z#1//10] "Should be a number 1-10"

ELSE
CHECK [19.2^B] "If 18 not 1,19.2, Should be blank"2

1. Mentor will print its own error message if you do not provide one. See under the heading
Program-Generated Error Messages later in this section for examples.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-34 MENTOR

ENDIF
CHECK [21*P^1//7/(-)8] "Should be multi 1-7, or single 8"
CHECK_COLUMNS
}

~INPUT sampl <options>

''~SET CLEAN_ALLOW_BLANKS

~EXECUTE PROCEDURE=showerr

~END

This specification file will only report where the data does not match the
description. No data will be changed. Columns that do not need to be checked are
specified first.

It then checks that the day of the week in columns 15-17 is one of the seven codes
listed. Question Q 2. in column 18 must be a code 1 or 2 and not both, designated
by the / separating the punch values. If the respondent has siblings, column 18 =
code 1, then question Q 3. in columns 19-20 must be in the range of 1- 10. Values
outside of the range are not acceptable. If the respondent did not have any siblings,
column 18=2, then we expect columns 19-20 to be blank. We expect question Q 5.
to have any number of responses between 1 and 7, but if it has an 8 (none) then no
other answers should appear. The designation of punches 1-7 means multiple
codes are acceptable, the / designation separating the 1-7 from the 8 means that the
8 is an exclusive code.

Finally, we check all the remaining columns in the case (22-80 in our example) to
make sure they are blank. See Appendix B: TILDE COMMANDS, ~CLEANER for
more examples of the CHECK command.

Here is an explanation of the commands used in the example specifications above.

2. You could also say [19.2#" "] to mean columns 19 and 20 are an empty string (blank).
You must be sure that the number of spaces inside the quote marks is the same width as
the field. This syntax is especially useful when saying an ASCII variable can also be
blank., e.g., [19.2*Z#1//10/" "].

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -35

>CREATE_DB procs
Tells Mentor to create a DB file called PROCS to store the cleaning procedure. This
is optional, but useful during the actual cleaning process if we need to re-execute
the procedure on each case. The procedure can be accessed in this file by the name
assigned to it.

>USE_DB procs
Opens the DB file containing the cleaning procedure. Again this is optional, but
useful if you need to use the procedure again either to actually clean cases or to
recheck the data after cleaning. By storing your procedure in a DB file it is not
necessary to re-define it each time. The entire ~DEFINE section could be
eliminated in future runs of these specifications.

If you use the meta command >CREATE_DB, you do not need the meta command
>USE_DB in the same run. Once you have created a DB, get items from it in
another run with >USE_DB.

~DEFINE PROCEDURE=
The ~DEFINE keyword that tells Mentor that you will be specifying a group of
commands to be executed at some later point either on a single case or on the entire
data set. There are many commands that could be specified inside the procedure
structure. Those used in this example are some that you will use frequently. Other
useful commands are listed at the end of this chapter.

OK_COLUMNS
Tells Mentor that any data in these columns is valid. CHECK_ COLUMNS will not
look at these columns. These are usually the case ID columns or non-coded
open-ended responses such as name and address that will be listed out separately.

CHECK
Compares the data to the description of the data given here and prints an error
message when the data does not match the description. Mentor will print default
error messages or you can provide your own inside of "quotes" as shown in the
example.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-36 MENTOR

IF-THEN-ELSE-ENDIF
Specifies some condition that must be met for the following commands to be
executed. See 2.3.1 CLEANING EXAMPLES.

CHECK_COLUMNS
Tells Mentor to check every column not specifically examined with a cleaning
statement or marked as OK by OK_COLUMNS to make sure it is blank. It checks
that columns are blank when conditionals are not met. This command is especially
useful when you have many skip patterns in your questionnaire. By using this
command it is not necessary to write an additional statement to check for blank
columns for each conditional not met, e.g., ELSE CHECK [19.2^B] in our
example. You cannot define your own error message and the command will not
display the actual data, but it will list the columns you should look at for
extraneous data. Refer to the sample error listings later in this section for an
example.

CHECK_COLUMNS should usually be the last command in your procedure.

~INPUT sampl
Opens the data file. There are many options available with this command.
STOP_AFTER= is used to read only the number of cases specified. It is very
useful for testing your procedure for syntax errors or errors in data descriptions
such as referencing the wrong columns. This option will cause Mentor to stop
reading the data file after the number of cases specified. If you have a very large
sample or a complex set of cleaning conditions it will save time to test your
procedure on a small number of cases first. For instance, you could run your
specifications on a 50 case sample and then review the error summary. If a given
data error appeared more than a few times, you would want to double check your
cleaning specifications for errors perhaps in logic or an incorrect data location. The
option ASCII= opens an ASCII data file. After the equal sign you must specify the
length (number of columns) of the longest case in your file. Refer to Appendix B:
TILDE COMMANDS under ~INPUT for other file types and options allowed on
this command.

~SET CLEAN_ALLOW_BLANKS
Tells Mentor that data fields specified in either CHECK or CLEAN statements can
be blank if they do not otherwise fit the description. This is especially useful for
self-administered questionnaires where it is unlikely that every question is
answered. If a particular field cannot be blank the cleaning procedure can include a

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -37

check for that field so that a blank still produces an error. In our example question
Q 4. in columns 19 and 20 should be blank (skipped) if the respondent answered No
to question Q 3.

~EXECUTE PROCEDURE=showerr
Tells Mentor to execute the procedure on the cases in the specified ~INPUT file.

~END
Exits Mentor, closing all files opened during the run.

Here are two commands that will help you debug your procedures:

>QUIT ERRORS=#
Stops executing after this number (#) of syntax errors is reached. This means all
syntax errors reported by Mentor, not just those found in your procedure.

~SET PROCEDURE_DUMP
Echoes Mentor's internal process as it executes a procedure, to help determine the
source of the error message.

Run your specification file (i.e., CLEAN.SPX) through the Mentor program by
typing the following statement from the command line of your operating system:

Mentor CLEAN.SPX CLEAN.LFL DOS/UNIX)

RUN Mentor.CGO.CFMC;INFO="CLEANSPX CLEANLFL" (MPE XL)

The results of the run will go to the list file (CLEAN.LFL or CLEANLFL). This is
your error listing. Errors will be listed out case by case. An error summary prints at
the end. The error summary is a count of the occurrence of each error message
across all cases.

SAMPLE ERROR LISTING
For the purpose of explaining error messages, we will refer to the data listing
printed below. See “9.1 GENERATING SPECIALIZED REPORTS” for the
specifications that produced this type of formatted listing.

ID Q 1 Q 2 Q 3 Q 4 Q 5
-- ------ --- --- --- ---

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-38 MENTOR

0001 MICKEY MON 1 12 1
0002 OLIVER TUE 0 2
0003 PURDY WED 3 1 1, 2, 3
0004 THU 2 ? 8
0005 POLLY 1 1 4, 5
0006 FLYNN FRI ? 4, 5
0007 SAMANTHA SAT 1 ? 8
0008 PERCY SUN 1 7 B
0009 WOLFIE MON 1 3 2, 8
0010 SWEETPEA WEE 1 2 6

A blank indicates blank punch data (no punch present) and ? indicates missing
numeric data. These are defaults for a formatted listing from Mentor.

The list file CLEAN.LFL will contain an error listing similar to the one below.

ID: 0001
error 3: [19.2#] Should be a number 1-10: a valid

answer is required [19.2#]="12"
error 14: [22] field should be blank [22]="1"

ID: 0002:
error 2: [18^] Should be a single 1,2: a valid answer

is required [18^]=" "
error 4: [19.2#] If 18 not 1,19.2, Should be blank:

extra punches[19.2#]="0"
ID: 0003:
error 2: [18^] Should be a single 1,2: a valid answer

is required [18^]="3"
error 4: [19.2#] If 18 not 1,19.2, Should be blank:

extra punches[19.2#]="1"
ID: 0005:
error 1: [15.3#] not a valid code: a valid answer is

required [15.3#]=" "
ID: 0006:
error 2: [18^] Should be a single 1,2: a valid answer

is required [18^]=" "
ID: 0007:

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -39

error 3: [19.2#] Should be a number 1-10: a valid
answer is required [19.2#]=" "

ID: 0008:
error 5: [21^] Should be multi 1-7, or single 8: a

valid answer is required [21^]=" "
ID: 0010:
error 1: [15.3#] not a valid code: a valid answer is

required [15.3#]="WEE"
error 14: [22] field should be blank [22]="1"

12 errors in 10 cases

error 1: 2 [15.3#] Not a valid code
error 2: 3 [18^] Should be a single 1,2
error 3: 2 [19.2#] Should be a number 1-10
error 4: 2 [20] If 18 not 1, 19.2 should be blank
error 5: 1 [22^] Should be multi 1-7, or single 8
error 14: 2 $check_columns

The case ID is followed by a line that has an error number, the data location, your
error message, the program-generated error message, and the data location with the
actual data in quotes.

In this example, there are case ID 0001 has an answer of 12 in columns 19.2, for
question Q4, regarding the number of siblings, and only answers from 1 to 10 are
valid. Case ID 0002 has an error for columns 19.2 because column 18 is not a 1. In
this case, you might want to go to original survey to see if question Q4 was actually
blank, or if the answer was just not entered into the data. Case ID 0003 has an
invalid answer (3) in column 18, and this causes a second error for columns 19.2.

If the cleaning specifications did not include the lines

ELSE
CHECK [19.2^B] "If not 1, 19.2 Should be blank"

the error listing would be different because CHECK_COLUMNS would print an
error for each column that should be blank, such as cases 0002 and 0003.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-40 MENTOR

ID: 0001
error 3: [19.2#] Should be a number 1-10: a valid answer

is required [19.2#]="12"
error 14: [22^] field should be blank [22^]="1"

ID: 0002:
error 2: [18^] Should be a single 1,2: a valid answer is

required [18^]=" "
error 14: [19.1] field should be blank: [19.1]="0"

ID: 0003:
error 2: [18^] Should be a single 1,2: a valid answer is

required [18^]="3"
error 14: [20.1] field should be blank: [20.1]="1"

ID: 0005:
error 1: [15.3#] not a valid code: a valid answer is

required [15.3#]=" "
ID: 0006:

error 2: [18^] Should be a single 1,2: a valid answer is
required [18^]=" "

ID: 0007:
error 3: [19.2#] Should be a number 1-10: a valid answer

is required [19.2#]=" "
ID: 0008:

error 4: [21^] Should be multi 1-7, or single 8: a valid
answer is required [21^]=" "

ID: 0010:
error 1: [15.3#] not a valid code: a valid answer is

required [15.3#]="WEE"
error 14: [22] field should be blank [22]="1"

12 errors in 10 cases

error 1: 2 [15.3#] Not a valid code
error 2: 3 [18^] Should be a single 1,2
error 3: 2 [19.2#] Should be a number 1-10
error 4: 1 [22^] Should be multi 1-7, or single 8
error 14: 4 $check_columns

PROGRAM-GENERATED ERROR MESSAGES
Here are a list of the standard types of cleaning errors and the error messages
Mentor generates:

Error Error Message

A question is blank when an answer should a valid answer is required
be present.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -41

Single response question with more than too many answers
one response.

Punch question with invalid punches extra punches
in the column(s).

Single response question with an invalid a valid answer is required
punch code or number out of range.

Question with an invalid punch. too many answers

Multi-response question where there is exclusive code violation
an exclusive response with another punch(es)
or code(s).

Multi-response question with duplicate duplicate codes
ASCII codes.

Multi-response question with invalid ASCII invalid code or blank fields
codes, leading or embedding blanks.

2.3.1 Cleaning Examples
This section provides examples for cleaning simple types of questions. Many
common cleaning situations are covered here. In later sections you will find
examples of more complex cleaning situations.

The terms answer, mention, and response are used interchangeably throughout the
rest of this chapter. The terms field and data location each refer to the column or set
of columns that should contain a valid response.

In order for the Mentor program to check the validity of your data, each question
must be defined as a variable. Mentor then compares it to the actual data for errors.
A data variable is something defined within square brackets ([]). Within those
brackets you provide the data's location, a data modifier, the data type, and finally
the data categories. For more information on defining variables, especially as they
relate to data tabulation, see sections “4.6 DEFINING DATA” , “5.1 Expressions

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-42 MENTOR

and Joiners” and “5.2 Axis Commands/Cross-Case Operations”. “4.6.1 Summary
of Rules for Defining Data” provides example sets that summarize the rules for
defining ASCII, punch, and numeric data.

Example:

[2/5.2 *F #1//17]
[42 *P ^1//5/(-)Y]

Data locations can be defined in one of two formats: either record number/column
(2/5), where each record is 80 columns, or absolute column(85). You may then
specify a width using a period and the width (85.2), or specify a range of columns
using a dash (85-86).

Variable modifiers used in cleaning are:

*D# the field contains the number of decimal places specified.

*F checks unique mentions (i.e., no duplicates allowed) across multiple
locations. Leading or embedded blanks in the field are an error.

*F# this numeric field has <#> decimal places.

*L checks for all possible mentions across multiple locations. Leading or
embedded blanks in the field are an error.

*P=# specifies the maximum number of answers allowed for a punch variable.
The default is *P=1 meaning only one answer is allowed. Just *P means
that there can be as many answers as there are categories defined. # may be
any number 1-255.

*S the field is multi-punched, but only one of the punches will be retained.

*Z this field contains leading zeros (0).

Data type is referenced by a caret (^) for punch categories, and a pound sign (#) for
either numeric or ASCII categories. Categories are made up of either the string or
number in the data, or the punch or punch number. Each category is separated by a
single slash (/). A double slash (//) means a set of categories from first to last
category (e.g., 1//5 to mean 1/2/3/4/5). A category can be marked exclusive of all
others with a minus sign (-) enclosed in parentheses. This means that only this
answer should be present in the data, and if it appears with any other it is an error.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -43

You can combine modifiers, but you only need one asterisk (*). Spaces are optional
between variable items.

CLEANING PUNCH DATA

Single Column/Single Punch

2B. How often do you use your BANK CARD--
at least once a month, at least every 3 months, a
few times each year, less than that, or never?

(10) 1 AT LEAST MONTHLY
2 EVERY 3 MONTHS
3 A FEW TIMES PER YEAR
4 LESS
5 NEVER

This is an example of a single column, single response question. The cleaning
statement will check that only one of the allowed punches appears in the data.
Because this is the default we do not need to include the modifier *P=1 in the
variable definition.

CHECK [10^1//5] "Should be single 1-5"

This means that in column 10 there can be one of five possible punches 1, 2, 3, 4, or
5. If more than one of the allowed punches is found in column 10, the program will
print the error message defined inside the double quotes. It is also an error if the
response is something other than one of these punches or is blank.

This is how the statement would be rewritten to allow a blank response. A single
slash is used to separate two single categories.

CHECK [10^1//5/B] "Should be single 1-5 or blank"

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-44 MENTOR

Now this statement says that column 10 may be blank (no punches present) or may
contain one of the other allowed punches one through five. You can also use N to
mean "not these punches", or use N with B to mean "not blank"

You can use the command ~SET CLEAN_ALLOW_BLANKS to globally allow
blanks on any question that you verify with a CHECK statement.

Single Column/Multiple Punches

2A. Which of the following types of credit cards do you, or your household
members have?

(8) 1 GENERAL PURPOSE CARDS
2 BANK CARDS
3 RETAIL STORE
4 GAS/OIL COMPANY CARDS
5 CAR RENTAL/AIRLINE
6 OTHER

This question allows up to six responses. All of the punches will be stored in a
single column. Punch data stores up to 12 punches per column. They can be
referred to by their punch position from the starting column (1-12) or by the actual
punch (1-9, 0, X, Y), where 0, X, and Y mean punch positions 10, 11, and 12
respectively.

This statement will check for any of the allowed punches in column eight. The *P
modifier by itself means that column eight may contain any or all of the punches
one through six.

CHECK [8*P^1//6] "Should be multi 1-6"

Again blank will be an error unless it is specifically allowed.

CHECK [8*P^1//6/B] "Should be multi 1-6 or blank"

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -45

Multiple Columns/Single Punch

Q 1.Where did you acquire this product?

(15) Received as a gift..............1
Appliance store.................2
Department store................3
Furniture store.................4
Catalog showroom................5
Discount store..................6
Hardware store..................7
Kitchen specialty store.........8
Building supply store...........9
Pre-installed...................0
Mail order......................X
Kitchen remodeler...............Y

(16) Plumber.........................1
Other...........................2

In this example we need to check for one punch, but over multiple columns (e.g., a
long list of choices where you are looking for the first mention). This question has
14 possible responses. Since punch data stores up to 12 punches per column, this
question requires two columns.

The cleaning statement checks columns 15 and 16 for a punch. If more than one
punch is found the error message is printed.

CHECK [15.2^1//14] "Should be single 1-14"

15.2 tells the program that the field starts in column 15 and is two columns wide, or
columns 15 and 16. The punches are referenced by their position to the starting
column. Hence a two punch in column 16 is in punch position 14, starting from
column 15.

You can also check a set of questions in a single CHECK statement, for instance a
series of rating scales.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-46 MENTOR

CHECK [51,...,55^1//5]

This statement will check each column in the set: 51; 52; 53; 54; and 55, for any
valid response one through five. The ellipsis (...) is used after the first column
number to abbreviate this list of consecutive data locations. The columns do not
need to be consecutive, but you will need to specify each one, e.g.,
[50,51,2/64,5/26^1//5].

Multiple Columns/Multiple Punches

Q 8.From your own experience and knowledge, what do you especially like about
this restaurant? (Check all that apply)

(15) 1 Good service/prompt service
2 Dependable/continuous service
3 The courteous employees they have/helpful
4 I like the food/good food
5 Food selection
6 Good prices
7 Computerized/accurate billing
8 Helpful in explaining billing questions
9 Good entertainment
0 Variety of entertainment
X Nice family atmosphere
Y Established place/has been around for awhile

(16) 1 Accessible/Available/They're everywhere
2 Like everything/good place
8 Other
0 Don't know/No answer
X Nothing

This question allows more than one response, but if either of the last two responses
is chosen then no others should be present.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -47

The statement below checks for any of the allowed punches in columns 15 and 16.
It also checks that if either Don't Know or Nothing was chosen then no other
response is allowed.

CHECK [15.2*P^1//14/20/(-)22/(-)23] "Should be multi
1-14,20 or single 22 or 23"

Multiple Columns (non-contiguous)

This cleaning situation would usually occur where you have a question with an
Other/specify and no columns or not enough columns were available in the data file
to code the 'Other' responses in columns consecutive to the original question. You
still need to write separate CHECK statements that check for inconsistencies such
as an exclusive punch violation code or more than one response when only one is
allowed, in addition to valid punches or blank.

Complex Single Punch

Example:

IF NUMBER_OF_ITEMS([1/10^1//10] WITH [2/10^1//5]) <> 1
ERROR "Should only be one answer in cols 1/10 or 2/10
combined"

ENDIF

This example uses a more complex cleaning statement than you have seen in
previous examples. There are two data locations and a possible 15 categories, but
only one can be present. We need a way to treat the two data locations and all of
their categories as one unit in order to count the total number of categories present.
The keyword WITH is a vector joiner that connects the categories in record one
column 10 with those in record two column 10. This forms a single expression
including all the categories. NUMBER_OF_ITEMS is a Mentor function (meaning
it acts on the expression given inside the parentheses) that counts the number of
categories that are true for the current case. If the result is not equal (<>) to one,
then we instruct the program to flag the case and print the error message specified.
To allow No Answer you would say > 1.

Multiple Punches With An Exclusive Response

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-48 MENTOR

Example:

IF ([1/10^1//10] OR [2/10^5] AND [2/10^5]
ERROR "Can be multi in 1/10,2/10 or 2/10^5"

ENDIF

This example is similar to the one described above, but more than one response
can be present in either location. In addition, one response is considered exclusive,
meaning if it is present then no other response is allowed.

This example uses two other joiners, OR and AND. This IF statement says that if
you have any of the allowed categories turned on anywhere in either record one
column 10 OR record two column 10, AND record two column 10 is a five punch
(and exclusive), then this is an error.

Remember, neither of these examples checks the validity of the actual data in these
columns. They only count categories present in the expression formed by the
joiner(s). Prior to one of these IF blocks, you would check the data with individual
CHECK statements for each column.

Refer to Appendix B: TILDE COMMANDS under ~DEFINE VARIABLE= for
information on other joiners and functions. Joiners are also used in data tabulation
to form complex banners and to base the table (see “5.1 Expressions and
Joiners”).

Cleaning ASCII Data

ASCII data can be collected either as a number or a string. To specify ASCII data,
use a pound sign(#). Categories of responses are specified in the same way as for
punch data with single (/) or double slash (//). ASCII data can also be checked for
zero-filled columns. Numeric data can be checked for literals like DK indicating a
response such as Don't Know or Refused.

Numeric Data

Q 3. How many years have you lived at this address? _____________

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -49

(Enter RF for refused)

This question collects a numeric response and includes a literal if the respondent
does not provide an answer.

CHECK [7.2#1//20/RF] "Should be a number 1-20 or RF"

The cleaning statement will check for a range of numbers or the literal RF. An error
will occur if what is found in the data does not match your description (number out
of range, blank field, different literal, etc.).

For this example we have assumed that the range can be 1-20 years. That requires a
two column field. If the range were 1-5 years we would still be checking a two
column field since the literal RF will be coded into two columns.

Zero-Filled Numeric Data

You may be post-processing the data file in a software package that requires a
number in every column. It is easy to modify the previous cleaning statement to
check for leading zeros rather than blanks. In addition, it is often easier to examine
your data if all of the columns in a numeric field contain a number.

Here is the same CHECK statement modified to verify that where the response is
less than 10, the leading columns are zero-filled.

CHECK [7.2*Z#1//20/RF] "Should be 01-20 or RF"

*Z says that leading columns for numeric responses must contain a zero or else it is
an error. The default is to allow blanks.

Single Response String Data

Responses coded as literals are referred to as string data. Strings can be alphabetic
or numeric and unlike punch data there is only one code per column. Typical
examples would be state or zip codes.

Q 11. Please enter the appropriate 4-character code for your department. ____

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-50 MENTOR

In this question the respondent must fill in a code designating their department
within a company. To clean this question you would need to check the field for
each legitimate code (presumably from a list of all the possible department codes):

CHECK [5/5.4#A111/P222/M333/S444/T555] "Not a valid dept. code"

Notice how the columns are referenced in the statement above. Record/column is
the program default for all column references. Absolute column references are also
allowed. We could have written the data column location as 325.4.

If we wanted to allow a blank for this field then the CHECK statement would look
like this:

CHECK [5/5.4#A111/P222/M333/S444/T555/" "]

The set of double quotes acts like the B used in punch data examples. We have
now defined a variable to say 5/5.4 may be any one of these responses or blank.

Multiple Response String Data

Coded Open Ends

You may have an open-end on a survey coded to allow for multiple answers of two
or more digits, as in the following example:

Example: Q 6. WHAT WAS THE MAIN IDEA OF THE AD?

(19-20) __

(21-22) __

(23-24) __

__

__

Imagine that valid answers are coded from 01 through 17. Code 95 stands for
Other and code 99 stands for an exclusive code, such as Don't Know. No code
should appear more than once, there can be no leading or embedded blanks, and
the exclusive codes cannot appear with any other code. The CHECK statement to
clean this question for all of the parameters given would look like this:

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -51

Example: CHECK [19.2,21,23 *ZF #1//17/95/(-)99] "Can be
1-17,95 or 99"

All three fields are specified in the same variable. We could have used the ellipsis,

e.g., [19.2,...,23, to say the same thing. Also note that fields do not have to
be contiguous,

e.g., [1/23.2,1/25,1/41,2/43 *ZF #1//17/95/(-)99].

*Z says that the first column for each of the codes one through nine must contain a
zero (0), e.g., 02, and if not it is an error.

*F will check all three locations for the responses defined in the variable. An error
is generated if an invalid code is found; if any code appears more than once; if the
exclusive code appears with another code; or if leading blanks or embedded blanks
are found (due possibly to keypunch error).

Allowing Duplicate Codes

You might have a situation where duplicate codes in the data are not an error. In this
case you would need to use the *L modifier.

Example: CHECK [19.2,21,23 *ZL #1//17/95/(-)99]

*L will still print an error for an invalid code, an exclusive code violation, or if
leading or embedded blanks are found, but duplicate valid codes will not be an
error.

Multiple Punches in a Single Response Field

You can clean a location if you have the situation of having multiple punches in
what should have been a single-punch field. Use the *S modifier to determine
which punch to keep by the order of categories in your statement.

Example: MODIFY [10^6/5/4/3/2/1] = [9*S^6/5/4/3/2/1]

In this example, if the field contains the punches 6, 4 and 2, only the 6 will be
retained. If the field contains punches 4 and 2, only the 4 will be retained.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-52 MENTOR

Checking Multiple Locations For A Valid Response

To simply check multiple locations for a valid response do not use either the *F or
the *L modifier. There is also no need to specify any exclusive responses since
only one valid response can appear in each set of columns. There is no relationship
amongst the responses in these columns. The only errors we care about are either
an invalid code or a single-digit code without a leading zero (0):

Example: CHECK [19.2,21,23 *Z #1//17/95//99]

This statement is the same as writing three separate CHECK statements. It checks
each of 19.2, 21.2, and 23.2 for any response 01-17 or 95-99.

Cleaning for Skips or Bases

A common situation you will clean for is whether skip patterns were executed
correctly in the questionnaire. This is accomplished by writing an
IF-THEN-ELSE-ENDIF block. In our sample questionnaire question 4 should
have a valid response only if the response to question 3 was Yes (respondent has
siblings).

Example:

IF [18^1] THEN
CHECK [19.2*Z#1//10] "Should be a number 1-10"

ELSE
CHECK [19.2^B] "Should be blank"

ENDIF

This example says if column 18 contains a 1 punch (answered Yes to question 3)
then check columns 19 and 20 (how many siblings) for any valid response 1
through 10, otherwise (ELSE) those columns should be blank (meaning the
respondent answered No to question 3). The word THEN is not required. If you
use the CHECK_COLUMNS command in your cleaning procedure, the ELSE
clause in this IF statement is not needed unless you want to specify your own error
message. CHECK_COLUMNS will report any columns that are not blank.
Commands are indented and on separate lines for readability only.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -53

You can have unlimited levels of IF blocks within IF blocks. You can use the
GOTO command to branch into or out of an IF block.

Branching in the Cleaning Procedure

The GOTO command allows you to branch anywhere (forward only) in your
cleaning procedure including into or out of IF blocks. GOTO is especially useful to
skip large blocks of questions where a conditional statement would contain many
statements, or to exit a complex IF block. GOTO's are often used at the beginning
of a section such as check only if male or female. Most of the time you will control
spec file execution with IF blocks.

NOTE: Test carefully if you skip into an IF block. You could get unexpected
results. An ELSE coming after the GOTO label will be ignored. Below is
an example to illustrate this point.

~DEFINE
 PROCEDURE=TEST:
 GOTO XX
 IF [5^1] THEN
 PRINT "after the if/before XX"
 XX: PRINT "at XX/before else" <-- Only this line is
executed
 ELSE
 PRINT "after XX"
 ENDIF
 }

In our example paper and pencil questionnaire let's say that a No response to
question 3, “Do you have any siblings?,” skips to question 11. The IF statement
checks column 18 for a 2 punch (respondent does not have siblings), the GOTO
command then branches to the label Q11 skipping all of the cleaning statements for
questions five through ten.

Example: IF [18^2] THEN

 GOTO Q11

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-54 MENTOR

ENDIF

cleaning statements for questions 5-10

Q11: cleaning statement for question 11

Without the GOTO in the previous example, you would have to include the
cleaning statements for questions five through ten in one or more IF blocks to
control when they would execute.

If your procedure includes a CHECK_COLUMNS command then the program
will print an error if any of the columns used by questions five through ten are not
blank. See the example cleaning procedure in section 2.3 for the sample paper and
pencil questionnaire.

A GOTO statement can have multiple conditions and labels. If the question you
are checking includes more than one category, such as male/female respondent,
you can write a GOTO with a label for each one.

Example: CHECK [18^1/2] "Should be single 1,2"

 GOTO(*,Q11) [18^1/2]

cleaning statements for questions 5-10

Q11: cleaning statement for question 11

The CHECK statement checks column 18 for a valid response. The GOTO says if
the response is a one continue processing (*), and if the response is a two branch to
the label Q11. If response one also branched to another point in the cleaning
procedure, then we could have provided a label for it, e.g., GOTO (Q20,Q11)
[18^1/2]. The comma delimiter is optional, but use at least one space between
labels if you do not use a comma.

Complex Cleaning

Mentor provides many features to help you check the validity of your data. You
have seen just a few of the most commonly used commands in our example
cleaning procedure. In addition to other cleaning commands there are also
functions that allow you to count responses, add fields to check a sum, modifiers to

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -55

treat the data found in a field differently than the program default, or keywords
called system constants that allow you to quickly get information about your data.
We will cover a few of the more common examples here, but refer to sections
“9.3.1 System Constants”and “9.3.2 Functions” for information on other useful
features.

Counting Number of Responses

In a previous example under Multiple Columns (non-contiguous) we used the
NUMBER_OF_ITEMS function to count categories present across a range of
columns. The same function can also count categories in a single column.

You may need to verify that a specific number of responses is present in a particular
field. If we define the range of valid responses as separate categories, then
NUMBER_OF_ITEMS can count the categories that have a response. The result
can be compared to the number of responses that must be present.

Here is an example where respondents are asked to circle their three most common
sources of news information on a precoded list. The cleaning statements follow.

(5) 1 LOCAL TV NEWS

2 NATIONAL TV NEWS

3 CNN

4 LOCAL NEWSPAPER

5 OUT OF STATE NEWSPAPER (e.g., WALL STREET
JOURNAL)

6 RADIO NEWS

7 NPR (e.g., MORNING EDITION)

8 OTHER

CHECK [5*P^1//8] "Can be multiple 1-8"

IF NUMBER_OF_ITEMS([5^1//8]) > 3 THEN

ERROR "Has more than 3 punches" [5.1$P]

ENDIF

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-56 MENTOR

The first statement checks the field for valid punches, any response one through
eight. The NUMBER_OF_ITEMS function counts the number of categories (5^1,
5^2, 5^3, 5^4, 5^5, 5^6, 5^7, and 5^8) present in the current case. If the result is
greater than three then the case is flagged with an error and the message is printed.

Use the ~CLEANER command ERROR whenever you are not using a CHECK
command, most often you will use ERROR inside an IF condition structure as in
the example above. ERROR prints the ID of the current case and any text enclosed
in "quotes" following the ERROR command. It also flags the case where an error
has been found. You can locate flagged cases in the open data file with the
FIND_FLAGGED command. Optionally, you can print the contents of a field as
part of the ERROR statement: as a string or literal ($); as punches ($P); or as a
number [location]. In our example the contents of column five will be printed as a
punch. Refer to Chapter 3:“Reformatting Your Data”and Appendix B: TILDE
COMMANDS under ~CLEANER PRINT_LINES for other examples.

There are two other command used to generate text: SAY and PRINT_LINES.
These commands are best used for trouble-shooting because they are not included
as “hits” in the cleaning summary. SAY does not print the case ID, does not set the
error flag on the case, and prints only to the list file, not to the print file.

Here is the previous ERROR statement rewritten with the SAY command. The
System constant CASE_ID causes the case id to print before the "text":

SAY CASE_ID "Has more than 3 punches" [5.1$P]

If you need to send this message to the print file, use the PRINT_LINES
command:

PRINT_LINES "/s has more than 3 punches /s" CASE_ID
[5.1$P]

Checking For A Constant Sum

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -57

An example of a constant sum would be where you have asked respondents what
percent of the time they spend on three activities. Your cleaning statement might
need to check that the sum of the responses adds up to 100%.

The SUM function returns the sum of values of the numbers that exist in the data.
Missing values are ignored, and if all values are missing then the result of SUM is
missing.

Example:

IF SUM([5.2,7,9]) < 100

ERROR "Responses do not add up to 100%"

ENDIF

In this example, the three data locations have the same length, so it can be
expressed as one data reference with multiple locations, and the length only needs
to be specified once. A length of one is the default; specifying it is optional. When
the lengths are different each location and length must be specified separately,
separated by commas:

Example: SUM([5.2],[7.3],[2/10.5]) < 100

You may specify any of the following inside the parentheses ():

• a data location

• an absolute number

• a number returning function such as SQUARE_ROOT or
NUMBER_OF_ITEMS, refer to “9.3.2 Functions” for other functions that
return numbers

• a math statement such as 2 * 4

• the name of a previously defined numeric variable

Example:

SUM([5.2],123.5,NUMBER_OF_ITEMS([5^1//8]),8*3,AGE)

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-58 MENTOR

Checking an Aided/Unaided Awareness Grid

Next is an example of an aided/unaided awareness grid that asks about brand
recognition and usage. In the cleaning procedure (in addition to checking for valid
responses) we want to be sure that the first mention is unique and that the
respondent did not mention advertising for brands not mentioned previously. Then
we want to check that an aided mention was not previously mentioned (unaided).

Next we check that the aided advertising question was asked, and if so that those
mentions appear somewhere previously. Finally the usage question is checked
making sure that those mentions also appear in one of the previous mention
questions.

Q.1a First Unaided Mention columns 21-22

Q.1b All Other Unaided Mentions columns 23-24

Q.1c Advertising Unaided Mentions columns 25-26

Q.2a Aided Mentions (key brands) columns 27-28

Q.2b Aided Advertising Mentions columns 29-30

Q.2c Aided Usage columns 31-32

SOFT DRINK MAJOR BRANDS LIST

Q.1a Q.1b Q.1c Q.2a Q.2b
Q.2c
--

COKE21 1 23 1 25 1 27 1 29 1 31 1

--

DR. PEPPER2 2 2

--

GATORADE........... 3 3 3 3 3 3

--

MELLO YELLOW 4 4 4 4 4 4

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -59

MOUNTAIN DEW5 5 5 5 5 5

MUG ROOT BEER6 6 6

MUG CREAM7 7 7

PEPSI-COLA............ 8 8 8 8 8 8

RC COLA9 9 9 9 9 9

7-UP0 0 0

SLICEX X X X X X

SPRITEY Y Y

SUNDROP22 1 24 1 26 1 28 1 30 1 32 1

OTHER (SPECIFY:)______ 8 8 8

NONE/NO MORE X X X X X

DON'T KNOW Y Y Y Y Y

Here is the cleaning procedure for this grid. The numbers in the left margin
correspond to the explanation that follows.

~DEFINE

 PROCEDURE= {GRID:

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-60 MENTOR

 ''Unaided First Mention(Q.1a)

1 CHECK [21.2^1//13/20/(-)23(-)24]

2 IF [21.2*P^1//13/20] THEN

''All other Unaided Mentions(Q1.b)

2a CHECK [23.2*P^1//13/20/23]

2b IF [21.2^1//13] INTERSECT [23.2^1//13] THEN

2c ERROR "23.2:" [23.2$P] "HAS SOMETHING ALSO IN

21.2:" [21.2$P]

 ENDIF

''Unaided Advertising Mentions (Q1.c)

 3 CHECK [25.2*P^1//13/20/23/24]

 3a IF [21.2,23.2*F^1//13/20] >= [25.2^1//13/20] ELSE

 3b ERROR "25.2:" [25.2$P] "HAS SOMETHING NOT IN 21.2:"

[21.2$P] "OR 23.2" [23.2$P]

 ENDIF

ENDIF

''All Aided Mentions (key brands only)(Q.2a)

4 IF NUMITEMS([21.2,23*F^1/3//5/8/9/11/13]) < 8 THEN

4a CHECK [27.2*P^1/3//5/8/9/11/13/23/24]

4b IF [27.2^1/3//5/8/9/11/13] INTERSECT

[21.2,23.2*F^1/3//5/8/9/11/13] THEN

4c ERROR "27.2:" [27.2$P] "HAS SOMETHING ALSO IN

21.2:" [21.2$P] "OR 23.2" [23.2$P]

 ENDIF

 ENDIF

''Aided Advertising Mentions (key brands)(Q.2b)

5 IF NUMITEMS([21.2,23,27*F^1/3//5/8/9/11/13]) >=

NUMITEMS([25.2^1/3//5/8/9/11/13]) & THEN

5a CHECK [29.2*P^1/3//5/8/9/11/13/23/24]

5b IF [21.2,23,27*F^1/3//5/8/9/11/13] >=

[29.2^1/3//5/8/9/11/13] ELSE

5c ERROR "29.2:" [29.2$P] "HAS SOMETHING NOT IN 21.2:"

[21.2$P] "23.2:" [23.2$P] &

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -61

"OR 27.2:" [27.2$P]

 ENDIF

5d IF [25.2^1/3//5/8/9/11/13] INTERSECT

[29.2^1/3//5/8/9/11/13] THEN

5e ERROR "29.2:" [29.2$P] "HAS SOMETHING ALSO IN

25.2:" [25.2$P]

 ENDIF

 ENDIF

''Aided Usage Mentions(Q.2c)

6 IF NUMITEMS([21.2,23,27*F^1/3//5/8/9/11/13]) > 0 THEN

6a CHECK [31.2*P^1/3//5/8/9/11/13/23/24]

6b IF [21.2,23,27*F^1/3//5/8/9/11/13] >=

[31.2^1/3//5/8/9/11/13] ELSE

6c ERROR "31.2:" [31.2$P] "HAS SOMETHING NOT IN 21.2:"

[21.2$P] "23.2:" [23.2$P] &

"OR 27.2:" [27.2$P]

 ENDIF

 ENDIF

7 CHECK_COLUMNS

Indenting embedded IF statements is the recommended style for specifications.
This allows you to keep track of which IF's are still in effect.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-62 MENTOR

1 CHECK first mention for a valid single response. Responses 23 and 24
are exclusive.

2 IF a brand was mentioned

2a THEN CHECK other mentions for a valid response: can be one or more
of (1-13,OTHER) or DON'T KNOW. NONE/NO MORE would be an
invalid second mention, so code 24 is not included here.

2b IF the first mention appears with other mentions, it must be a duplicate
mention.

NOTE: OTHER is the exception.

2c THEN print an error and the contents of the columns as punches ($P).

3 CHECK unaided advertising for a valid response, can be multi
(1-13,OTHER) or single NONE, DON'T KNOW.

3a IF the response is in unaided advertising (25.2) then it must also appear in
either first mention (21.2) or other mentions (23.2)

3b Otherwise (ELSE) it is an error. Print "error message" and print the
contents of the columns as punches (e.g., [25.2$P]).

4 IF all the "key brands" (i.e., the eight brands on the aided list) were
mentioned then there are no brands to ask about. This statement counts
key brands mentions unaided. If it is less than eight THEN it will check
for aided mentions.

4a CHECK unaided mentions for valid codes.

4b IF a key brand appears in either first mention or other mentions, and also
in aided mentions

4c THEN print an error and the contents of the columns as punches ($P).

5 IF the number of key brands aware of through advertising is greater than
or equal to the number of total key brands aware of, then there were
some brands to ask about in aided advertising mentions.

5a THEN check aided advertising mentions for valid responses. Those can
be any of the key brands (multi-punched) or single punched NONE,
DON'T KNOW.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -63

5b IF there is a mention in aided advertising (29.2) then it must be
mentioned previously in aided or unaided (21.2, 23.2, or 27.2)

5c Otherwise (ELSE) print an error and the contents of the columns as
punches ($P).

5d IF aided and unaided advertising mentions share any responses

5e THEN print an error and the contents of the columns as punches ($P).

6 IF the count of unaided and aided key brands mentions is greater than 0

6a THEN CHECK Aided Usage Mentions for valid responses.

6b IF there is a mention in usage (31.2) then it must be mentioned previously
in unaided or aided mentions (21.2, 23.2, or 27.2)

6c Otherwise (ELSE) print an error and the contents of the columns as
punches ($P).

7 Report all columns that should be blank.

Checking Ranked Responses

There are two Mentor functions to help you clean for ranked responses. The one
you use depends on what you expect the data to look like: either that all of the ranks
present are consecutive starting with the first rank (less restrictive), or that every
one of the ranks required is present (more restrictive)

Example:

Q1. RANK YOUR TOP 5 CHOICES (1 - FIRST CHOICE, 5 - FIFTH CHOICE)

MCDONALD'S ----- (10)

WENDY'S ----- (11)

BURGER KING ----- (12)

TACO BELL ----- (13)

PIZZA HUT ----- (14)

JACK IN THE BOX ----- (15)

CARL'S JR. ----- (16)

KENTUCKY FRIED CHICKEN ----- (17)

ROUND TABLE PIZZA ----- (18)

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-64 MENTOR

CAESAR'S PIZZA ----- (19)

First you would check for valid response across the columns (including no
response). Next you would write an IF statement with either the CASCADE or the
COMPLETE function depending on how you want to check the ranking of those
responses.

Example: CHECK [10,...,19^1//5/B]

Using the CASCADE Function

The CASCADE function checks that ranking starts with the first value and without
breaks through the end of the list.

Example: IF CASCADE([10,...,19*F^1//5]) ELSE

 ERROR "Q1 DOES NOT CASCADE"

ENDIF

CASCADE requires that the starting point for ranking matches the variable
definition. In this example, the respondent must have ranked one of the restaurants
as one since the first category is one. Not all five rankings need to be present in the
data, but they must be consecutive. For example, if a restaurant is ranked as
fourth, then there must be restaurants ranked as first, second and third. However,
just a one ranking or no ranking at all would not be considered an error.

In earlier examples we used the *F modifier to verify data using a CHECK
statement. *F actually nets together occurrences of the same mention across the
columns specified. In a CHECK statement if responses can be netted then
duplicates exist and this is treated as an error. In checking that ranked responses
cascade, we are only concerned that the rankings follow the categories defined in
the variable.

In the variable defined above, *F creates 5 categories: 10,...,19^1; 10,...,19^2;
10,...,19^3;...; etc.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -65

Duplicate rankings are netted together. For instance, if columns 10 through 19
contain two number three rankings, they are treated as one number three ranking.
CASCADE then checks that the final set responses starts with the one response and
continues or cascades through the end of the list or response five.

Using The COMPLETE Function

Unlike CASCADE, the COMPLETE function requires that all the categories
defined be present in the data. In our example, COMPLETE says that only the set
one through five is correct and anything else, including no ranking, is an error.

Remember that COMPLETE could return many errors for a self-administered
questionnaire since it is unlikely that all the required answers will be present.

Example:

Ranking must be consecutive, and must contain one through five (duplicate
rankings are allowed):

IF COMPLETE ([10,...,19*F^1//5]) ELSE

ERROR "Q1 NOT COMPLETE"

ENDIF

If you need to check for duplicate rankings, you will need to add this condition
along with either CASCADE or COMPLETE:

IF NUMBER_OF_ITEMS([10,...,19^1//5]) > &
NUMBER_OF_ITEMS([10,...,19*F^1//5])

ERROR "Q1 HAS DUPLICATES" [10.10$]

ENDIF

The function NUMBER_OF_ITEMS counts all occurrences of the rankings
including duplicates and then compares this to the net count. If all occurrences is
greater than the net count, you have duplicates. The error message prints the data in
all 10 columns so that you can see the actual duplicates.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-66 MENTOR

2.3.2 Correcting Errors
Once you have your error listing, you should examine it to decide if any errors can
be cleaned in batch mode. That will mean writing a procedure using commands
that will cause the program to alter the data. Under Auto-fixing The Data you will
find two examples of batch mode cleaning. This section will explain how to clean
your data from the listing on a case by case basis using the procedure that
generated the error listing. By using the procedure to clean your data, you will also
find any new errors that could be introduced as a result of altering a field.

MANUALLY CLEANING THE DATA
Start the cleaning section of Mentor by entering:

CLEANIT

This utility starts Mentor, starts the cleaner block, and opens a log file called
clean.log. CLEANIT records your commands in the log file so you can have a
record of the commands you issued. If a file called clean.log already exists,
CLEANIT will append to the existing file. If you do not want to append to an
existing log file, you will have to rename or remove clean.log before starting
CLEANIT again.

Section “2.5.1 Quick Reference: Cleaning Commands And Examples” has a list of
commonly used ~CLEANER commands and a brief explanation of each one. For a
complete list of ~CLEANER commands, see Mentor, Volume 2, Appendix B. For a
description of the CLEANIT utility, see the Utilities manual.

Now, open the DB file for access to SHOWERR (the cleaning procedure defined
in “2.3 CLEANING SPECIFICATIONS”):

 CleaNer--> >USE_DB procs

Load the data file with FILE command:

 CleaNer--> FILE sampl

Start the procedure SHOWERR with the HUNT command:

 CleaNer--> HUNT showerr

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -67

HUNT starts the beginning of the data file, stops on the first case with an error, and
displays all the errors in that case. For example:

ID0001, error 3: [19.2#] Should be a number 1-10: a valid answer is required

 [19.2#]="12"

Now you can modify the data with the MODIFY_ASCII command:

 CleaNer--> MA 19.2

Mentor will display a the two columns and their contents (vertically), and give you
the MODIFY_ASCII (MA) prompt:

ID: 0001, #1 1/19.2

 12

 90

 --

 12

MA->

This is where you will enter the correct data:

MA ->08

After modifying the data, you can check to see if the data is corrected with the
DISPLAY_ASCII command:

CleaNer--> DA 19.2

Mentor will now display:

ID: 0001, #1 1/19.2

 12

 90

 --

 08

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-68 MENTOR

The rest of interactive cleaning is just repeating these steps for each case with an
error in it. You can use HUNT (start at the beginning of the file) or FIND (move
forward from the current case) to find the next case with an error. HUNT is a good
way to re-check the cases you have already corrected. If you choose NOT to
correct a case, and want to move on the next case with an error, you can move
forward one case with the NEXT command, and then enter

"FIND showerr."

Interactive Cleaning Tips

• You can execute a procedure on only the current case by using an exclamation
point, for example:

!showerr

• You can specify more than one command on a line by separating them with
semicolons, for example:

NEXT; DA 19.2

• You can use the REDO command to repeat the previous command.

• You can define a data location that you will be modifying in several cases with
a name that you can reference with another command, for example:

DEFINE spot[19.2]

 MA spot

• You can automate repetitive commands by writing a small procedure and then
executing it with an exclamation point, for example:

DEFINE PROCEDURE= {chkit: IF [3^1]; DA 19.2; MA 08; ENDIF}

 !chkit

• If you have a long or complicated command that you want to edit, you can use
the >EDIT_PREVIOUS command. This will bring up the previous command in
the on-line editor. Correct the command, and when you press ESC, you will exit
the editor, return to the CLEANER block, and the command will be re-executed
on the current case.

• You can combine commands into a file and instruct Mentor to read the file, for
example:

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -69

1 Create the file CLNIT.SPX with the following lines:

~CLEANER

>USE_DB procs

SET LOGGING

FILE sampl

FIND showerr

2 Execute Mentor, using an ampersand to tell Mentor to expect input from the
keyboard once the spec file has been read, and "echo" to send all program messages
to the screen:

MENTOR &clnit.spx clnit.lfl,echo (DOS/UNIX)
RUN MENTOR.CGO.CFMC;INFO="&CLNITSPX CLNITLFL,ECHO" (MPE XL)

Clean.log

Below is a sample of a clean.log file. In this example, the user opens the
Roadrunner data file and changes the first four columns of the first case from
"0001" to "abcd". What the user typed is included in the log file; those lines start
with "con:" for console.

con: file rrunr

con: ma 1.4

ID: 0001 (study code=RRUN, int_id=intv):1.4

Display 1/1.4:

 0

 1234

 0001

con: abcd

con: da 1.4

ID: 0001 (study code=RRUN, int_id=intv):1.4

Display 1/1.4:

0

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-70 MENTOR

1234

abcd

con: ~end

Enter (Y)es or (N)o please-->

con: y

Using Cleaning Screens

Mentor can also display a cleaning screen when it finds an error, and you can
modify data from this screen. You can set up a controlled cleaning run for someone
else to execute. Creating screens for others to use has several advantages:

• they will only be able to modify the data columns you specify.

• they don’t need to know data modification commands.

• error checking is built in.

Referring to our example cleaning specifications in section 2.3, you would
substitute the EDIT command for CHECK. Mentor will first list an error, and then
present a cleaning screens.

Example: EDIT [18^1/2] "Should be single 1,2"

You can add explanatory text to the data description to display on the cleaning
screen.

Example: EDIT [$T="Has Siblings"18^Yes:1/No:2] "Should
be single 1,2"

Mentor displays a screen similar to this:

Has Siblings

001 Yes

002 No

-->

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -71

enter the new values or RES/BLK/TERM ([1/18.1^B])

Mentor automatically generates a three digit zero (0) filled number for each
category defined in the variable when it is displayed in a question structure (similar
to Survent) as above.

Refer to “2.4.1 Correcting Errors” for an explanation of this screen and a sample
specification file.

There are limitations to using this method. You could write a valid CHECK
statement that could not then be used with the EDIT command. The variable you
define must represent a single question in order for Mentor to present it with a
cleaning screen. For instance the statement CHECK [10,...,15^1//5] will
check columns 10, 11, 12, 13, 14, and 15 separately for a one through five punch. In
effect this is six separate questions. In this case you could not substitute EDIT for
CHECK. You would need to write separate EDIT statements for each of the six
columns.

AUTO-FIXING THE DATA
Auto-fixing is essentially a set of rules for cleaning the data without examining
each case for why the error occurred. An example might be an unverified data file
where the data is off by a column due to a keypunch error. Cleaning with this
method will mean that your data set is not as reliable, but the cleaning process will
be less labor intensive, especially as the number of cases increases.

We recommend that you always save the auto-fixed data to a new file, either using
a copy of your original System file or by writing the modified cases to a new file.
Make periodic copies of the data file especially if you find yourself modifying the
procedure in subsequent cleaning runs. In this way, you would only have to go back
one or two copies to undo the last set of changes made to the data file.

Another option is to create a new file for the "clean" data. ~OUTPUT creates the
new data file and WRITE_CASE writes the case to the new file. Use
WRITE_CASE as the last command in your cleaning procedure.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-72 MENTOR

What follows is an example of auto-fixing using the sample paper and pencil
questionnaire from section 2.2.1. This cleaning procedure uses a new ~CLEANER
command, CLEAN. USE THIS COMMAND WITH CAUTION; IT BLANKS
THE DATA LOCATION WHEN IT DOES NOT MATCH YOUR DATA
DESCRIPTION. Like the CHECK command, you can define your own error
message in addition to the one Mentor prints for each case it changes. This
message is especially useful in the error summary by telling you how many times a
variable was changed to a blank.

An explanation of how each command in the procedure will affect the data follows
this example.

Example:

~DEFINE

 PROCEDURE={AUTOFIX:

 CLEAN [15.3#MON/TUE/WED/THU/FRI/SAT/SUN] "Not a valid code"

 CLEAN [18^1/2] "Should be single 1,2"

 IF [19.2#10//99] THEN

 TRANSFER [19.2] = 10

 ENDIF

 CLEAN [19.2*Z#1//10/" "] "Should be a number 1-10 or blank"

 IF [19.2^B] THEN

 MAKE_DATA [18^2]

 ELSE

 MAKE_DATA [18^1]

 ENDIF

 IF [21^8] AND [21*P^1//7] THEN

 MAKE_DATA -[21^8]

 ENDIF

 CLEAN [21*P^1//7/(-)8] "Should be multi 1-7 or single 8"

 BLANK [22-80]

 WRITE_CASE

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -73

 }

~INPUT SAMPL

~OUTPUT SAMPL2

~EXECUTE PROCEDURE=AUTOFIX

~END

CLEAN [15.3#MON/TUE/WED/THU/FRI/SAT/SUN] "Not a valid code"

Blanks the data associated with the day of the week question when it does not match
one of these responses.

CLEAN [18^1/2] "Should be single response 1,2"

Blanks the data in the columns of the has siblings question if the response is not a
single response of one or two.

IF [19.2#10//99] THEN

 TRANSFER [19.2] = 10

ENDIF

Says if the answer to the number of siblings question is more than 10, recode it to
be 10.

The TRANSFER command can modify numeric, string$, or punch$P data (though
punch data is more often modified with the MAKE_DATA command). In this
example we have a very simple modification. You can also modify data based on
the result of an expression such as multiplying one location times another.

TRANSFER also verifies the data on both sides of the equal sign (=) and will return
an error if the data types do not match. A dollar sign ($) is required to modify string
data such as the codes for day of the week in our example procedure. Refer to the
related command, MODIFY, under ~CLEANER in Appendix B: TILDE
COMMANDS for more information and examples.

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-74 MENTOR

CLEAN [19.2*Z#1//10/" "] "Should be a number 1-10 or blank"

Blanks the data for the number of siblings question if it is not a valid response 1-10
or blank. Given the skip pattern in this questionnaire we know it is possible for this
field to be blank. The empty quotes " " response in the data definition

[19.2#1//10/" "] instructs Mentor that blank is also a valid response.

IF [19.2^B] THEN

 MAKE_DATA [18^2]

ELSE

 MAKE_DATA [18^1]

ENDIF

Says if the number of siblings question is blank, generate a response of two (No)
for the has siblings question, and if it is not blank generate a response of one (Yes).

The MAKE_DATA command replaces punch type data; it blanks the location first.
It is the recommended way to simply add or remove punches from a data location.
The columns to be modified are defined like any other punch variable by
specifying the location and the new punch value inside square brackets ([]).

IF [21^8] AND [21*P^1//7] THEN

 MAKE_DATA -[21^8]

ENDIF

Says if the other family members question has a none response (code eight) with
any of the other valid responses (codes one through seven), then remove the eight
response.

In this example, we have used one of two modifiers available on the
MAKE_DATA command. These are useful when you do not want to blank the data
location. Minus (-) removes a punch. In this procedure we only want to remove the
eight code, but leave any others in tact. A plus sign (+) would add a punch to the
location.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

MENTOR v 8.1 -75

CLEAN [21*P^1//7/(-)8] "Should be multi response 1-7 or single 8"

Blanks the other family members question if it is not a valid code of 1-7 (any
combination) or exclusive code 8.

BLANK [22-80]
Blanks the remaining columns in the case. The BLANK command unconditionally
blanks the field specified.

WRITE_CASE
Writes the case to the output file SAMPL2.

Auto-fixing Case By Case
You could correct cleaning errors by writing an instruction to modify the data on a
case by case basis correcting those columns that are in error. In the following
example, we have written a procedure to correct only the cases with reported errors.
The case to correct is identified by its ID number located in columns one through
four.

Example: ~DEFINE

 PROCEDURE={CORRECT:

 IF [1.4#0001] THEN

 TRANSFER [19.2] = 10

 ENDIF

 IF [1.4#0002] THEN

 MAKE_DATA [18^2]

 BLANK [19.2]

 ENDIF

 IF [1.4#0003] THEN

 MAKE_DATA [18^1]

 ENDIF

 IF [1.4#0005] THEN

 TRANSFER [15.3$] = "THU"

P R E P A R I N G YO U R D A T A
2.3 CLEANING SPECIFICATIONS

-76 MENTOR

 ENDIF

 IF [1.4#0006] THEN

 MAKE_DATA [18^2]

 ENDIF

 IF [1.4#0007] THEN

 TRANSFER [19.2] = 5

 ENDIF

 IF [1.4#0008] THEN

 MAKE_DATA [21^1/2]

 ENDIF

 IF [1.4#0009] THEN

 MAKE_DATA [21^8]

 ENDIF

 IF [1.4#0010] THEN

 TRANSFER [15.3$] = "WED"

 ENDIF

 }

 ~INPUT SAMPL,ALLOW_UPDATE

 ~EXECUTE PROCEDURE=CORRECT

 ~END

2.3.3 Subsequent Cleaning Runs
Once the errors have been corrected in the data, the cleaning procedure that
produced the original error listing should be rerun to verify that no errors remain.
In the following example, we will use the clean data file, SAMPL2, as the input
file. If additional errors are found, SAMPL2 can be edited either interactively on a
case-by-case basis, or by modifying the auto-fixing procedure and rerunning it.

Example: ~INPUT SAMPL2

~DEFINE

 PROCEDURE={showerr:

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -77

 OK_COLUMNS [1.14]

 CHECK [15.3#MON/TUE/WED/THU/FRI/SAT/SUN] "Not a
valid code"

 CHECK [18^1/2] "Should be single 1,2"

 IF [18^1] THEN

 CHECK [19.2*Z#1//10] "Should be a number 1-10"

 ELSE

 CHECK [19.2^B] "Should be blank"

 ENDIF

 CHECK [21*P^1//7/(-)8] "Should be multi 1-7, or single 8"

 CHECK_COLUMNS

 }

~EXECUTE PROCEDURE=showerr

~END

If you saved your procedure in a DB file then it is not necessary to redefine it in
subsequent runs. Open the DB file with the >USE_DB command. Delete the lines
that define the procedure or comment them out by inserting the command
~COMMENT right after ~DEFINE. Specifications falling between a ~COMMENT
and the next tilde command will not be processed. See “2.3 CLEANING
SPECIFICATIONS”, the >CREATE_DB command.

2.4 CLEANING WITH SURVENT VARIABLES
The Survent interviewing program has been designed with features that makes data
errors highly unlikely, but:

• The questionnaire could be changed after the study begins. Data collected prior
to the change could be invalid.

• Errors could be made when open-ends are recoded.

• Someone reviewing the data in the CLEANER utility or in ~CLEANER could
make changes to the wrong columns.

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-78 MENTOR

• Interviewer changes (done when a respondent changes a previous response
using the ALTER keyword in Survent VIEW mode) could affect skip patterns
in the questionnaire.

This section will explain how to use one of Survent's automatic spec generation
options to create basic cleaning specifications. Survent specifications compiled
with the ~PREPARE COMPILE CLEANING_SPECS option produce a file of
cleaning statements for each CAT, FLD, NUM, VAR, and TEX question. The
resulting CLN file can be incorporated into a cleaning procedure to produce an
error listing. The same procedure can then be used to clean the data case-by-case.

The Survent program also includes an option to view and/or alter data on a case by
basis. Refer to your Survent manual under 4.1.4 VIEWING A PREVIOUS
INTERVIEW for more information.

If you know PREPARE syntax you could reproduce your paper and pencil
questionnaire, and then generate data cleaning and/or tabulation specs with one of
the compile options. See 4.7 USING PREPARE TO GENERATE Mentor
SPECIFICATION FILES for details on table building spec files.

You can produce a CLN file (and any other auxiliary file) at any time from a
compiled questionnaire file (QFF).

Example: ~QFF_FILE <studyname>

~PREPARE MAKE_SPEC_FILES CLEANING_SPECS

See Appendix B: TILDE COMMANDS, ~PREPARE for more information.

Each cleaning statement checks data validity against the PREPARE question
specification (i.e., single/multi punched, exclusive response, range of responses,
skip patterns, etc.). When these statements are executed interactively, a cleaning
screen similar to what the interviewer saw is presented each time an error is found.
You do not need to know any specific data modification commands to clean the
data. New data is automatically checked before the procedure continues to the next

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -79

error. It is possible to suppress the cleaning screens, but then you will need to know
basic data modification commands.

A SAMPLE SURVENT QUESTIONNAIRE
When you compile Survent specifications in PREPARE, each question can be
saved as a Mentor variable. These variables are stored in a CfMC DB file under the
Survent label name. Just as your data file contains punches or characters in a certain
column order, the DB file variables contain information that describe the contents
of these columns. Each one includes the question description (text, question label,
question type, column location, who should have answered this question) and
answer descriptions (valid punches, ASCII responses, numbers, exception codes).
The program-generated CLN file references these variables to check your data for
errors.

Here is our sample paper and pencil questionnaire rewritten as PREPARE
specifications. We have added a TEX type question to the original example in
section 2.2.1.

Example: { NAME: 5.10

NAME OF RESPONDENT:

!VAR,,10,1 }

{ DAY: 15.3

DAY OF THE WEEK:

!FLD

MON

TUE

WED

THU

FRI

SAT

SUN }

{ SIBLINGS: 18.1

WHETHER RESPONDENT HAS SIBLINGS:

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-80 MENTOR

!CAT,,1

1 YES

2 NO }

{ NUMSIBS: 19.2

!IF SIBLINGS(1)

TOTAL NUMBER OF SIBLINGS:

!NUM,,,1-10 }

{ OTHERS: 21.1

OTHER MEMBERS IN IMMEDIATE FAMILY:

!CAT,,7

1 GRANDMOTHERS

2 GRANDFATHERS

3 GRANDCHILDREN

4 COUSINS

5 IN-LAWS

6 NEPHEWS

7 NIECES

(-) 8 NONE OF THE ABOVE }

{ DEMOG: 22.1

INTERVIEWER: Please gather the following information from the
respondent and type the answers here.

HOME ADDRESS

RESPONDENT NAME

TELEPHONE NUMBER

!TEX }

CLEANING SPECIFICATIONS GENERATED BY A COMPILE
The cleaning specifications below were produced by compiling the sample
questionnaire above with ~PREPARE COMPILE CLEANING_SPECS. The

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -81

resulting file is called SAMPL.CLN. We will reference it in our procedure along
with the DB file also created when the sample questionnaire was compiled.
SAMPL.DB contains all the information about the variables NAME, DAY,
SIBLINGS, NUMSIBS, OTHERS, and DEMOG necessary for cleaning.

Responses to TEX type questions such as DEMOG are usually listed out with the
CfMC LIST utility. You would then work from the LIST report to edit TEX
responses. Refer to “2.4.1 Correcting Errors”, Modifying TEX Question Responses
for commands to display and edit this data outside of a cleaning procedure.

NOTE: We are referencing file names using the DOS/UNIX naming convention
studyname.extension. In MPE, the convention is studynameextension
(e.g., SAMPLCLN). In addition, MPE has an eight character file name
limit. To be consistent across platforms we are using the study code of
SAMPL.

Example: NAME:

 edit NAME

DAY:

 edit DAY

SIBLINGS:

 edit SIBLINGS

NUMSIBS:

 if (SIBLINGS(1))

 edit NUMSIBS

 endif

OTHERS:

 edit OTHERS

DEMOG:

 edit DEMOG

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-82 MENTOR

The CLN file consists of a cleaning statement for each CAT, FLD, NUM, TEX,
and VAR in our sample questionnaire. The EDIT command verifies that the data
matches the question definition, generates an error message when it does not, and
then presents a Survent-like cleaning screen. The EDIT command performs the
same function as the CHECK command (see the sample cleaning procedure in
“2.3 CLEANING SPECIFICATIONS”). The CHECK command does not display a
cleaning screen when errors are found. This is the main difference between the two

commands.

EDIT only presents a cleaning screen when an error is found. The ALTER
command presents the cleaning screen unconditionally. You might want to use this
command for TEX questions.

ALTERNATE CLN FILE
You have the option to produce a CLN file with CHECK commands and data
variables when your PREPARE specifications are compiled. Use the command
~SPEC_RULES CLN_CHECK. Specify this command before ~PREPARE
COMPILE CLEANING_SPECS. For example, instead of EDIT OTHERS, the
cleaning statement would be CHECK [1/21*P=7^1//7/(-)8]. This would be useful
if you want to edit the CLN file later on to add cleaning statements, and you want
the references to be to the data locations, independent of the Survent variables
which may themselves contain certain logic errors.

CUSTOM CLEANING SPECIFICATIONS
Include your own cleaning specifications in your questionnaire specification file
with the compiler command {!Mentor_CLN}. When Survent specifications are
compiled with the ~PREPARE COMPILE CLEANING_SPECS option,
statements specified inside this command will be passed to the CLN file. There is
no syntax checking by PREPARE. This option allows an experienced spec writer
to include other cleaning commands or complex cleaning instructions in the
questionnaire specifications. For example, you might need to check that the
responses to three questions add up to 100%. Here is what the cleaning spec might
look like.

Example: { !Mentor_CLN

IF SUM([15.2,17,19]) <> 100

ERROR "Responses do not add up to 100%"

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -83

ENDIF }

CONDITION AND BRANCHING STATEMENTS
Cleaning statements are generated for every condition and branching statement in
the questionnaire (!IF, SKIPTO, or !GOTO). The labels you see before each EDIT
statement (e.g., NAME:) are generated by Mentor for every question. These serve
as possible markers for branching caused by a SKIPTO or a !GOTO in the Survent
questionnaire. They have no effect on a cleaning run unless there is a preceding
GOTO statement that branches to that marker.

A PREPARE !IF statement is converted in the CLN file to a Mentor IF-THEN-
ELSE-ENDIF block. The structure closely resembles the PREPARE syntax except
that IF statements in Mentor must be closed with an ENDIF statement. For example
the NUMSIBS question was only asked if the response to SIBLINGS was a one
(Yes). The cleaning instruction below says to check NUMSIBS for valid responses
only if the data for SIBLINGS contains a one response. (THEN is implied but never
needs to be specifically stated.) The outside parentheses on Mentor IF statements
are added by Mentor for clarity. They are not required for a single condition.

Example: if (SIBLINGS(1))

edit NUMSIBS

 endif

Branching in a Survent questionnaire is accomplished with either a SKIPTO or a
!GOTO statement. Each one generates a GOTO statement in the CLN file.

Here is the original PREPARE specification rewritten with a SKIPTO instruction
on the NO response to SIBLINGS instead of the !IF statement on NUMSIBS.

Example: { SIBLINGS: 18.1

WHETHER RESPONDENT HAS SIBLINGS:

!CAT,,1

1 YES

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-84 MENTOR

(SKIPTO OTHERS) 2 NO }

SKIPTO OTHERS generates a GOTO cleaning command. GOTO tells Mentor to
move forward to the place marked in the cleaning procedure and execute the
command(s) specified there. A GOTO can conditionally move to different points
in the procedure depending on the responses found in the data.

Example: SIBLINGS:

edit SIBLINGS

goto (*,OTHERS) SIBLINGS

NUMSIBS:

edit NUMSIBS

OTHERS:

edit OTHERS

First SIBLINGS is checked for a valid response with the EDIT command. Then
based on the response found in the data, the GOTO will execute in one of two
ways. A Yes response means Mentor will continue processing, indicated by the
asterisk (*). A No response will cause Mentor to go to the label OTHERS and
continue processing from there.

In the next example, the same branching is accomplished with a !GOTO statement.
While it is unlikely that you would write this with a !GOTO, it illustrates what the
cleaning specification would look like.

Example: { SIBLINGS: 18.1

WHETHER RESPONDENT HAS SIBLINGS:

!CAT,,1

1 YES

2 NO }

{ !IF SIBLINGS(2)

!GOTO OTHERS }

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -85

The cleaning procedure will branch to the label OTHERS when the response to
SIBLINGS is two.

SIBLINGS:

edit SIBLINGS

QQ000.40:

if (SIBLINGS(2))

goto OTHERS

endif

NUMSIBS:

 edit NUMSIBS

OTHERS:

edit OTHERS

VARIABLE MODIFIERS
There are three optional modifiers that allow you to control how the data is checked
by the EDIT command. These modifiers are also available to the CHECK and
CLEAN commands. You can edit the program-generated CLN file to add any of
these before the variable name.

modifier is optional, but if you include it:

• a minus sign (-) allows a blank in addition to other valid answers

• asterisk (*) can be used to indicate that the field must be blank.

• a plus sign (+) means anything in addition to the valid punches is also okay.

description outlines what the command will be looking for.

Variable Type Modifier Description
VAR (none) Valid ASCII at least minimum

length

- Valid answer or blank field

* Must be blank

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-86 MENTOR

FLD (none) Location(s) has one or more of
the codes on the list (checking
for an exclusive code and
maximum responses).

- Valid answer or blank field

* Must be blank

NUM (none) Number within the range, or the
exception

number, or one of the exception
codes

- Valid answer or blank field

* Must be blank

CAT (none) Has valid codes (checking for

exclusive item and maximum

responses) and no other

punches in the location

- Valid answer or blank field

* Must be blank

+ Anything in addition is okay.

TEX (none) Internal text pointers are okay

* Must be blank (i.e., not asked)

- Valid answer (good text

pointer) or blank

As an example we have rewritten the statements that check the NUMSIBS
question and the DEMOG question.

Example: NUMSIBS:

if (SIBLINGS(2)

edit *NUMSIBS

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -87

endif

DEMOG:

edit -DEMOG

For NUMSIBS the IF condition was changed to say if the response to the
SIBLINGS question was No (2) then the NUMSIBS question must be blank. The
asterisk (*) preceding the question label NUMSIBS means the data for this question
must be blank. For DEMOG we added the minus sign (-) modifier to allow this
question to be blank in addition to a valid response.

GENERATING A LIST OF ERROR MESSAGES
Now that we have a CLN file we need to incorporate it into a cleaning procedure
and then into a larger specification file to generate an error listing.

The commands used in the example below were covered in some detail in section
“2.3 CLEANING SPECIFICATIONS”. We will only cover commands or concepts
not previously discussed. Please refer back to that section for more information.

Example: ~DEFINE

 PROCEDURE={CLEANIT:

 OK_COLUMNS [1.4]

 &SAMPL^CLN1

 CHECK_COLUMNS

 WRITE_CASE

 }

The cleaning procedure looks very similar to the example in section 2.3. But
instead of writing a CHECK statement and data description for each variable, we

1.The caret (^) allows any CfMC-supported operating system to read this file, i.e.,
as SAMPL.CLN (by DOS or UNIX) or SAMPLCLN (by MPE). Notice that
&filename has been indented along with the procedure commands. Normal CfMC
processing requires that the ampersand (&) be in column one of the spec file.

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-88 MENTOR

read in the program-generated CLN file. The ampersand (&) preceding the file
name tells Mentor to read the file referenced from the current directory or group
unless otherwise specified. This procedure also writes out each case to a new data
file ensuring that the original data file remains intact.

Here is the above cleaning procedure incorporated into the complete specification
file. The DB file must be opened first since the variables referenced in the CLN
file are stored here. ~SET ERROR_REVIEW suppresses the cleaning screens
displayed by default when an error is found. See 2.3.2 CORRECTING ERRORS,
Auto-Fixing The Data for an explanation of ~OUTPUT and WRITE_CASE.

Example: >ALLOW_INDENT

>USE_DB SAMPL

~DEFINE

 PROCEDURE={CLEANIT:

OK_COLUMNS [1.4]

&SAMPL^CLN

CHECK_COLUMNS

WRITE_CASE

 }

~INPUT SAMPL

~OUTPUT SAMPL2

~SET ERROR_REVIEW

~EXECUTE PROCEDURE=CLEANIT

~END

If the above file is named CLEAN.SPX you would run it by entering:

Mentor CLEAN.SPX -CLEAN.LFL (DOS/UNIX)

RUN Mentor.CGO.CFMC;INFO="CLEANSPX CLEANLFL" (MPE)

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -89

The list of errors would go to the output file, CLEAN.LFL. Below is an
abbreviated error listing that could be generated by this specification file. See 2.3
CLEANING SPECIFICATIONS, Generating a List of Error Messages for more
information.

ID: 0001

error 3: NUMSIBS [19.2#] has error: number in range is
requiredNUMSIBS[19.2#]="12"

ID: 0002

error 2: SIBLINGS [18^] has error: a valid answer is required
SIBLINGS[18^]=" "

ID: 0003

error 2: SIBLINGS [18^] has error: extra punches SIBLINGS[18^]="3"

ID 0004:

error 1: NAME [5.10$] has error: string too short NAME[5.10$]=" "

ID 0005:

error 5: DAY [15.3#] has error: a valid answer is required DAY[15.3#]=" ".

.

.

.

5 errors in 5 cases

error 1: 1 NAME [5.10$] has error

error 2: 2 DAY [18^] has error

error 3: 1 NUMSIBS [19.2#] has error

error 5: 1 DAY [15.3#] has error

PROGRAM-GENERATED ERROR MESSAGES FOR SURVENT
QUESTIONS
Here are the automatic error messages generated by Mentor for different types of
errors found.

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-90 MENTOR

Question Type Errors Error Message
CAT or FLD question is blank when an A valid answer is required

answer should be present.

Single response CAT question has an too many answers

invalid punch with a valid punch.

Single response CAT question has more extra punches

than one punch per column.

Single reponse FLD question has an invalid a valid answer is required

response.

Multi-response FLD question has an invalid codes or blank field

invalid response, or leading or embedded

blanks.

Multi-response FLD contains duplicate duplicate codes

responses

Multi-response CAT or FLD question has exclusive code violation

an exclusive response with another

punch or response.

VAR question does not contain the string too short

minimum number of typed characters.

NUM question is blank when an answer an answer is required

should be present.

NUM question has an invalid answer a valid answer is required

(out of range or invalid exception code).

TEX question has a bad internal pointer an answer required

pointer or is blank when an answer is

required.

TEX question is not blank (skipped) and it must be blank

should be.

You can specify your own error message inside "quotes" after the EDIT command.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -91

Example: EDIT SIBLINGS "Should be single punched 1 or
2"

2.4.1 Correcting Errors
You have several choices for cleaning your data once you have an error listing.

• Clean each case with one of the data modification commands described in
“2.5.1 Quick Reference: Cleaning Commands And Examples”.

• Clean using the procedure we wrote to list out the errors. There are three
advantages to this approach: you do not need to know data modification
commands; EDIT only allows access to columns with errors; changes to the data
are checked for errors before you move to the next case.

• Clean the data with an auto-fixing procedure.

USING SURVENT-TYPE CLEANING SCREENS
The EDIT command in the program-generated CLN file presents a Survent-like
screen for data cleaning. It is similar to the screen the interviewer would see during
actual interviewing with the C-Survent software. The top of the screen displays the
text of the question including any recode table. The bottom of the screen displays
the question name, the data location and the current data. If you enter an invalid
response an appropriate error message displays, just as it would for an interviewer.

Here is a sample spec file called SCRNEDIT.SPX. This file contains all the
commands needed to clean our sample data file using the Survent screens.

Example: >ALLOW_INDENT

>USE_DB SAMPL

>PRINT_FILE LOGIT, ECHO

~DEFINE

 PROCEDURE={CLEANIT:

 OK_COLUMNS [1.4]

 &SAMPL^CLN

 }

~SET LOGGING

~INPUT SAMPL2,ALLOW_UPDATE

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-92 MENTOR

~EXECUTE PROCEDURE=CLEANIT

The ~SET ERROR_REVIEW statement was omitted. For interactive cleaning we
do not want to suppress the Survent cleaning screens. The data file we wrote out
with the error listing procedure is opened in ALLOW_UPDATE mode to save all
of our changes.

The CHECK_COLUMNS command does not present a cleaning screen so it has
been omitted from this procedure. The columns reported by CHECK_COLUMNS
in the error listing should be examined interactively, and either modified or
blanked using the BLANK command.

~EXECUTE PROCEDURE=CLEANIT executes the procedure starting at the
beginning of the data file. The error lists to the screen and then the cleaning screen
for that question is presented. New responses are checked against the question's
parameters just as they would be during an actual interview. A Survent error
message displays when an invalid response is entered. The error summary is
displayed when Mentor reaches the end of the data file (refer to the sample error
list and summary earlier in this section).

There is no ~END command in this file, but you could put one in, otherwise you
will provide it from the keyboard when you want to exit Mentor.

The command line to run this spec file would look like this:

Mentor &SCRNEDIT.SPX CON(DOS)

Mentor "&SCRNEDIT.SPX" CON(UNIX)

RUN Mentor.CGO.CFMC;INFO="&SCRNEDIT CON"(MPE XL)

In this sample, the first case has an error in the NUMSIBS. The procedure will
stop there and display this error message:

ID: 0001

error 3: NUMSIBS [19.2#] has error: number in range is required

NUMSIBS[19.2#]="12"

ID: 0001

...and now you can modify NUMSIBS[19.2#]="12"

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -93

Press <return> to continue

This shows that case ID 0001 has an answer (12) in columns 19 and 20 which is
outside of the allowed numeric range of 1-10 for this question. When you press
<Return> (or Enter) a screen similar to the one below will display.

TOTAL NUMBER OF SIBLINGS:

 -->

enter the new values or RES/BLK/TERM (NUMSIBS[1/19.2=12])

RES/BLK/TERM are commands you can enter at the prompt instead of new data.

RES
Restores the original data and prompts the user to continue or to begin entering
commands from the console. Original refers to the state of the current case when
the current command accessed it. If you are using a procedure as we are here then
RES will cause the procedure to go on to the next error.

BLK
Blanks the field and continues to the next error.

TERM
Terminates the cleaning procedure leaving you at the CLeaNer--> prompt. Type
some other command or ~END to exit Mentor.

We will correct the data by entering a new value of 10 at the arrow prompt. The
new value is automatically checked against the question's structure. If it invalid
then an error message will print. You will not be allowed off the screen until either
the correct value is entered or one of the allowed commands.

When Mentor reaches the end of the data file you will see a message similar to this:

found the EOF_DATA without finding CLEANIT

CLeaNer-->

Enter ~END to exit or another command.

MODIFYING TEX QUESTION RESPONSES
As we explained earlier, you can use the EDIT cleaning command to check TEX
questions, but a Survent screen is only presented when an error is found. It is more

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-94 MENTOR

likely that you will be correcting typographical errors from the report of verbatims
generated by the LIST utility. In that case, you will want to clean TEX responses
separately from your regular cleaning run.

You must indicate the start location of the text data in the data file. By default, it is
the first column of the next record after the last data column used, or the column
specified on the TEXT_START= ~PREPARE header statement option. There are
two ways to do this:

1 Open the QFF file (~QFF_FILE name) before opening the data file. Mentor will
determine the text location from the compiled questionnaire file.

2 Use the TEXT_LOCATION= option on either the ~INPUT or the ~CLEANER
FILE statement.

Here are the TEX question modifying command options.

MODIFY_TEXT <location> or <varname>
Displays the current response and lets you enter a new one. Specify either the
location of the TEX question or the variable name (you must open the DB file first
with >USE_DB).

ERASE_TEXT <location> or <varname>
Erases the response and the internal text pointers for this question. Use this
command instead of BLANK for TEX questions.

ALTER varname
Presents the question in a Survent cleaning screen unconditionally. Unlike EDIT,
the screen is presented whether or not an error is found.

AUTO-FIXING THE DATA
Refer to “2.3.2 Correcting Errors”, Auto-Fixing The Data for an explanation of
auto-fixing and the commands used in this procedure. The following is an example
of cleaning the data in batch mode.

Example: >USE_DB SAMPL

~DEFINE

 PROCEDURE={AUTOFIX:

CLEAN DAY

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -95

CLEAN SIBLINGS

 IF [NUMSIBS#10//99] THEN

TANSFER NUMSIBS= 10

 ENDIF

 CLEAN -NUMSIBS

 IF [NUMSIBS#" "] THEN

 MAKE_DATA SIBLINGS(2)

 ELSE

MAKE_DATA SIBLINGS(1)

 ENDIF

 IF OTHERS(8) AND OTHERS(1-7) THEN

MAKE_DATA -OTHERS(8)

 ENDIF

 CLEAN OTHERS

 WRITE_CASE

 }

~SET ERROR_REVIEW

~INPUT SAMPL

~OUTPUT SAMPL2

~EXECUTE PROCEDURE=AUTOFIX

~END

The CLEAN command tells Mentor to examine each case using the data
descriptions generated from the PREPARE questionnaire specifications, and to
blank those data columns whenever they deviate from that description. Where
needed, specific conditions are given for changing the data.

The CLEAN command can have an error message associated with it. This message
is helpful in the error summary. It provides a tally of how many times this error was
found causing the data to be blanked.

P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

-96 MENTOR

You could correct cleaning errors by writing an instruction to modify the data on a
case by case basis. This procedure corrects the NUMSIBS and DAY variables
using the TRANSFER command, and the SIBLINGS and OTHERS variables
using the MAKE_DATA command. If a column should be blank and it is not, it is
corrected with the BLANK command.

Example: >USE_DB SAMPL

~DEFINE

PROCEDURE={ CORRECT:

IF [1.4#0001] THEN

TRANSFER NUMSIBS = 10

ENDIF

IF [1.4#0002] THEN

MAKE_DATA SIBLINGS(2)

 BLANK NUMSIBS

 ENDIF

 IF [1.4#0003] THEN

 MAKE_DATA SIBLINGS(1)

 ENDIF

 IF [1.4#0005] THEN

 TRANSFER [DAY$] = "THU"

 ENDIF

 IF [1.4#0006] THEN

 MAKE_DATA SIBLINGS(2)

 ENDIF

 IF [1.4#0007] THEN

 TRANSFER NUMSIBS = 5

 ENDIF

 IF [1.4#0008] THEN

 MAKE_DATA OTHERS(1,2)

 ENDIF

. .
 .

. .P R E P A R I N G YO U R D A T A
2.4 CLEANING WITH SURVENT VARIABLES

MENTOR v 8.1 -97

 IF [1.4#0009] THEN

 MAKE_DATA -OTHERS(8)

 ENDIF

 IF [1.4#0010] THEN

 TRANSFER [DAY$] = "WED"

 ENDIF

 }

~INPUT SAMPL2, ALLOW_UPDATE

~EXECUTE PROCEDURE=CORRECT

~END

2.4.2 Subsequent Cleaning Runs
Once the errors have been corrected in the data, the cleaning procedure should be
rerun to ensure that no errors remain. In the following example, we will use the
corrected file, SAMPL2, as the input file. If additional errors are found, SAMPL2
can be corrected using one of the methods described in the previous section.

Example: >ALLOW_INDENT

>USE_DB SAMPL

~DEFINE

 PROCEDURE={CLEANIT:

 OK_COLUMNS [1.4]

 &SAMPL^CLN

 CHECK_COLUMNS

 }

~SET ERROR_REVIEW

~INPUT SAMPL2

~EXECUTE PROCEDURE=CLEANIT

~END

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-98 MENTOR

2.5 REFERENCE

2.5.1 Quick Reference: Cleaning Commands And Examples
This section is a list of the more commonly used cleaning commands and a short
explanation of each of them. With these commands, you can access specific cases
in your data file and correct them.

NOTE: Before starting the cleaning process, make a backup copy
of your data file. You always want to have a copy of your “untouched”
data.

Start Mentor by entering:

CLEANIT

This utility starts Mentor, starts the cleaner block, and opens a log file called
clean.log. CLEANIT records your commands in a log file named clean.log. If you
do not want to append to an existing log file, you will have to rename clean.log
before starting CLEANIT again.

Or, you can start Mentor by entering:

Mentor CON CON (DOS/UNIX)

RUN Mentor.CGO.CFMC;INFO="CON CON" (MPE XL)

CON is short for console, this tells Mentor to expect input from the keyboard, and
to send messages out to the screen. You could specify a file name to have Mentor
keep a record of the messages to a List file, for example:

Mentor CON SAVEIT.LFL,ECHO (DOS/UNIX)

RUN Mentor.CGO.CFMC;INFO="CON SAVEIT,ECHO" (MPE XL)

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -99

ECHO tells Mentor to send messages to the screen as well as the List file. See
Utilities, Appendix D: CfMC Conventions for more information on List files.

After Mentor starts, you will prompted to enter a command. Type ~CLEANER to
start the cleaner block. The prompt will change to "CLeaNer-->" and you can then
start cleaning your data. To enter the Mentor CLEANER block, type ~CLEANER:

(Enter command)-->~cleaner

 CLeaNer-->

A list of common CLEANER commands and short description of them follows. For
a complete list of ~CLEANER commands and their syntax, see Mentor, Appendix
B: Tilde Commands.

Action Command Description (command abbreviation)

Help >HELP Display on-line help for ~CLEANER.

Open file FILE <filename> options Opens a CfMC System file, for
modification, with other options if needed.
Changes are written to the file when you
move to the next case. Related Commands:
~INPUT; ~OUTPUT, ~CLEANER
WRITE_CASE.

Get Variables USE_DB <studyname> Opens the DB file containing variables from
a Survent questionnaire.

Get a case NEXT "<caseid>"/FIRST/LAST Gets case with ID of <caseid>. Keywords
FIRST and LAST will get first case or last
case, respectively. (N)

Move NEXT #,+# Goes to record number'#', or in file forward
(+) the number of cases specified. (N)
Maximum -# is 9 cases.

Set command ~SET SEQUENTIAL READ Tells Mentor to deal with cases in case order.

Find case BACKUP # Goes backwards the number of cases
specified.

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-100 MENTOR

FIND <variable description>
Goes to the next case or procedure name that satisfies either the variable
description or procedure. The FIND command by itself re-executes the
last description specified. (F)

FIND_FLAGGED
Finds the next case with the error flag set on dirty cases that were written
(with a cleaning procedure) to a ~OUTPUT file, to the ~INPUT file
opened in ALLOW_UPDATE mode, or opened with the FILE command.
(FF)

HUNT <variable description>
Like FIND, but starts at the top of the data file. (H)

Use FIND or HUNT to locate the case that contains data defined in the variable.

Example:

DEFINE x[1.4#0023]
HUNT x

This would find the case that had 0023 in columns one through four.

Action Command Description (command
abbreviation)

Display DA <col.wid>,<variable> or * Displays data as ASCII text by
specifying the data columns, the
variable name, or * for the entire case.
(D)

DB/DC <col.wid> or <variable> Displays data in binary or column (punch)
mode as described for DA command
above, but does not do *.

DT <col>, <text variable> or * Displays text question data (collected in
Survent with a TEX type question) by
referencing the text pointer column,

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -101

the Survent question label, or * for all
text questions.

SHOW <varname>, *, *B Displays the entire question including
text and response list. * displays the
entire case in card image. *B displays
the entire case in column binary
(punch) format.

Refer to your UTILITIES manual under APPENDIX C: GLOSSARY OF CFMC
TERMS for definitions of ASCII, binary, text variables, or other unfamiliar terms.

Modify BLANK [col.wid] or <variable> Blanks the data columns. (B)

ERASE_TEXT <col.wid> Erases the text area and the
or <variable> internal text pointers for TEX type

questions collected in Survent.
(ERASETEX)

MA <col.wid> or <variable> Modifies data in ASCII format.

MB/MC <col.wid> or <variable> Modifies data in binary or column
(punch) format.

MT <col> or <text variable> Modifies data from a text question
(collected in Survent with a TEX
type question) with the program's
editor. You must specify the option
TEXT_LOCATION= on either the
FILE or ~INPUT command.

MA, MB, MC, MT are interactive data modification commands only.

Action Command Description (command
abbreviation)

MAKE_DATA +/-[loc^punch] Modifies punch data. (MKDATA)
or variable Example: MKDATA +[18^1]

RESTORE Restores the data in this case (i.e.,
drops current changes), but only if
you have NOT moved to another
case.

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-102 MENTOR

TRANSFER Modifies data. (T)

Examples:

numeric data: T [19.2] = 5

string/ASCII data: T [15.3$] = "THU"

punch data: T [11.2$P] = "1,2,3"

sum the values: T [20.3] = SUM([5,6,7])

add numeric data: T [10.2] = [5] + [20]

Delete a case ASSIGN_DELETE_FLAG Flags this case for deletion.1

(DELETE)

UNDELETE Removes the delete case flag.

Redo >EDIT_PREVIOUS Displays last line typed at the
program prompt in the program's
editor for modification. Type ESC
to exit and re-execute the
command on the current case.
(EP)

FIND_FLAG_REDO Finds the next case with an error
flag and re-executes the last
command line. (FFR)

FIND_REDO Finds the next case that satisfies
the variable description and
re-executes the last command line.
(FR)

NEXT_REDO Goes to the next case and
re-executes the last command line.
(NR)

1. Flagged cases are not read (i.e., they are ignored) by a procedure that modifies
data, WRITE_CASE, ~COPY, ~INPUT, etc. unless you instruct Mentor to use
deleted cases (USE_DELETED and the System constant
DELETED_CASE_FLAG).

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -103

REDO Re-executes the last command line.
(R)

You can specify commands on the same line if you separate them with semicolons.
Pressing <Enter> will execute all of the commands specified on that line.
>EDIT_PREVIOUS will display the entire line in the editor for modification. Any
of the redo commands will re-execute all of the commands.

Example: DA 5.3;DA 10.3;DA 20.4

Action Command Description (command
abbreviation)

Define DEFINE name[data description] Defines a data variable
and assigns a name for
future reference with
display, find, or modify
commands. (DEF)

You can attach a name directly to any DISPLAY, FIND, or MODIFY command and
then refer to the name the next time you use the command.

Example:

DA x[15.3]
DA x

Log SET LOGGING Records interaction with Mentor
either from the keyboard or a
&file, and Mentor's response to
each action. The log goes to the list
file providing a record of all data
changes. If the ECHO option is
specified after the list file name,
then program messages also
display to the screen.

Get info >STATUS INPUT Displays information on the data
file and the current case.

NOTE: Refer to your Utilities manual Appendix A: META COMMANDS for other
>STATUS options.

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-104 MENTOR

Exit ~END Quits program and saves data
changes.

Move to new ~command Moves to another ~tilde block.
tilde block

EXAMPLE CHECK STATEMENTS
SINGLE RESPONSE PUNCH VARIABLE (Survent CAT TYPE)

CHECK [11*P=1^1//5/Y](*P=1 is the default and does not need to be
specified)

CHECK [11^1//5/Y]

MULTIPLE RESPONSE PUNCH VARIABLE WITH Y EXCLUSIVE

CHECK [12*P^1//5/(-)Y] or CHECK [12^1-5/Y]

CHECK [12*P=3^1//5/(-)Y](*P=3 says this may have up to three valid
responses)

SINGLE RESPONSE PUNCH ACROSS MULTIPLE COLUMNS

CHECK [13.2^1//20/24] (*P=1 is implied)

MULTIPLE RESPONSE PUNCH VARIABLE ACROSS MULTIPLE
COLUMNS

CHECK [15.2*P^1//20/(-)24] or CHECK [15.2^1-20/24]

CHECK [15.2*P=10^1//20/(-)24]

SINGLE RESPONSE ASCII (STRING) VARIABLE (Survent FLD TYPE)

CHECK [17.2*Z#1//10/99](*Z means the field must be zero-filled)

CHECK [3/20.2#CA/RI/MA/NY/OR/CT]

SINGLE RESPONSE ASCII (STRING) VARIABLE (Survent VAR TYPE)

CHECK [5.10*P=5$]

*P=n specifies the ending column to check (starting from the right-most column in
the field for a non-blank character. This can be a number 1-127. From a Survent
VAR question this is the minimum number of typed (i.e, non-blank, including
spaces) characters requirement for that question.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -105

In this example, Mentor checks the field starting in column 14 through column 5
for a non-blank character. Columns five through nine could be blank. If you needed
to check for a character anywhere in the field then you would specify *P=1.

MULTIPLE RESPONSE ASCII VARIABLE WITH 99 EXCLUSIVE

Duplicates or skipped blank fields are an error.

CHECK [19.2,...,25*ZF#1//45/(-)99]

MULTIPLE RESPONSE ASCII VARIABLE WITH 99 EXCLUSIVE

Duplicates are allowed, but skipped blank fields are an error.

CHECK [19.2,...,25*ZL#1//45/(-)99]

Multiple Location Variables Without *F or *L

SINGLE PUNCH/SINGLE COLUMN

CHECK [41,...,47,51,52^1//5/Y] (*P=1 is implied)

The example above simplifies this syntax:

>REPEAT $A=41,...,47,51,52

CHECK [$A^1//5/Y]

>END_REPEAT

MULTIPLE PUNCH/SINGLE COLUMN

CHECK [53,56*P^1//5/(-)Y] or CHECK [53,56^1-5/Y]

CHECK [53,56*P=5^1//5/(-)Y]

The examples above simplify this syntax:

>REPEAT $A=53,56

CHECK [$A^1-5/Y]

>END_REPEAT

MULTIPLE PUNCH/MULTIPLE COLUMN

CHECK [61.2,63.2*P^1//20/(-)24] or CHECK [61.2,63.2^1-20/24]

CHECK [61.2,63.2*P=20^1//20/(-)24]

The examples above simplify this syntax:

>REPEAT $A=61,63

CHECK [$A.2^1-20/24]

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-106 MENTOR

>END_REPEAT

SINGLE ASCII/MULTIPLE COLUMNS (Survent FLD TYPE)

CHECK [65.2,67,69*Z#1//10/99] or CHECK [65.2,67,69*Z#1-10,99]

The examples above simplify this syntax:

>REPEAT $A=65,67,69

CHECK [$A.2*Z#1//10/99]

>END_REPEAT

SINGLE NUMERIC/MULTIPLE COLUMNS (Survent NUM TYPE)

CHECK [71.3,74#1//100/DK/NA/RF] or

CHECK [71.3,74#1-100,DK,NA,RF] or

CHECK [71.3,74*Ranges=1-100,,DK,NA,RF] (~PREPARE COMPILE
CLEANING_SPECS)

The examples above simplify this syntax:

>REPEAT $A=71,74

CHECK [$A.3#1-100,DK,NA,RF]

>END_REPEAT

Fields Must Be Blank After The 'None/No More' Code

Assume four consecutive two column fields with codes 01-17,98, and 99, where
98 is No More and 99 is Refused. First clean with a typical CHECK statement.

Example: CHECK [1.2,...,7.2*F#1//17/98/(-)99]

There are three possible errors that could still exist with the 98 (No More) code.

1 98 is in the first position. The specification to clean would look like this:

IF [1.2#98] THEN

 ERROR "1.2 is 1st position and has no more code"

ENDIF

2 98 is in the list, but is not the last code in the field.

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -107

This specification returns an error if the number of total answers (NUMITEMS)
does not equal the category position (SUBSCRIPT) of the 98 code:

IF NUMITEMS([1.2,...,7.2^NB]) <> SUBSCRIPT([1.2,...,7.2#98])

 THEN ERROR "98 is not last code in the field 1-8:" [1.8$]

ENDIF

3 The code list terminates with a code other than 98 or 99. This is only an error if 98
is always coded as the last mention (except for someone who has the maximum
number of responses).

This specification returns an error if there is a blank and there is not a 98 or 99
code:

IF [1.2,...,7.2^B] AND NOT([1.2,...,7.2#98,99]) THEN

 ERROR "1-8 has a blank and not a 98 code:" [1.8$]

ENDIF

2.5.2 Sending Error Messages To A Print Fi le
You can create a separate report of the errors in your system file by opening a print
file. This is an ASCII file and it will exclude most of the processing messages
generated by Mentor when a specification file is run.

Example: >USE_DB SAMPL

>PRINT_FILE DIRTY

~INPUT SAMPL

~OUTPUT SAMPL2

~SET ERROR_REVIEW, ERRORS_TO_PRINT_FILE

~EXECUTE PROCEDURE=CLEANIT

~END

>PRINT_FILE says to create a file called DIRTY (the default extension is PRT).
The ~SET option ERRORS_TO_PRINT_FILE says to send the error messages and
the error summary to the print file. This listing will look similar to the error list

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-108 MENTOR

shown in “2.4 CLEANING WITH SURVENT VARIABLES”, Generating A List Of
Error Messages.

NOTE: You can specify your own extension for the print file, e.g.,
>PRINT_FILE DIRTY^LFL,USER. Refer to Appendix A: META
COMMANDS in your UTILITIES manual for more information.

If the above file is named CLEAN.SPX, you would run it by entering:

Mentor CLEAN.SPX -CLEAN.LFL(DOS/UNIX)

RUN Mentor.CGO.CFMC;INFO="CLEANSPX CLEANLFL"(MPE)

The list of errors would go to the output file, CLEAN.LFL. Below is an
abbreviated error listing that could be generated by this specification file. See “2.3
CLEANING SPECIFICATIONS”, Generating a List of Error Messages for more
information.

ID: 0001

error 3:NUMSIBS [19.2#] has error: number in range is
requiredNUMSIBS[19.2#]="12"

ID: 0002

error 2: SIBLINGS [18^] has error: a valid answer is required

SIBLINGS[18^]=" "

ID: 0003

error 2: SIBLINGS [18^] has error: extra punches SIBLINGS[18^]="3"

ID 0004:

error 1: NAME [5.10$] has error: string too short NAME[5.10$]=" "

ID 0005:

error 5: DAY [15.3#] has error: a valid answer is required DAY[15.3#]=" "

.

.

.

5 errors in 5 cases

. .
 .

. .P R E P A R I N G YO U R D A T A
2.5 REFERENCE

MENTOR v 8.1 -109

error 1: 1 NAME [5.10$] has error

error 2: 2 DAY [18^] has error

error 3: 1 NUMSIBS [19.2#] has error

error 5: 1 DAY [15.3#] has error

2.5.3 Specifying More Than One Command Per Line
When you write cleaning procedures it is often more convenient to specify more
than one command on a line, especially conditionals. Preceding cleaning
commands with a dollar sign ($) helps Mentor to interpret a specification line when
it can be ambiguous whether or not the command is followed by a variable name or
another command. You do not need a $ on the first command on the line.

Example: IF [5^1] WRITE_CASE $ELSE SAY "Case not
written" $ENDIF

In the above example the commands ELSE and ENDIF could be interpreted as
variable names. Remember, preceding commands with a dollar sign ($) ensures that
Mentor will always be able to distinguish between the two.

2.5.4 Addit ional Commands
The commands listed below are related to data cleaning and generation operations.
Refer to Appendix B: TILDE COMMANDS under the tilde commands listed below
for information.

~CLEANER Commands:

ASSIGN_DELETE_FLAG Flags the case for deletion.

ASSIGN_ERROR_FLAG Turns on the error flag for this case.

CLEAR_ERROR_FLAG Clears the error flag.

COPY Copies data from one field to another.

FIXUP Blanks the data location when it does not fit the
data description given. Mentor does not generate
any messages when a data error is found.

MODIFY Modifies the data. See also COPY and
TRANSFER.

P R E P A R I N G YO U R D A T A
2.5 REFERENCE

-110 MENTOR

TERMINAL_SAY Prints a message to the screen only (use in a
procedure).

UNDELETE Removes the delete flag.

UPSHIFT Changes all alpha characters in the specified
location to upper case.

~SET Options:

CLEANER_DEFINITION= Prepends this string to every ~CLEANER
command.

ERROR_LIMIT= Maximum errors allowed in a cleaning run.

ERROR_STOP= Stops compiling a procedure when this number of
syntax errors is reached.

MAXIMUM_PAST_CASES Sets the maximum number of cases that Mentor
can backup to with ~CLEANER NEXT -#.

PROCEDURE_DUMP Echoes Mentor's internal processing messages as it
compiles and executes a procedure.

PRODUCTION_MODE Updates a case without confirmation. This is the
default for the ~CLEANER FILE command.

TESTING_MODE Does not allow any changes to the data file unless
it is opened with ALLOW_UPDATE. Overrides
PRODUCTION_MODE on the FILE command.

TRAINING_MODE Does not allow changes to the data. Use this option
for training purposes.

Refer to “9.3.1 System Constants” and “9.3.2 Functions” for other commands
that you can use.

Version 8.1 MENTOR -111

.

. .
R E F O R M A T T I N G Y O U R D A T A 3

. .I N T R O D U C T I O N
his chapter describes the most commonly used data manipulation
statements and shows how to use arithmetic calculations to generate
numeric data for use in tables.

3.1 WHY REFORMAT DATA?

There are several different ways you can change how data is organized in a data
file. For example, you may need data in a study that is the combination of two
variables (e.g., one variable filtered by the other).

If you want to change the the data file type (such as changing a CfMC data file to
an ASCII data file), use the CfMC utility COPYFILE or MAKECASE. If you
want to recover a corrupted data file, use the RAWCOPY utility. See the Utilities
manual for a complete description of COPYFILE, MAKECASE and RAWCOPY.

THE OVERALL STRUCTURE

You can use data manipulation statements in either the ~CLEANER or ~DEFINE
block of the Mentor program. In the ~CLEANER block, data modification takes
place immediately and only on the case you have in hand. With ~CLEANER, you
can either use each command by itself or execute a procedure. In the ~DEFINE
block, you must create procedures which are then executed on all data cases when
called in the ~EXECUTE block. We will be concentrating primarily on commands
that you use in the ~DEFINE block. For an example of using a procedure in the
~CLEANER block, see “3.1.8 Data Manipulation in the ~CLEANER Block”.

There are five basic commands that you can use for data manipulation:

• COPY

T

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-112 MENTOR

• MAKE_DATA

• PRINT_TO_DATA

• TRANSFER

• MODIFY

The data variables used by these commands can be defined as punches, strings
(literals), or numeric. They can be variables from a DB file that was created in
EZWriter/PREPARE or they can be created with the PREPARE= instruction (see
section “Creating Variables” under “3.1.5 Data Manipulation for Predefined
Variables”).

Two other useful commands are BLANK and SAY. BLANK allows you to blank
the location or data variable referenced (see “3.1.2 Blanking Data”), and SAY
allows you to display the data associated with any location or data variable (see
“3.1.3 Printing Text and Data Fields”).

RULES FOR MANIPULATING DATA

Rules Applying to Punch Type Variables

Defining a punch type variable will allow that data location to receive any of the
valid punches (1-9,0,X,Y). Because no valid punches are defined with the variable
you can add, subtract, and change punches as you wish.

[19.2$P] where 19.2 is the actual data location and each column will allow all
punches (1-9,0,X,Y).

[city$P] where CITY can already exist, and enclosing it in square brackets
with the $P redefines the data location associated with city as a punch
type variable.

Rules Applying to String Type Variables

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -113

Defining a string type variable will allow any valid ASCII string to be put into that
data location. The string will be left-justified and if too long, it will be truncated.

[21.2$] where 21.2 is the actual data location and each column accepts only a
single ASCII character.

[name$] where NAME can already exist, and enclosing it in square brackets
with the $ redefines that data location as a string type variable.

Rules Applying to Numeric Type Variables

Defining a numeric type variable means the only valid data that will be recognized
in that location is a number. If some other data exists in that location, the program
will return the keyword MISSING.

[23.2] where 23.2 is the actual data location and contains only valid
numeric values.

[gender] where GENDER can already exist and enclosing the variable in
square brackets redefines it for the program as a numeric variable.

Any variable that exists in a DB file which originated in or PREPARE variables
uses the same syntax. The program inherently knows the type of variable (CAT,
FLD, NUM, VAR, TEX) from its definition and expects certain parameters to be
upheld.

CAT types. There are certain punch codes that have been defined and are
acceptable for the data location referenced. Any attempt to add/remove a code that
does not match the definition will result in an error.

FLD types. These have certain acceptable ASCII codes, just like CAT types. Data
modification must be done through redefining the FLD variable as a string to put in

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-114 MENTOR

the new code. If the new code generated does not match any of the acceptable
codes in the original variable then that code will not appear when displaying the
data location in its original format.

NUM types. The numerical range and exception codes have been defined and any
number or code not matching the definition will not be a recognized number in that
location.

VAR types. The length of the response is defined and any generation into the
referenced data location that exceeds the length will result in an error. Anything
shorter than the default will be left-justified.

TEX types. You must specify the location of text data when you open the data file,
e.g., ~INPUT myfile, TEXT_LOCATION= 3/10.

3.1.2 Blanking Data

The BLANK command will blank specific data locations or will blank data
referenced by a pre-defined variable. There may be occasions in data manipulation
where it will be desirable to blank out existing data from a specific location before
beginning any new manipulations.

The command BLANK [6.4] blanks out all data in columns 6-9. If a pre-defined
variable called TIMES exists in columns 4-5, then BLANK [TIMES] would blank
columns 4-5. The command BLANK [6-80] blanks all data from column 6 through
80. If CITY was a pre-defined CAT type variable with responses of 1, 2, 3, or 4,
BLANK CITY would clear responses associated with the CITY variable. A punch
9 in the data location of the CITY variable would not be cleared with BLANK
CITY. To clear the data location associated with CITY, use BLANK [CITY].

3.1.3 Printing Text and Data Fields

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -115

The SAY command prints any text enclosed in quotes that follows the command, or
prints the value of a specified variable or both. The SAY command is helpful in
checking data manipulations to see the result of the manipulations. Output from the
SAY command goes to the list file.

It is important to recognize the difference in results that will be printed depending
on how the location is specified (string, numeric or punch).

• The location specified as [4.2] is printed as a numeric field and leading zeros
will be dropped if they exist. Any value in the location that is not a good number
will print as MISSING.

• The location specified as [4.2$] is printed as a string so if leading zeros or blanks
exist, they will be printed.

• The location specified as [4.2$P] will display all the punches in each column
separated by backslashes.

Contents of Columns: SAY Command: Results Printed:
columns 4-5=04 SAY [4.2] 4
columns 4-5=04 SAY [4.2$] 04
columns 4-5=04, columns 6-7 are blank SAY [4.4] MISSING="04 "
columns 4-5=04, columns 6-7 are blank SAY [4.4$] 04
columns 4-5 are blank, columns 6-7=14 SAY [4.4] 14
columns 4-5 are blank, columns 6-7=14 SAY [4.4$] 14
columns 4-7=ABCD SAY [4.4] MISSING="ABCD"
columns 4-7=ABCD SAY [4.4$] ABCD
column 4=punches 1234, column 5=4 SAY [4.2$P] 1234\4

To display some descriptive text followed by data, enter the text enclosed in quotes.

Example: SAY "ID for this case:" [1.4$]

This will print: ID for this case: 0001

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-116 MENTOR

If you wanted to look at the result of a manipulation for a specific case, you would
enter:

IF [1.3#020] THEN SAY [4.2$] ENDIF

If ID# 020 contained the number 26 in columns 4-5, you would see the result "26".

If you wanted to display exactly what was in each column, including the case ID
and any multiple punches if they existed, you would enter:

Example: IF [1.3#020] THEN SAY + [4.2$] ENDIF

The "+" sign before the location allows you to see this additional information:

ID: 020 <-- this is the case ID number

Card 01: <-- this is the record number

00 <-- this is a column template (columns 04 and 05)

45

26 <-- ASCII display of column contents

2 <-- binary display of column contents

6

If the case has multiple punches in a column range in Card 2, the command:

Example: IF [1.3#021] THEN SAY + [81.2$] ENDIF

would show the following information:

ID: 021 <-- this is the case ID number

Card 02: <-- this is the record number

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -117

00 <-- this is a column template (columns 81 and 82 or
columns 01 and 02 of card 2)

12

** <-- ASCII display of column contents

55 <-- binary display of column contents

8

99

If you have pre-defined variables, the SAY command will display additional
information for each CAT and FLD type question. No additional information is
displayed for NUM, VAR, and TEX type questions. For a pre-defined CAT variable
named GENDER:

Example: SAY CASE_ID GENDER

would show the following for case 001:

001 gender(2:1=1=MALE)

The "2" tells how many possible responses there are to the GENDER question. The
"1=1" says that Case 001 answered the GENDER question with response 1 and that
response 1 was the first item in the response list. "MALE" indicates that the text
associated with response 1 is MALE.

For a pre-defined FLD variable named DAY:

Example: SAY CASE_ID DAY

would show the following for case 001:

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-118 MENTOR

001 day(7:MON=1=Monday)

3.1.4 Data Manipulation for Punch, String, and Numeric Variables

DIRECT DATA MOVES

The COPY command is used to copy data from one location directly to another
location, whether that data is in numeric, string, or punch format. The syntax for a
COPY command is:

COPY to_datavar = from_datavar

datavar is any location ([col.wid]) or any user-defined variable.

An example of a COPY command is:

Example: COPY [24.2] = [6.2]

If the contents of columns 6-7 was 04, then 04 is copied from columns 6-7 to
columns 24-25. The original contents of columns 24-25 have been replaced with
what was in columns 6-7, and columns 6-7 still have their original data.

The COPY command is the easiest way to copy the contents of a multiple punched
column to another column.

The TRANSFER command is used to alter the data in a location. The syntax for a
TRANSFER command is:

TRANSFER to_datavar op= from_expression

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -119

op refers to the different operators to add or remove data, i.e.:

(none) Replaces data; blanks location first (only blanks valid pre-defined
responses for the to_datavar)

+ Adds data; does not blank location first

- Removes data

The MODIFY command is used to convert data from one type to another, while the
TRANSFER command is used to change the contents of a variable. For example,
TRANSFER would be used to add two number variables together to get a third
number variable. TRANSFER, unlike MODIFY checks that the data is of the same
type on both sides of the operator.

The recommended way to add or remove punches from a data location is the
MAKE_DATA command (see section “Adding/Removing Punches” under “3.1.4
Data Manipulation for Punch, String, and Numeric Variables”).

Some examples of the TRANSFER command follow:

Example: TRANSFER [26.2 = 4

This transfers the number 4 to columns 26-27. Since the location 26.2 is defined as
numeric (no $ or $P in the brackets), the 4 is right-justified so column 26 is blank
and column 27 = 4.

Example: TRANSFER [32.2$] = "4"

This transfers the literal 4 to columns 32-33. Since the location 32.2 is defined as a
string ($ in the bracket), the 4 is left-justified so column 32 = 4 and column 33 is
blank.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-120 MENTOR

Example: TRANSFER [14$P] = "1,2,3"

This TRANSFER command says to treat column 14 like a punch type variable ($P
in the bracket) and move the punches 1, 2 and 3 to column 14.

Example: TRANSFER [15.2$P] = "1,2\3,4"

This TRANSFER command says to treat both columns 15 and 16 like punch type
variables ($P in the brackets) and move punches 1 and 2 to column 15 and punches
3 and 4 to column 16. The backslash (\) says to put what's before it into the first
column and what's after it into the second column. If you were interested in seeing
what columns 15 and 16 looked like after this transfer you should enter:

DISPLAY_BINARY [15.2$P]

and Mentor would display:

 ID: 001:[15.2] =12\34

 column ASCII Binary

 15 * 1,2

 16 * 3,4

In the following example:

Example: TRANSFER S[36.4$] = "TEST"

TRANSFER S = "R"

a new string type variable is created called S that is located in columns 36-39. The
new name is specified immediately in front of the open square bracket. The letters
TEST are transferred to columns 36-39. If we assume that the contents of S was
TEST from our first TRANSFER command, then the second transfer command

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -121

changes the contents of the string variable S to the letter R. The letter R is left-
justified so column 36 = R and columns 37-39 are blank.

An example of an operator that can be used with the TRANSFER command is the
plus sign (+). When you are dealing with a string type variable, the + can be used
to replace characters and not blank the receiving location first.

Example: TRANSFER S[36.4$] = "TEST"

TRANSFER S += "R"

This first TRANSFER command will move TEST into columns 36-39. The second
transfer command will move the R to column 36 and not clear the remaining
columns. The result is columns 36-39 = REST.

Using the plus (+) operator with a numeric type variable results in the addition of
two values. (See section “Arithmetic Calculations” under “3.1.4 Data
Manipulation for Punch, String, and Numeric Variables” for more examples.)

Example: TRANSFER N[40.4] = 1234

TRANSFER N += 5

The first TRANSFER command will first blank columns 40-43, then move '1234'
to the numeric variable called N that is located in columns 40-43. The second
command will not clear the contents of columns 40-43 but will add the number 5 to
it. The result is columns 40-43 = 1239. You can also use the TRANSFER command
to copy the data from more than one location to more than one location.

Example: TRANSFER [44.2,46.2,48.2] = [22.2,20.2,18.2]

This command will first blank the receiving locations, then copy the contents of
columns 22-23 to columns 44-45, and will copy the contents of columns 20-21 to
columns 46-47 and will copy the contents of columns 18-19 to columns 48-49.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-122 MENTOR

Since the receiving locations are defined as numeric, if the sending locations are
not numeric, the receiving locations will be blanked and the non-numeric data will
not be transferred.

You can also use the TRANSFER command to change the data in more than one
location at a time.

Example: TRANSFER [44.2,46.2,48.2] = VALUES(1,2,3)

This command would transfer a 1 to column 45, a 2 to column 47 and a 3 to
column 49 (with columns 44, 46, and 48 being blanked).

Example: TRANSFER [50.2,52.2,54.2] = VALUES(4,4,4)

This command would transfer a 4 to columns 51 and 53 and 55.

One unique use of the MODIFY command is to spread multi-punched data into
multiple single-punched locations. This might be used to reformat a multi-punched
question into a series of mentioned/not mentioned questions or when providing a
data file for use in a program that doesn't accept multiple punches. This process
would be accomplished with the following command:

Example: MODIFY [21,...,26] = [20^1//6]

This MODIFY command spreads the multi-punched data in column 20 into
columns 21 to 26 with a series of ones and blanks. For instance, a 2 punch in
column 20 would cause a 1 to be placed into column 22, a 6 punch in column 20
would cause a 1 to be placed into column 26 and so on.

NOTE: The number of single-punched columns needed equals the number of
possible punches in the multi-punched column.

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -123

If zeroes are preferred over blanks for representing not mentioned, the following
syntax will recode blanks into zeroes (0) and put it back into the same field:

Example: TRANSFER [21,...,26] = [!21,...,26]

In this example the exclamation point (!) means return a zero when the location is
blank.

Adding/Removing Punches

The MAKE_DATA command is one way to add or remove data in punch type
variables. The syntax for the MAKE_DATA command is:

MAKE_DATA op[datavar]

datavar can be any punch type variable

Here are some examples for using the MAKE_DATA command to add punches:

Example: MAKE_DATA [8^1.5]

This blanks column 8 and then adds to column 8 the punches 1,2,3,4 and 5.

Example: MAKE_DATA [9^1,5]

This blanks column 9 and then adds to column 9 the punches 1 and 5.

Example: MAKE_DATA +[10^X,Y]

This doesn't blank column 10 but adds the punches X and Y.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-124 MENTOR

Here are some examples for using the MAKE_DATA command to remove
punches from punch variables:

Example: MAKE_DATA -[7^1,0]

This removes only the punches 1 and 0 from column 7. Any other punches in
column 7 remain unchanged.

Example: MAKE_DATA -[11^1.5]

This removes only the punches 1,2,3,4 and 5 from column 11. Any other punches
in column 11 remain unchanged.

Arithmetic Calculations

In arithmetic calculations, the following arithmetic operators are available:

+ addition

- subtraction

* multiplication

/ division

++ when adding, substitute zero for missing elements (if both/all are
missing, then the result will be missing)

For the purpose of the following example we will use the TRANSFER command
to copy the number 6 to columns 4-5 and the number 4 to each pair of columns
starting with 6-7 and ending with 20-21. This TRANSFER command looks like:

Example:

TRANSFER[4.2,...,20.2]=VALUES(6,4,4,4,4,4,4,4,4)

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -125

With these values assigned, the following TRANSFER and SAY commands can be
used:

Commands: Results:

TRANSFER [6.2] += 2 SAY [6.2] 6

TRANSFER [8.2] -= 2 SAY [8.2] 2

TRANSFER [10.2] /= 2 SAY [10.2] 2

TRANSFER [12.2] *= 2 SAY [12.2] 8

TRANSFER [14.2] += [4.2] SAY [14.2] 10

TRANSFER [16.2] -= [4.2] SAY [16.2] -2

TRANSFER [18.2] /= [4.2] SAY [18.2] 1

TRANSFER [20.2] *= [4.2] SAY [20.2] 24

Since we said nothing about decimal significance, the result of 4 / 6 (the
TRANSFER [18.2] /= [4.2] command above) was rounded up to 1.

Continuing with the above example, if we know that columns 22-28 are blank then:

Example:

TRANSFER [26.2] = [22.2] ++ [4.2] SAY [26.2] 6

TRANSFER [28.2] = [22.2] ++ [24.2] SAY [28.2] MISSING

If the result will not fit in the receiving location, that location will be filled with
asterisks (*)

Using SAY for a numeric field displays without leading blanks or zeroes so you're
seeing the numeric value displayed left justified, regardless of the field width. If a
view of the complete location width is desired, use SAY [loc$], where the dollar

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-126 MENTOR

sign ($) forces the number to be displayed as a string with all leading blanks and
zeroes.

We could use the arithmetic operator "++" to sum the number of household
members in different age groups to make a total of household members:

Example: TRANSFER [40.6] = [20.2] ++ [22.2] ++ [24.2]

This example would clear the receiving location (40.6), and then place into it the
sum of the three locations 20.2, 22.2, 24.2. The "++" would cause any missing
value to be treated as zero. If all values were missing the result would be missing.

In addition to the above arithmetic operators, the following arithmetic functions
are also available:

ABSOLUTE_VALUE

AVERAGE

EXPONENT

LOGARITHM

SQUARE_ROOT

SUM

X

The following examples illustrate some uses of these arithmetic functions (in all
examples below, the PRINT_TO_DATA command blanks the receiving location
first). (See “3.1.7 Formatting Data Elements” for more information on the
PRINT_TO_DATA command.)

Example:

PRINT_TO_DATA [30.8] "\Z1_8.2S" ABSOLUTE_VALUE ([20.8])

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -127

This example of the ABSOLUTE_VALUE function will put the absolute value of
the number in columns 20-27 into columns 30-37. The "Z1" will zero-fill, the
underscore separates the "Z1" from the location, the "8.2" specifies an 8 column
field with 2 decimal places and the "S" says to print a string of characters.

Example:

PRINT_TO_DATA [30.6] "\Z1_6.3S" AVERAGE ([20.2,22.2,24.2])

This example of the AVERAGE function will put the average of the 3 numbers in
columns 20-21, 22-23, and 24-25 into columns 30-35. The "Z1" will zero-fill, the
underscore separates the "Z1" from the location, the "6.3" specifies a 6 column
field with 3 decimal places and the "S" says to print a string of characters.

Example: PRINT_TO_DATA [32.6] "\Z1_6.3S" EXPONENT(3)

The example above will return the product of Euler's Constant (e=2.71828) raised
to the power of 3 (the number in the vector). Therefore this command will place
20.086 into columns 32-37, formatted as in the prior example.

Example:

PRINT_TO_DATA [52.6] "\Z1_6.3S" LOGARITHM(2.71828)

This example of the LOGARITHM function will return the natural log (e sub n) of
2.71828 (the number in the vector). In this instance, 01.000 will be placed into
columns 52-57.

Example:

PRINT_TO_DATA [40.6] "\Z1_6.3S" SQUARE_ROOT(26)

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-128 MENTOR

The example of the SQUARE_ROOT function above will return the square root of
26 (the number in the vector). In this instance, 05.099 will be placed into columns
40-45.

Example:

PRINT_TO_DATA [40.6] "\Z1_6.3S" SUM([20.2,...,24.2])

This example of the SUM function will return the sum of the numbers in columns
20.2, 22.2 and 24.2 (the locations in the vector). The result of the SUM will be
placed into columns 40-45 and will be right justified, zero-filled and will have
three decimal places of significance. Any missing value will be treated as zero. If
all values are missing, the result will be missing.

Example:

PRINT_TO_DATA [40.6] "\Z1_6.3S" X([20.2]) + X([22.2]) + X([24.2])

This example, using the X function, shows how to force a blank location or a
location with something other than a valid number to be returned as a zero in an
equation or numeric variable. If any (or all) of the locations were blank (or
MISSING) or had alpha characters, adding the locations would normally return
MISSING. The X function causes the problem location to be treated as a zero.

Netting Punches

The goal of the following setup is to create a new multi-punched variable (in
columns 68-70) from data collected in 11 fields of 2 columns each (columns 4-25).
The answers collected in the 11 fields are codes 01-26. The ~INPUT command
opens a data file called DATAGENS.TR in UPDATE mode. The BLANK
command will blank columns 68-70. The TRANSFER command will net the
answers of 01-12 from any of the 11 fields into column 68 as punches 1-12. The
net of the answers 13-24 will be in column 69 as punches 1-12 and the net of the
answers 25 and 26 will be in column 70 as punches 1 and 2. The += means adds
punches and do not blank the receiving location first.

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -129

Example:

~INPUT DATAGENS, ALLOW_UPDATE

~DEFINE

PROCEDURE={GENS:

BLANK [68.3]

>REPEAT $COL=04,06,...,24

TRANSFER [68.3^01//26] += [$COL.2#01//26]

>END_REPEAT

SAY CASE_ID [4.22$] [68.3$P]

}

~EXECUTE PROCEDURE=GENS

~END

The SAY command will show the case ID, the contents of the original 11 fields and
the resulting netted punches in columns 68-70. An example of the output from this
SAY command follows:

Example:

001 210102081718 128\569\

002 021721 2\59\

003 19152023 \378X\

004 1522 \30\

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-130 MENTOR

005 1807 7\6\

Storing Weights in the Data

By storing weights in the data we can speed up subsequent runs since the program
will not have to recalculate the weights. To get the weights into the data, define a
procedure that uses either the MODIFY, TRANSFER or PRINT_TO_DATA
command to insert the weights into an unused location.

Use the MODIFY or TRANSFER command if the weights are comprised of
integers or if you plan to store the weight as an integer but later reference the
weight with decimal significance.

Example:

~DEFINE

PROCEDURE={GENWTMOD:

MODIFY [12.4] = SELECT([26^1//3],VALUES(86,66,139))

}

or

Example:

~DEFINE

PROCEDURE={GENWTTRAN:

TRANSFER [12.4] = SELECT([26^1//3],VALUES(86,66,139))

}

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -131

The two procedures above would store 86, 66 and 139 into columns 12-15 based
respectively on the punches 1, 2 and 3 in column 26. The weights stored in columns
12-15 would be right justified and blank filled.

To reference later with decimal significance (2 decimal places) use:

WEIGHT=: [12.4*F2]

This would change the way the program references the values inserted into the data
by the two procedures above to .86, .66, and 1.39.

Use the PRINT_TO_DATA command to insert data with decimal significance
directly into the location. The PRINT_TO_DATA command blanks the receiving
location first.

Example: PRINT_TO_DATA [12.4] "\Z1_4.2S" &

SELECT([26^1//3],VALUES(.86,.66,1.39))

This command would put the weights 0.86, 0.66 and 1.39 into columns 12-15 based
respectively on the punches 1, 2 and 3 in column 26.

Randomly Selecting Respondents

Defining a procedure that randomly selects respondents is another use of the
TRANSFER command.

The following run would create a list of six randomly selected respondents. (See
section on“9.3.1 System Constants” under “9.3.1 System Constants” for further
information on the RANDOM_VALUE constant.)

Example:

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-132 MENTOR

>DEFINE @HOWMANY 6

>PRINT_FILE RANDOM

~INPUT DATACLN

~OUTPUT RAND LENGTH=80

~DEFINE

 PROCEDURE={ASSIGN:

 BLANK [11-80]

 TRANSFER RANDVAR[11.5] = RANDOM_VALUE * 10000

 WRITE_CASE

 }

~EXECUTE PROCEDURE=ASSIGN

~INPUT RAND

~OUTPUT SORT

~SORT RANDVAR

~INPUT SORT,STOP_AFTER=@HOWMANY

~DEFINE

 PROCEDURE={WHO:

 SAY CASE_ID

 PRINT_LINES "\S" CASE_ID

 }

~EXECUTE PROCEDURE=WHO

~INPUT

~END

This run inserts a random number into an arbitrary location ([11.5]) of an
intermediate data file copy (leaving the original data file unchanged), sorts the data

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -133

on that random number into a second intermediate data file, prints the ID numbers
of the first 6 (specified by the >DEFINE @HOWMANY) respondents into a print
file called RANDOM.PRT, then deletes the disposable intermediate data files.

3.1.5 Data Manipulation for Predefined Variables

For the following sections on data manipulation using pre-defined variables, the list
of variables below will be used as examples.

image.chk

Data area ends at 160, Text area starts at 161

col.wid label QQ# qtype sub other use

 4.2 TIMES 3.00 [NUM] Z

 6.2 OFTEN 4.00 [NUM] Z

GAP of 47 columns

 55.1 DISEASE 12.00 [CAT]

 56.1 ASTHMA 13.00 [CAT]

GAP of 9 columns

 66.1 CITY 19.00 [CAT]

 67.1 GENDER 20.00 [CAT]

GAP of 1 columns

 69.3 DAY 21.00 [FLD]

 72.9 NAME 22.00 [VAR]

 81.1 VACATION 23.00 [TEXT] B

Text starts at 161

Direct Data Moves

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-134 MENTOR

The COPY command is used to copy data from one location directly to another
location, whether that data is in numeric, string, or punch format. The syntax for a
COPY command is:

 COPY to_datavar = from_datavar

where datavar is any variable which references some part of the data. It can be a
label or a question number (QQ#) defined using PREPARE, or it can be any
location ([col.wid]).

For this example we will evaluate five pre-defined variables using the SAY
command:

Commands Results

SAY CITY CITY(4:2=2=DENVER)

SAY DAY DAY(7:MON=1=MONDAY)

SAY TIMES 21

SAY OFTEN 1

SAY ASTHMA
ASTHMA(3:1=1=ASTHMA,2=2=EMPHYSEMA
)

The following examples of the COPY command use the above pre-defined
variables:

Commands Results

COPY [8] = CITY column 8 = 2

COPY [9.3] = DAY columns 9-11 = MON

COPY [12.2] = TIMES columns 12-13 = 21

COPY OFTEN = TIMES OFTEN = 21

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -135

COPY [18] = ASTHMA column 18 = punches 1 and 2

Receiving locations can be defined as any variable type, however the sending
variable must be one that was defined in EZWriter/PREPARE or a PREPARE=
variable. COPY does a direct copy of the sending location or variable (right-hand
side of operation) to the receiving location or variable (left-hand side). If the length
of the variable in the sending location is larger than the receiving location, an error
message will print. If the length of the variable in the sending location is shorter
than the receiving location, the copy will occur but the results will be left justified
in the receiving location. This would not be desirable in copying NUM type
variables.

COPY is the easiest way to move a multiple response question from one location to
another.

The TRANSFER command is used to alter the data in a location.

The syntax for a TRANSFER command is:

TRANSFER to_datavar op= from_datavar

Operators (op) that can be used with the TRANSFER command are:

(none) Replaces data; blanks location first (only blanks valid pre-defined
responses for the to_datavar)

+ Adds data; does not blank location first

 -Removes data

The to_datavar can be any of the previously described variable types or an
unspecified location. The from_datavar is the actual data to be transferred to the
receiving location. The from_datavar be a number, location, expression, string, or
pre-defined variable.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-136 MENTOR

The MODIFY command is used to convert data from one type to another, while
the TRANSFER command is used to change the contents of a variable. For
example, TRANSFER would be used to add two number variables together to get
a third number variable. TRANSFER, unlike, MODIFY checks that the data is of
the same type on both sides of the operator.

The recommended way to add or remove punches from a data location is the
MAKE_DATA command (see section on “Adding/Removing Responses” under
“3.1.5 Data Manipulation for Predefined Variables”).

An example of a TRANSFER command with the to_datavar as an unspecified
location and the from_datavar as a number would be:

Example: TRANSFER [14] = 3

This would blank column 14 first, then put the number 3 in column 14.

An example of a TRANSFER command with the to_datavar as a pre-defined
NUM type variable and the from_datavar as an unspecified location would be:

Example: TRANSFER TIMES = [14]

This would put the contents of column 14 in the TIMES variable.

An example of a TRANSFER command with the to_datavar as a pre-defined
NUM type variable and the from_datavar as an expression would be:

Example: TRANSFER TIMES = [14]+10

This would put the contents of column 14, plus 10, in the TIMES variable.

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -137

When using TRANSFER to put a string into a FLD type variable, we must enclose
the variable in brackets and add a dollar sign ($) to keep both sides of the equation
equal. An example of a TRANSFER command with the to_datavar as a pre-defined
FLD type variable and the from_datavar as a string would be:

Example: TRANSFER [DAY$]="WED"

This would put the string "WED" into the DAY variable.

Our pre-defined variable DAY is a FLD type question and was constructed with the
following answers: MON, TUE, WED, THU, FRI, SAT, and SUN. These are the
only valid answers to this question. If the data contained the answer "WEE", this
would not be recognized as a valid answer and would produce an error if we
cleaned the DAY variable using the EDIT command. (See “2.4 CLEANING WITH
SURVENT VARIABLES”, “Generating A List Of Error Messages” for examples of
cleaning pre-defined variables.) We can transfer an answer to the DAY variable that
is not a valid answer, but it would not be recognized as an acceptable answer. If we
were in a ~CLEANER block evaluating a respondent's answers, and the case we
were looking at had MON as the answer to the DAY variable and we entered:

SAY DAY

Mentor displays:

DAY(7:MON=1=Monday)

If we then were to enter the following TRANSFER and SAY commands:

TRANSFER [DAY$]="WEE"

SAY DAY

Mentor displays:

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-138 MENTOR

DAY(7:)

because WEE is not a recognized answer to the DAY question.

The SAY command only shows valid answers to a question. If we wanted to see
this respondent's answer to the DAY question, even if it was not a valid answer, we
could treat the DAY question as a string type variable and enter:

SAY [DAY$]

Mentor displays:

WEE

Here are some examples using the TRANSFER command and pre-defined
variables:

Example: TRANSFER [DAY$] = "TUE"

where DAY becomes TUE and if that is an acceptable code for the original DAY
question it will be recognized when the DAY question is referenced.

Example: TRANSFER TIMES = 1

where TIMES becomes 1 if it is within the range that TIMES was originally
defined.

Example: TRANSFER NAME = "MARTIN"

where NAME will contain the string MARTIN as long as the string will fit
NAME's original definition length. Note that because the variable NAME is a

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -139

VAR type variable, we can use the variable name without surrounding brackets and
following dollar sign ($).

Example: TRANSFER VACATION = "EATING"

where EATING will replace any text that currently exists in VACATION's data
location.

A new name can be given to any pre-defined variable. The new name is specified
immediately in front of the open square bracket (i.e., NEWNAME[INCOME$P]).
The data in the location of INCOME can be referenced as a punch type variable
which is called NEWNAME. INCOME remains intact in its original definition.

Some additional TRANSFER examples are:

Example: TRANSFER NAME2[8.9$] = NAME

where NAME2 is defined to be columns 8 through 16 and is a string type variable.
NAME2 can now be used in place of [8.9$] when it is necessary to refer to that
location in that format. NAME's data will be put into NAME2.

Example: TRANSFER NAME2 = "SAM"

where the columns 8-10 will now contain the ASCII characters SAM and the
remaining columns 11-16 are blank.

Example: TRANSFER [OFTEN$] = "RF"

where OFTEN was originally a NUM type question with a width of 2. Here the
location OFTEN is redefined as a string variable for this transfer, and the ASCII
characters RF are put into the location. Since the characters RF were not part of the
pre-defined variable OFTEN, SAY OFTEN will show MISSING. SAY [OFTEN$]
will show RF.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-140 MENTOR

Example: TRANSFER [GENDER] = 3

where GENDER is redefined as numeric for this transfer and the data location
GENDER references receives a 3. This would be one way to transfer a response to
the data location GENDER that is not one of the pre-defined responses. Since the
number 3 was not a pre-defined response for the GENDER variable, SAY
GENDER will show 'gender(2:)'. SAY [GENDER$] will show 3.

Example: TRANSFER GENDER = CATS(1)

will add the pre-defined response 1 to the GENDER variable and will not clear out
the existing 3 since the 3 is not defined as a valid GENDER response.

A subsequent command:

TRANSFER GENDER = CATS(2)

would clear out the existing valid GENDER variable response 1 and insert the
pre-defined response 2 to the GENDER variable but again the existing 3 would not
be cleared out since it is not defined as a valid GENDER response.

Adding/Removing Responses

The best way to add or remove punches from CAT type questions is to specify
which categories are to be added or removed. See “3.1.4 Data Manipulation for
Punch, String, and Numeric Variables”, “Adding/Removing Punches” for details
on doing this to data locations, not pre-defined variables. The syntax for using the
MAKE_DATA command with pre-defined variables is:

MAKE_DATA op CATtypevar(response code(s))

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -141

(For a discussion of operators, see 3.1.5 DATA MANIPULATION FOR
PRE-DEFINED VARIABLES, Direct Data Moves)

Example: MAKE_DATA GENDER(2)

where GENDER is a single response CAT type and the data location will now hold
a response 2.

Example: MAKE_DATA ASTHMA(1,2)

where ASTHMA is a multi-response CAT type and the data location now holds
responses 1 AND 2.

All of the above examples can be changed so that the receiving location is NOT
blanked prior to the data move. To do this, simply use the plus (+) sign.

Example: MAKE_DATA + ASTHMA(1)

where ASTHMA is a multi-response CAT type and the data location now holds
response 1 in addition to whatever responses were previously in that location.

Under certain circumstances, you may want to be able to remove a response from a
location, without affecting the other responses in that location. To do this use the
minus (-) sign as in the following example:

Example: MAKE_DATA - ASTHMA(1)

where ASTHMA is a multi-response CAT type and if a response 1 exists in that
data location it will be removed.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-142 MENTOR

NOTE: The only types of variables where you can remove punches are in the
examples above of CAT (single and multi-response) and punch. It does
not make sense to try to remove punches from other types of variables.

Arithmetic Calculations

In arithmetic calculations, the following arithmetic operators are available:

+ addition

- subtraction

* multiplication

/ division

The TRANSFER command can be used in combination with these operators. The
equal sign (=) is part of the syntax:

TRANSFER datavar op= numexpr

datavar is any variable which references the data. It can be a label, a
question number (QQ#) from PREPARE, or a data location
([col.wid]).

op is an optional arithmetic operator (+,-,/,*)

= is required syntax even if no op is specified

numexpr is a constant, an arithmetic operation, a function, or some
combination of these that returns a number

In the example:

TRANSFER TIMES = 3

TIMES becomes 3. If this instruction is followed by:

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -143

TRANSFER TIMES +=5

then TIMES becomes 8.

Some additional examples of syntax are:

Example:

TRANSFER [22.2] = times + often

TRANSFER [22.2] = times - often

TRANSFER [22.2] = times / 2

TRANSFER [22.2] = times * 2

Creating Variables

One use of the TRANSFER command is to put data into a new location and either
blank or not blank the receiving location first. The data you may want to put into
the new location can be an expression that has to be evaluated, an ASCII string, a
punch or punches, or a number.

Suppose you have two variables, ASTHMA and GENDER, and you want to create
a new variable, ASTHMA2, that will cross those two variables. You want to create
a location in the data (we will use column 68) that contains the result of the
expression, which can then be defined using the PREPARE= format to assign
labeling for use as a column or row variable in a cross tabulation later on.

The setup using the PREPARE= variable would look like this:

Example:

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-144 MENTOR

~DEFINE PREPARE=&

{ASTHMA2: 68

ASTHMA BY GENDER

!CAT,,1

1 ASTHMA MALE

2 EMPHYSEMA MALE

3 NEITHER MALE

4 ASTHMA FEMALE

5 EMPHYSEMA FEMALE

6 NEITHER FEMALE

}

The procedure you would create to define this new variable would look like this:

Example:

~DEFINE

PROCEDURE={DOIT:

TRANSFER ASTHMA2 = ASTHMA BY GENDER

WRITE_CASE

}

If we were interested in seeing the variables ASTHMA, GENDER and the new
variable ASTHMA2 we could add the following line to our procedure:

Example: SAY CASE_ID ASTHMA GENDER ASTHMA2

Our whole setup might look like:

>USE_DB IMAGE,READ_WRITE,DUPLICATE=WARN

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -145

~INPUT DATACLN

~OUTPUT DATAGENS

~DEFINE PREPARE=&

{ASTHMA2: 68

ASTHMA BY GENDER

!CAT,,1

1 ASTHMA MALE

2 EMPHYSEMA MALE

3 NEITHER MALE

4 ASTHMA FEMALE

5 EMPHYSEMA FEMALE

6 NEITHER FEMALE

}

PROCEDURE={DOIT:

TRANSFER ASTHMA2 = ASTHMA BY GENDER

SAY CASE_ID ASTHMA GENDER ASTHMA2

WRITE_CASE

}

~EXECUTE PROCEDURE=DOIT

~END

The following are a few examples we might see from the SAY command:

 018 ASTHMA (3:3=3=NEITHER) GENDER (2:1=1=MALE) ASTHMA2
(6:3=3=NEITHER MALE)

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-146 MENTOR

 019 ASTHMA (3:2=2=EMPHYSEMA) GENDER (2:1=1=MALE) ASTHMA2
(6:2=2=EMPHYSEMA MALE)

 020 ASTHMA (3:3=3=NEITHER) GENDER (2:2=2=FEMALE) ASTHMA2
(6:6=6=NEITHER female)

3.1.6 Relat ional Operators

Relational operators (sometimes called “relops”) allow you to compare variables
to one another or to a constant. They can be used to set up conditions, to limit your
base for certain functions or anything else that you want done to some but not all
of your cases. There are six relational operators; each can be expressed with
symbols or letters (and some with words):

TYPE SYMBOL LETTERS WORD

Equal to = EQ MATCHES

Not equal to <> NE ––

Greater than > GT ––

Less than < LT ––

Greater than

or equal to = GE CONTAINS

Less than

or equal to <= LE ––

All six can be used for arithmetic comparisons.

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -147

Example:

IF OFTEN > TIMES THEN

SAY CASE_ID "OFTEN>TIMES"

ENDIF

IF OFTEN EQ 3 THEN

SAY CASE_ID "OFTEN EQ 3"

ENDIF

IF OFTEN + TIMES >= 42 THEN

SAY CASE_ID "OFTEN+TIMES>=42"

ENDIF

IF OFTEN < 50 THEN

SAY CASE_ID "OFTEN<50"

ENDIF

IF OFTEN NE [6.2] THEN

SAY CASE_ID "OFTEN NE 6.2"

ENDIF

IF OFTEN - TIMES LE OFTEN/TIMES THEN

SAY CASE_ID "OFTEN-TIMES LE OFTEN/TIMES"

ENDIF

IF NAME <> "MARK " THEN

SAY CASE_ID NAME

ENDIF

A cleaning instruction might be:

IF [4.2] > 20 THEN

SAY "CASE ID: " CASE_ID "COLUMNS 4.2 = " [4.2]

ENDIF

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-148 MENTOR

Some examples of comparisons follow:

If you compare two numeric fields and they are both blank, they will be equal to
one another. If, for example, columns 4 and 5 are blank, and if you used the
instruction:

IF [4] = [5] THEN

SAY "EQUAL"

ENDIF

you would see the word EQUAL. If you compared the two columns as strings ($),
as in the following example:

IF [4$] = [5$] THEN

SAY "EQUAL"

ENDIF

you would see the word EQUAL here also.

When evaluating numeric fields, preceding blanks are acceptable but trailing
blanks are not recognized as part of a number. If columns 2-3 are blank and
columns 4-7= 1234, and you used the instruction:

IF [2.6#1234] THEN

SAY "TRUE"

ENDIF

you would see the word TRUE.

If columns 4-7= 1234 and columns 8-9 are blank, and you used the instruction:

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -149

IF [4.6#1234] THEN

SAY "TRUE"

ENDIF

you would not see the word TRUE.

When evaluating alphabetic or string fields, preceding blanks are not acceptable
while trailing blanks are ignored. If columns 2-3 are blank and columns 4-7=
TEST, and you used the instruction:

IF [2.6#TEST] THEN

SAY "TRUE"

ENDIF

you would not see the word TRUE.

If columns 4-7= TEST and columns 8-9 are blank, and you used the instruction:

IF [4.6#TEST] THEN

SAY "TRUE"

ENDIF

you would see the word TRUE.

When evaluating alphabetic or string fields and you want to check for the presence
of blanks, you would use quotes ("") to surround the blanks. If columns 2-3 are
blank and columns 4-7= TEST, and you used the instruction:

IF [2.6$]=" TEST" THEN

SAY "TRUE"

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-150 MENTOR

ENDIF

you would see the word TRUE.

If columns 4-7= TEST and columns 8-9 are blank, and you used the instruction:

IF [4.6$]="TEST " THEN

SAY "TRUE"

ENDIF

you would see the word TRUE.

All six relational operators can also be used for alphabetical comparisons, but in
most cases it does not make sense to compare words other than using equal to
(EQ,=) or not equal to (NE,<>). In determining if one word is greater than another,
the program does have a ranking scheme for all ASCII characters based on the
standard ASCII character set:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ

[\]^_'abcdefghijklmnopqrstuvwxyz{|}~

Therefore:

"+" LT "/"

"1 "LT "9"

">" LT "E"

"a "LT "v"

NOTE: This ranking is case sensitive so A is less than a; this is why we do not
recommend using greater than or less than relational operators with alpha
characters unless you're absolutely sure of the case and it is not longer

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -151

than one character. You should also enclose the characters in quotes so the
program knows you're doing an alphabetic comparison.

Changing Case

Variable Types U, D, and N cause ASCII strings to be treated as upshifted,
downshifted, or not shifted, respectively. When displaying a data location, $ is the
same as $n.

Contents SAY Results

of Columns: Command: Printed:

THIS IS mixed case. [1.25$] THIS IS mixed case.

THIS IS mixed case. [1.25$U] THIS IS MIXED CASE.

THIS IS mixed case. [1.25$D] this is mixed case.

THIS IS mixed case. [1.25$N] THIS IS mixed case.

By default, these variables are only effective in SAY and PRINT commands. To
turn case sensitivity on for ~SORT, ~FREQ or pound sign variables, use the
command ~SET CASE_SENSITIVE (see Mentor Volume II). When
CASE_SENSITIVE is set, these variable types can be used to force a string to be
upshifted or downshifted._

3.1.7 Formatt ing Data Elements

ZERO-FILLING DATA

The PRINT_TO_DATA command prints data into a data file. This command would
be useful if you wanted to zero-fill a numeric type variable or if you wanted to
insert decimal points in the data. The PRINT_TO_DATA command blanks the
receiving location first.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-152 MENTOR

The PRINT_TO_DATA command is similar to the PRINT command. (See “9.1
GENERATING SPECIALIZED REPORTS” for additional information on printing
options.) The syntax for the PRINT_TO_DATA command is:

PRINT_TO_DATA datavar "format items" variables

Let's suppose we start with a two column field, with column 4 blank and column 5
= 8. Here are some examples of zero-filling numeric data:

Example: PRINT_TO_DATA [8.2] "\Z1_2S" [4.2]

This says to print the contents of columns 4-5 with a width of two and no decimal
places into columns 8-9. The "Z1" says to zero-fill the two receiving columns. The
result would be columns 8-9 = 08.

Example: PRINT_TO_DATA [10.2] "\Z1_2S" [4.2] + 1

This says to print the results of adding columns 4-5 and the number 1 into columns
10-11 with a width of 2, zero-filled, with no decimal places. The result would be
columns 10-11 = 09.

Example: PRINT_TO_DATA [12.2] "\Z1_2S" [4.2] - [8.2]

This says to print the results of subtracting columns 8-9 from columns 4-5.
Assuming we used the preceding PRINT_TO_DATA commands, the results will
be columns 12-13 = 00.

Another option for zero-filling data locations is to use the *Z modifier. The syntax
for this modifier is as follows:

Example: TRANSFER [21.5*Z] = [43] + [44] + [45]

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -153

If you wanted to zero-fill all data modifications you could use the ~SET
ZERO_FILL command (See Appendix B: TILDE COMMANDS for more
information on the ZERO_FILL command).

DECIMAL POINTS IN DATA

Here are some examples of inserting decimals in the data:

Example: TRANSFER [5.5] = 123

This TRANSFER command moves the number 123 to columns 5-9. The number is
right-justified so columns 5-6 are blank and columns 7-9 = 123.

Example: PRINT_TO_DATA [10.5] "\Z1_5.1S" [5.5]

In the above example we are saying print the contents of columns 5-9 to columns
10-14 with a length of 5 and one decimal point of significance. The "Z1" preceding
the 5.1 says to zero-fill the receiving columns (the underscore is required to
separate the "Z1" from the location). The "S" following the 5.1 says to print a string
of characters into the location 5.1. The result is columns 10-14 = 123.0. If we
wanted to print the contents of 5-9 to another location in the data file, let's say
columns 15-19, and keep the length at 5 and continue to show one decimal
precision but move the decimal point one place to the left we would say:

Example: PRINT_TO_DATA [15.5] "\Z1_5.1S" [5.5*F1]

The result of this command would be columns 15-19 = '012.3'.

If we now wanted to print the contents of columns 15-19 into a new location and
remove the preceding zeros we would change \Z1_5.1S to \5.1S.

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-154 MENTOR

Example: PRINT_TO_DATA [25.5] "\5.1S" [15.5]

This would make columns 25-29 = ' 12.3'.

It is also possible to use the PRINT_TO_DATA command to format the output of
arithmetic operations as in:

Example: PRINT_TO_DATA [30.5] "\5.1S" 2 * 5.5

This would make columns 30-34 = ' 11.0'.

SPREADING MULTI-PUNCHED DATA

We can use the TRANSFER command to spread out multi-punched data into
multiple single-punched fields. This is useful if making an ASCII data file for use
by another program.

Syntax for this command would be:

Example: TRANSFER [6.8$] = [6$P]

By default, Mentor spreads multi-punched data into single punches separated by
commas. The SUBSTITUTE command causes the commas to be ignored during
output.

NOTE: The receiving location needs to be equal in width to the maximum
number of punches possible in the multi-punched location. If the default
commas are desired in addition to the single punches themselves, the
receiving location needs to be equal in width to twice the maximum
number of punches possible in the multi-punched location minus one.

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -155

Transforming String Digits into Numbers

Using the PRINT_TO_DATA command, we can transform digits left-justified or
randomly located in a field into right-justified NUM type data. The following two
step procedure will right-justify all the data in the location, zero-fill the location,
and give all data two decimal places (i.e., for currency format):

Example:

~INPUT DATACLN

~OUTPUT DATAGENS

~DEFINE

PROCEDURE={GENS:

PRINT_TO_DATA [20.6] "\>6S" [20.6$]

PRINT_TO_DATA [20.6] "\Z1_6.2S" [20.6]

WRITE_CASE

}

~EXECUTE PROCEDURE=GENS

~END

The first PRINT_TO_DATA command right-justifies any data in columns 20.6.
The 6 following the \ in this first PRINT_TO_DATA command is what says this is
going into a six column location and the > preceding the 6 says to right justify the
data. From this point on the data is in NUM format (right-justified) and we can do
modifications on the data that only apply to NUM type data. The second
PRINT_TO_DATA command does two of these number modifications. The
"\Z1_6.2S" control item does the following:

Z1 zero-fill

6 the receiving location is 6 columns wide

.2 use two decimal places

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-156 MENTOR

S print a string of characters into the location

So if our original data had three cases with the following data in columns 20.6:

" 78 "

" 2.3 "

" 9.98"

then after running the above procedure GENS on the data it would look like:

"078.00"

"002.30"

"009.98"

TRANSFORMING NUMBERS INTO STRINGS

The function STRING_FROM_NUMBER converts a numeric argument into a
string. This function is useful in combination with the PUTID command to assign
case IDs.

RECODING 10-POINT SCALES

It is common to have 10-point scales entered into a single column location with the
10 value entered as a zero. Some statistical software packages however, cannot
convert the 0 to a 10 internally. If you will be exporting CfMC data files with
single column10-point scales to a third party statistical software package, the
following PRINT_TO_DATA command will reformat your 10-point scales:

Example:

PRINT_TO_DATA [120.2] "\Z1_2S"

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -157

SELECT([26^1//0],VALUES(1,...,10))

This command will format the data into columns 120-121 as zero-filled ("Z1")
right-justified numbers.

RECODING TO EXCLUDE SELECTED RESPONSES

It is sometimes necessary to reformat a data location into another location and
exclude some response, usually "Don't know/No response", i.e., for future input
into a statistics software package.

The following example would reformat column 42 to contain only punches 1-4.
The "=" sign after the location clears the location first, therefore any punch in
column 42 other than 1-4 would not be present after the TRANSFER.

Example:

TRANSFER [42]=SELECT([42^1/2/3/4],VALUES(1,2,3,4))

It would be preferable to INPUT your original data file and OUTPUT a second data
file, so as to retain your original data file in an unaltered state, as opposed to using
your original data file with ALLOW_UPDATE set.

RECODING TO REVERSE A SCALE QUESTION

Often it is necessary to reverse the values of a scale question, i.e., when it is more

desirable to have the higher value correlate to the more positive response. We can
use the TRANSFER command to accomplish this:

Example: TRANSFER [43^1/2/3/4]=[43^4/3/2/1]

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-158 MENTOR

By reversing the figures in the sending and receiving locations for only those
punches we want to change, we accomplish the reversal of the scale and leave any
other punches, i.e., a "DON'T KNOW/NO RESPONSE" punch, intact.

3.1.8 Data Manipulation in the ~CLEANER Block

In the following example we have defined two procedures in the ~DEFINE block
and we will use the ~CLEANER block to execute the procedures on a case by case
basis. (See “2.3.2 Correcting Errors”, “Using Cleaning Screens” for a more
detailed explanation of the features used in this example). The command line used
to run this example would be:

Mentor &STATE.SPX CON (DOS)

Mentor "&STATE.SPX" "CON" (UNIX)

RUN Mentor.CGO.CFMC;INFO="STATESPX CON" (MPE)

In the spec file called STATE.SPX, the procedure we have defined as SAYSTATE
will show us the contents of columns 69-70 (where the state information is
located). The procedure defined as FIXSTATE will change the state to CA for
those cases where we want the state changed.

~INPUT DATAGENS, ALLOW_UPDATE

~SET PRODUCTION_MODE

~DEFINE

PROCEDURE={SAYSTATE: SAY CASE_ID [69.2$]}

PROCEDURE={FIXSTATE: TRANSFER [69.2$]="CA"

}

~CLEANER

The above spec file will put us in the ~CLEANER block. The screen will look like
this:

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -159

CLeaNer-->

At this prompt if we type !SAYSTATE, we will see what state is coded in columns
69-70 for the first case in our data file. If we decide we want to change this case, we
type !FIXSTATE at the next prompt and the contents of columns 69-70 will now be
CA. We can again type !SAYSTATE at the prompt if we want to see that columns
69-70 is now CA. To move to the next case we would type NEXT at the prompt.
We can execute either one or both of our procedures or move to the next case.

NOTE: An exclamation (!) must be entered before the procedure name.) We can
also issue any other ~CLEANER command. When we are done making
modifications we will type ~END to exit Mentor.

3.2 Creating Subsets of Data Fi les

HOLD_OUTPUT_UNTIL_SUBSET
This command ensures that the ~input file is read only twice for a group of
~outputs rather then potentially twice for each ~ouput. This considerably speeds up
the subsetting of a large input file into many output files. The default for this option
is "on". When this option is "on" the "case_written" status of any particular record
cannot be assertained during the select scanning process. This means that a case
slated to be written may later no longer pass the select being used because the case
was written by an earlier output.

You can set -HOLD_OUTPUT_UNTIL_SUBSET to make the written/not written
state of each case be determined in a linear fashion. Generally speaking using more
than one not (casewritten) in a subset block is likely to not generate the expected
sample, and often will lead to an error.

Examples of subsets of data files

Here is a list of commands and options that are used when creating subsets of data
files:

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-160 MENTOR

• ~execute do_subset

• ~input/~output sampling=#n

• ~input/~output sampling=.nnn

• ~input/~output try_for_sampling=#n

• ~input/~output try_for_sampling=.nnn

• ~input/~output select=

• ~input/~output select=casewritten/not(casewritten)

• ~input/~output num_sample_cases=

• ~output file_name #n

• >random_seed=

~EXECUTE DO_SUBSET
The ~execute command do_subset is what launches the subsetting run based on the
~input/~output commands and options you have chosen. It is similar to issuing a
"write_now" command for every ~output file.

SAMPLING=#N AND SAMPLING=.N
The pound sign version of sampling= gives you a random sample of "n" records
from the data. The .n form gives you a random fraction of the sample (i.e.
num_sample_cases * .n).

Example:

~input file1 sampling=#10

~output file2

~exc do_subset

~end

In the example above, file2 will be created from a random sample of ten records
from file1. The pound sign version of sampling= tells Mentor how many records

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -161

you want. If instead of 10 records you wanted one tenth of the sample, then
sampling=.1 is what you would use. Also note that sampling= can be on either the
~input or output statement or both. (See notes on num_sample_cases and sub1.spx
for examples of using sampling=.)

When using sampling=.n, the number of records written will be .n times the number
of records available to be written (i.e. num_sample_cases). The exact number of
cases written will be the result of this calculation rounded to the nearest whole
number.

TRY_FOR_SAMPLING=#N AND TRY_FOR_SAMPLING=.N
The "try_for" sampling options work the same way that the sampling= options do,
except that it is not an error when the number of records requested is not available
in the sample. For example you might select on the males in your sample and use
tryfor=#100 to get 100 males if possible, but if there are less than that keep the
output anyway. When less than the number of records tried for are available a
warning is generated indicating the number that were found.

SELECT=
Select= may now be used on either the ~input, ~output, or both. If the select
appears on both the ~input and ~output, the one on the ~input is executed first. No
record that does not pass the ~input selection criteria will have the opportunity to be
written to the output file. Both select= and sampling= may be used at the same
time.

CASEWRITTEN
A special variable "casewritten" may be used as part of the select= condition. Most
often it is used with not(), as in not(casewritten). It takes effect when one is using
multiple ~output files in a subset run.

Example:

~input file1

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-162 MENTOR

~output file2a #1 select=[1#1-5]

~output file2b #2 select=not(casewritten)

~exc do_subset

~end

COMBINING OPTIONS
If sampling=/select= appear on both the input and output, only those records which
make it past the input phase will contribute to the sampling/selection that occurs in
the output phase.

For example, note the difference between the following two subset runs:

'' This run gets all of the males from the input, and then writes

'' a random sample of half of them.

~input file1 select=Q1(M)

~output file2 sampling=.5

~exc do_subset

~end

'' This run gets half of the respondents from the input, and then '' writes out the
males.

~input file1 sampling=.5

~output file2 select=Q1(M)

~exc do_subset

~end

In this example, the resulting output files are likely to be similar, but they won't be
the same. (Sub3.spx contains examples of using both sampling= and select= in the
same subset run.) When select= and sampling= occur on the same statement (e.g.
both on the ~input) the select= is honored before sampling= is done.

Some situations to watch out for:

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

MENTOR v 8.1 -163

Suppose you want two output files each containing a random half of your original
sample. You might be inclined to do:

~input file1

~output file2a #1 sampling=.5

~output file2b #2 sampling=.5

~exc do_subset

~end

The two output files in this example will contain many (about half) of the same
respondents. What you probably had in mind is:

~input file1

~output file2a #1 sampling=.5

~output file2b #2 select=not(casewritten)

~exc do_subset

~end

Having divided your sample into two random halves using the specs above, you
might think that dividing the sample into equal thirds would be done with:

~input file1

~output file2a #1 sampling=.33333

~output file2b #2 sampling=.33333 select=not(casewritten)

~output file2c #3 select=not(casewritten)

~exc do_subset

~end

However the above specs won't give you equal sized samples. For example, if file1
contains 100 records, then file2a will contain 33 records (OK so far), but file2b will
contain .33333 of the 66 records not written so far (i.e. 22 records), and file2c will
contain the rest of the sample (i.e. 45 records).

R E F O R M A T T I N G YO U R D A T A
3.1 WHY REFORMAT DATA?

-164 MENTOR

What you actually need is:

~input file1
~output file2a #1 sampling=.33333

~output file2b #2 num_sample_cases=67 sampling=.5

select=not(casewritten)

~output file2c #3 select=not(casewritten)

~exc do_subset

~end

NOTE: In the above example file2a will contain 33 (.33333 * 100) records, file2b
will contain 34 (67 unwritten records, times .5, and rounded to the nearest
whole number), and file2c will contain the 33 as yet unwritten records. If
"num_sample_cases" does not appear on the second ~output statement
and error will result.

See sub4.spx for an example

NUM_SAMPLE_CASES=
In order to pull a random sample from an existing sample, the number of cases in
the existing sample needs to be known. For example, if you wanted five cases out
of 10,000 you would want the random cases to be pulled from random locations
throughout the file, not just the beginning, middle, or end of the original file.

Sometimes it's very easy to determine the number of cases in a file. For example,
CfMC system files contain the number of cases in their header, and MPE ascii files
contain the number of records in their file label. To determine the number of
records in a variable length ascii file on Windows or Unix, a pass must be made
through the data to count the records. On relatively small input files (<10,000) this
counting pass is nearly imperceptible in terms of run time, but on very large
samples it may increase run times noticeably. If the input/output files contain
select/sample options, this further complicates determining the number of cases
available from which to sample and may show a corresponding increase in run
times. Setting num_sample_cases= will cause the subsetting process to use this

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.3 Mentor EQUIVALENTS TO SPL

MENTOR v 8.1 -165

setting as the number of cases from which to draw the sample, and cause the
program to not execute passes through the data to determine the number of cases
available to be sampled from. This should decrease run times for very large
samples, however, if the number provided via num_sample_cases is not correct an
error will be generated.

REPEATABLE SUBSET RESULTS
Sampling= picks a random sample from the data. Normally, each time a subseted
output file is created a somewhat different collection of records will be output. By
using >random_seed= one can force the starting point of the randomizing process,
and thus make it possible to repeatedly create the same "random" sample of
records. Keep in mind that adding or subtracting a step in your spec file that calls a
random number will change the results of subsequent random calls even if a
random seed is set at the beginning of the run.

3.3 Mentor EQUIVALENTS TO SPL

Mentor is currently written in the C programming language. The earlier version of
Mentor was written in the SPL programming language. The commands and syntax
are different between the two versions. If you are already familiar with SPL
commands and syntax, here are some of those commands and the current Mentor
equivalents. Mentor equivalents to SPL's ADD, ZAP, MOVE, CLEAR, ONTO,
INTO, ZPUT are as follows:

ADD statement adds punches specified in a mask to a variable.

SPL syntax: ADD [201] \XY\

Mentor syntax: MAKE_DATA +[201^X,Y]

ZAP statement removes punches specified in a mask from a variable.

R E F O R M A T T I N G YO U R D A T A
3.3 Mentor EQUIVALENTS TO SPL

-166 MENTOR

SPL syntax: ZAP [201] \X\

Mentor syntax: MAKE_DATA -[201^X]

MOVE statement copies data from one location into a specified receiving location
after blanking the receiving location.

SPL syntax: MOVE [201.4]="ABCD"

Mentor syntax: TRANSFER [201.4$]="ABCD"

SPL syntax: MOVE [205.4]="1234"

Mentor syntax: TRANSFER [205.4]=1234

SPL syntax: MOVE [209.2,211.2] FROM [207.2,205.2]

Mentor syntax: TRANSFER [209.2,211.2] =[207.2,205.2]

CLEAR statement blanks the column(s) specified in a location.

SPL syntax: CLEAR [201.12]

Mentor syntax: BLANK [201.12]

ONTO statement moves a value from a sending location to a receiving location,
always blanking the receiving location first.

SPL syntax: ONTO [201] PUNCH \1.4\ [43.2#11/12/21/22]

. .
 .

. .R E F O R M A T T I N G YO U R D A T A
3.3 Mentor EQUIVALENTS TO SPL

MENTOR v 8.1 -167

Mentor syntax: TANSFER [201^1//4] = [43.2#11/12/21/22]

SPL syntax: ONTO [201] PUNCH \1.5\ [88,...,92*F^1//5]

Mentor syntax: REPEAT $COL=88,...,92

TRANSFER [201^1//5] += [$COL^1//5]

>END_REPEAT

SPL syntax: ONTO [201.2] ZPUT [57.2]

Mentor syntax: TRANSFER [201.2*Z] = [57.2]

SPL syntax: ONTO [203.2] PUT [43] + [44] + [45]

Mentor syntax: TRANSFER [203.2] = [43] + [44] + [45]

SPL syntax: ONTO [205.2] PUT SUM([68] WITH [69])

Mentor syntax: TRANSFER [205.2] = [68] ++ [69]

(See “3.1.4 Data Manipulation for Punch, String, and Numeric Variables”,
“Arithmetic Calculations” for additional information on the "++" syntax).

SPL syntax: ONTO [10.3] ZPUT [43] + [44] + [45]

Mentor syntax: TRANSFER [10.3*Z] = [43] + [44] + [45]

SPL syntax: ONTO [10.6] \1\ DPUT [44] / [45]

Mentor syntax: TRANSFER [10.6*D1] = [44] / [45]

R E F O R M A T T I N G YO U R D A T A
3.3 Mentor EQUIVALENTS TO SPL

-168 MENTOR

SPL syntax: ONTO [10.6] \1\ DZPUT [44] / [45]

Mentor syntax: TRANSFER [10.6*ZD1] = [44] / [45]

INTO statement with the keyword SPREAD spreads out multi-punched data into
multiple single-punched fields.

SPL syntax: INTO [6.8] SPREAD [6]

Mentor syntax: TRANSFER [6.8$] = [6$P]

Version 8.1 MENTOR -169

.

. .
B A S I C T A B L E S 4

. .I N T R O D U C T I O N
his chapter describes how to create basic tables after you have collected
and cleaned your data. It covers information on using simple table
options. Chapters 5 and 6 provide more detailed information on how to

use intermediate and advanced table functions.

The end of this chapter provides a section on E-Tabs. For more informaton, go to
“USING E-TABS”.

4.1 PARTS OF A TABLE

Table is short for cross-tabulation. A table is a rectangular arrangement of
columns and rows with values in the intersecting cells. Tables can be simple cross-
tabulations of one variable against another, or can be complicated and include
expressions that join several variables together and include statistical calculations.

Tables generally consist of a header, title, banner, stub, footer, and the "Total"
and "No Answer" rows and/or columns. These elements are defined in the
following section.

Header: Optional text that appears on the top of the page on all tables. By
convention, it is the name of the study.

Title: The survey question text.

Banner: The headings of each of the columns in the table. These headings are
referred to as "banner points." In the simplest table, the banner could
be only one column labeled "Total." Usually, banners consist of
several column headings. By convention, banner points are

T

B A S I C TA B L E S
4.1 PARTS OF A TABLE

-170 MENTOR

demographics (for example, age or income) or some other
characteristic that distinguish groups of people that answer a survey
question.

Stubs: The labels for each of the rows in the table. By convention, stubs are
the responses to the question in the survey.

Total: The "Total" row/column is the number of respondents to the survey.

No Answer: The "No Answer" row is the number of respondents that did not
answer this particular question.

Footer: An optional text line at the bottom of the table.

Following is a typical table with the table elements labeled.

ROADRUNNER'S PIZZA SURVEY Header

TABLE 001

Q1. How much do you agree with the following statement: Title
The fast food at Road Runners is worth what I pay for it.

 Total

 Column <-------AGE-------> <-----INCOME------>

Banner Under Over Under $15- Over

 TOTAL 35 35-54 54 $15k $35k $35k
 ----- ----- ----- ---- ----- ----- ----

Total Total Row 500 141 140 143 74 148 215
 100% 28% 28% 29% 15% 30% 43%

. .
 .

. .B A S I C TA B L E S
4.1 PARTS OF A TABLE

MENTOR v 8.1 -171

 100% 100% 100% 100% 100% 100% 100%

No Answer No Answer Row 75 29 18 22 16 18 29
 100% 39% 24% 29% 21% 24% 39%

 15% 21% 13% 15% 22% 12% 13%

(5) Completely agree 88 21 29 23 10 30 36

 100% 24% 33% 26% 11% 34% 41%

 18% 15% 21% 16% 14% 20% 17%

(4) Somewhat agree Stubs 92 26 27 27 14 30 35
 100% 28% 29% 29% 15% 33% 38%

 18% 18% 19% 19% 19% 20% 16%

(3) Neither agree nor disagree 86 23 26 24 13 22 45

 100% 27% 30% 28% 15% 26% 52%

 17% 16% 19% 17% 18% 15% 21%

(2) Somewhat disagree 73 13 23 21 13 21 33

 100% 18% 32% 29% 18% 29% 45%

 15% 9% 16% 15% 18% 14% 15%

(1) Completely disagree 86 29 17 26 8 27 37

 100% 34% 20% 30% 9% 31% 43%

 17% 21% 12% 18% 11% 18% 17%

 Footer Tables prepared by Computers for Marketing Corp.

 Page 1

B A S I C TA B L E S
4.2 TABLE BUILDING BASICS

-172 MENTOR

4.2 TABLE BUILDING BASICS
In order to create a table, you must define table elements, identify where to get
data from, and issue commands to build and print the table. These instructions are
contained in a specification file (with the extension of spx). The main commands
are:

~DEFINE this tells Mentor what information you want in the table and how
you want it formatted.

~INPUT this tells Mentor what it needs to know about the data file.

~EXECUTE this gives Mentor the commands to build and print the table.

As you can see, these Mentor commands are preceded by a tilde (~). Most tilde
commands start command blocks; that is, once the tilde command is given, the
commands following it are specific to that block.

If you have CfMC's Survent software, much of the table specification work may
have already been done for you. For further information, see “4.12 USING Survent
TO GENERATE Mentor SPECIFICATION FILES”.

Here is a specification file to build a simple table.

~DEFINE

 TABLE_SET={example:

 COLUMN=: Total

 ROW=: [1^1/2]

 TABLE=*

 }

~INPUT $

. .
 .

. .B A S I C TA B L E S
4.2 TABLE BUILDING BASICS

MENTOR v 8.1 -173

~EXECUTE

 TABLE_SET=example

~END

Here is the same spec file with each line explained.

~DEFINE <--start the DEFINE block

 TABLE_SET={example: <--name a set of table elements "example"

 COLUMN=: Total <--set up a column that consists of the total
number of respondents

 ROW=: [1^1/2] <--set up two rows from answers one and two

 TABLE=* <--save table information in memory

 } <--end the DEFINE block

~INPUT $ <--$ use a phantom file (with one dummy case)
as input

~EXECUTE <--start the EXECUTE block

 TABLE_SET=example <--build the table with the elements defined in
table set "example"

~END <--exit Mentor

If you put these specifications into a file and execute them (Mentor file.spx
-output.lfl), you can look at the output file to see Mentor has built a small
table that looks like this:

TABLE 001

BANNER: TOTAL

STUB: example_r[1]

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-174 MENTOR

 Total N/A TOTAL

Total 1 - 1
 100.0% 100.0%

N/A 1 - 1
 100.0% 100.0%

1^1 - - -

1^2 - - -

There are two columns labeled "Total" because by default, Mentor includes a
system generated Total column. Tables also have by default a Total row, a N/A
(No Answer) row, and a N/A (No Answer) column. You can use the ~DEFINE
EDIT keyword to remove these system generated Total columns and change things
like column width. This is explained in detail in “4.3.2 Changing Table Element
Defaults (The DEFINE EDIT Statement)”.

4.3 DEFINING TABLE ELEMENTS
You can use DEFINE to define each element of a table and then call each element
separately in the EXECUTE block. Or, you can use the TABLE_SET keyword to
define major elements of a table as a group and then call the group of table
elements with one EXECUTE statement.

TABLE_SET is the basic building block for creating tables. Once an item is
defined or turned on, it stays in effect until it is redefined or turned off. This allows
you to define table elements globally in one TABLE_SET, and then only define
what needs to change for each particular table in subsequent TABLE_SETs.
Typically, you will use one TABLE_SET to define the banner text, the column
variable, and table printing options which will be used across all of the tables in
your study, and one TABLE_SET for each question in the study, which includes
the title, stubs, and row variables.

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -175

Let's use the same specification file as before, but this time define the banner once
for two tables in a banner table set. Since the TABLE_SET definition for the banner
only defines part of a table, it does not need a TABLE= command. We are also
adding a the >PRINTFILE command to send the tables to a separate file (see “4.5
META COMMANDS”). If you are trying these specs, look for the final tables in the
file called "mytables.prt".

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-176 MENTOR

>PRINTFILE mytables

~DEFINE

 TABLE_SET={one:

 HEADER=: These Are My Tables }

 BANNER=:

 Total Male Female

 ------ ------ ------ }

 COLUMN=: Total WITH [2^1] WITH [2^2]

 }

 TABLE_SET={two:

 TITLE={:

 How much do you like building tables? }

 STUB={:

 3-Very Much

 2-Somewhat

 1-Not Much

 9-Don't Know }

 ROW=: [12^3/2/1/9]

 TABLE=*

 }

 TABLE_SET={three:

 TITLE={:

 How much do you like Roadrunner's Pizza? }

 STUB={:

 3-Very Much

 2-Somewhat

 1-Not Much

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -177

 9-Don't Know }

 ROW=: [13^3/2/1/9]

 TABLE=*

 }

~INPUT $

~EXECUTE

 TABLE_SET=one

 TABLE_SET=two

 TABLE_SET=three

~END

If you run these specifications and look at the tables, you will see the column
headings (these are called banner points) do not line up exactly over the numbers in
the columns. You can learn how to correct this in “4.8 FORMATTING BANNER
TEXT”.

You can also use TABLE_SETs to do a global screening of the data, such as filters,
bases, or weights. By convention, that tabset is named global. You can also include
additional rows by adding a stub prefix or stub suffix. Examples of banner table
sets will follow. If you have more than one banner, you can create a separate
TABLE_SET that will have definitions for the elements that will be the same in all
the tables, such as headers and footers. (See “5.4 Printing Multiple Banners For
Each Table Row” for an example of printing all the tables by more than one
banner.)

Items that are defined in a TABLE_SET stay in effect for the following tables until
they are turned off or redefined, or unless you use one of the ~SET DROP
keywords that instruct Mentor to only use an element once and then discard it. See
“4.3.3 Changing Table Processing Defaults (The SET Statement)” for a complete
list of the ~SET DROP keywords.

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-178 MENTOR

4.3.1 Assigning Variable Names

Mentor allows you to assign a name to any table element: a row, a banner, or an
entire table set. You can then refer to the table element (or group of elements) by
just using the name. This means you can use a table element exactly as before
(such as a stub label set), or the same as before with minor modifications.

Here is the syntax for the TABLE_SET command, as you can see, you can assign
variables to individual table elements, the entire tabset, or both.

TABLE_SET={varname=oldname:

KEYWORD=varname: definition

}

TABLE_SET The keyword that tells ~DEFINE that a table set definition
follows. It can be abbreviated TABSET.

{ Marks the beginning of the TABLE_SET definition, is
optional.

varname Assigns a name to the TABLE_SET. The name can be 1-14
characters long, and can include periods or underscores.
The maximum recommended length is 10 characters,
because Mentor will use this name and add extensions to it
to create table element names automatically. See “Default
Varname Generation” for details.

=oldname Optional, means use the table elements from a previously
defined table set and add any new elements in this table set.

KEYWORD= Commands for defining table elements (such as TITLE,
HEADER, STUB, or ROW). These elements stay in effect
until they are redefined or turned off. You can turn off

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -179

keywords by using a minus sign in front of it, for example, -
HEADER. All of the table element keywords are listed and
described in Mentor, Appendix B, ~EXECUTE.

varname Refers to an existing variable or assigns a variable name to
the keyword (this overrides Mentor's default variable
names). The colon is required to assign a variable name, for
example, "HEADER=mainhead" refers to the previously
defined variable mainhead, while "HEADER=mainhead:"
assigns the name mainhead to the heading which is about to
be defined.

definition The definition of the keyword, such as table text or
information about the data to be printed in the table cells.
Keywords that define table text (such as BANNER and
FOOTER) and GLOBAL_EDIT, EDIT and LOCAL_EDIT
require a closing brace(}) to end the keyword definition.
Keywords that describe data (such as COLUMN, ROW, and
STUB) do not require a closing brace (}).

} Ends the TABLE_SET definition.

Keywords do not need to be in any particular order, but a table set can contain only
one occurrence of a keyword. For example, you cannot assign a HEADER and
then turn it off with -HEADER in the same table set. Variables can be assigned
outside the TABLE_SET block, but then you must instruct Mentor to make it a part
of the table in the ~EXECUTE block.

So, for the previous example, instead of repeating the stub definition in the third
tabset (TABLE_SET=three), you could have assigned a variable to the stub
(STUB=mystub:) when you first defined it, and then use the variable name in the
third tabset with the command STUB=mystub.

~DEFINE

 TABLE_SET={two:

 TITLE={:

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-180 MENTOR

 How much do you like building tables? }

 STUB={mystub:

 3-Very Much

 2-Somewhat

 1-Not Much

 9-Don't Know }

 ROW=: [12^3/2/1/9]

 TABLE=*

 }

 TABLE_SET={three:

 TITLE={:

 How much do you like Roadrunner's Pizza? }

 STUB=mystub

 ROW=: [13^3/2/1/9]

 TABLE=*

 }

Remember, if you follow the command with a colon ("STUB=mystub:"), Mentor
assumes you are redefining the variable, rather than referring to an existing
definition.

Variables (and tables) can be stored and called in later runs, see “4.5 META
COMMANDS”.

DEFAULT VARNAME GENERATION

If you do not assign a variable name to a keyword, Mentor will generate default
variable names by adding an extension to the table set name. For example, a
banner from the table set named "example" would have the variable name
"example_bn". Below is a partial list of the default variable names.

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -181

BANNER=* _bn ROW_SHORT_WEIGHT= _rsw

BASE=* _b ROW_WEIGHT= _rw

COLUMN= _c STUB=* _s

COLUMN_SHORT_WEIGHT= _csw STUB_PREFACE* _sp

COLUMN_WEIGHT= _cw STUB_SUFFIX* _sx

EDIT=* _e STATISTICS= _st

FILTER=* _f TITLE=* _t

FOOTER=* _fo TITLE_2=* _t2

HEADER=* _h TITLE_4=* _t4

LOCAL_EDIT=* _le TITLE_5=* _t5

ROW= _r WEIGHT= _w

BANNER_TITLE=* _bt FILTER_TITLE=* _ft

*means that the keyword requires a closing right brace (}) and, except for EDIT
and LOCAL_EDIT, all of these keywords define table text. All others define the
actual data (i.e., type, categories, statistical calculations) to be printed in the table
cells.

NOTE: Not having a closing brace is common error in spec files. Be sure that your
BANNER, EDIT, STUB and TITLE definitions include a closing brace.

Maximum name length is 14 characters including the extension. (If your tabset
names are ten characters or less, you will not have a problem with the length of
your table element names.) This is not an exhaustive list of all the keywords or
commands that can be specified inside the TABLE_SET structure, but these are the
ones that either specify a table element or print format control.

4.3.2 Changing Table Element Defaults (The DEFINE EDIT Statement)

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-182 MENTOR

Below is a list of Mentor defaults for printed tables. The EDIT statement is what
you use to change any of these defaults. There are several options available to
control what and how table elements are printed on a table. For a complete list, see
“5.3 Changing Table Specifications” or MENTOR APPENDIX B: TILDE
COMMANDS, ~DEFINE EDIT.

System Total row and column

System No Answer row and column

Column width: 8 spaces

Stub (row label) width: 20 spaces

Frequencies with no decimal places

Frequencies with a value of zero print as a dash (-) in the cell

Vertical percents off the Total row (no horizontal percents)

to 1 decimal point. Percent sign (%) prints.

Page length = 60 lines

Page width = 132 columns

No table of contents printed

Below is an edit statement that changes some of the default values. It has been
given the variable name “defedt,” so this set of options can be referenced later. A
comma and/or space(s) separate the options.

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -183

Example:

EDIT= {defedt: -COLUMN_NA, -ROW_NA, COLUMN_WIDTH=7,
RUNNING_LINES=1, TCON }

EDIT= The ~DEFINE keyword used to specify table and page
formatting controls.

{ Left brace marks the beginning of the definition.
(optional)

defedt: The name of this definition. (optional if defined within a
TABLE_SET structure).

-COLUMN_NA Suppresses the printing of the default system-generated
No Answer summary column.

-ROW_NA Suppresses the printing of the default system-generated
No Answer summary row.

COLUMN_WIDTH=7 Controls the width for all table columns; the default is
eight. See also COLUMN_INFO= to control column by
column and STUB_WIDTH= to control row width.

RUNNING_LINES=1 Prints the table title lines continually across the page up to
the specified page width (default is 132).

TCON Creates a table of contents that, by default, includes: the
table name, all titles, the header and footer, and tcon page
numbers. Refer to the keywords listed for ~DEFINE
EDIT=TCON in Appendix B: TILDE COMMANDS to
change these defaults.

} Ends the definition.

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-184 MENTOR

THE THREE LEVELS OF EDIT

Mentor provides three levels of the edit statement. They are GLOBAL_EDIT,
EDIT, and LOCAL_EDIT. GLOBAL_EDIT settings supersede any previous
GLOBAL_EDIT, EDIT, or LOCAL_EDIT statements. Items are defined in an
EDIT statement and stay in effect until a LOCAL_EDIT or another EDIT
statement changes or turns off the item, LOCAL_EDIT options stay in effect for
succeeding tables unless specifically overridden. If you want to use a
LOCAL_EDIT option for just one table, use the SET DROP_LOCAL_EDIT
command (see the next section on the SET DROP options). To return all EDIT
settings to the defaults, use GLOBAL_EDIT=.

With these three levels of control, it is suggested that you do the following: use
GLOBAL_EDIT to set the conditions which are true for all the tables in a single
Mentor run; use EDIT for banner tabsets; and use LOCAL_EDIT for special
features, such as statistics, ranking and zero suppression on stubs.

All three EDITs can be defined within a tabset, or they can be defined in a
~DEFINE block before a tabset. Use EDIT in the ~DEFINE block, and then call
the settings in with GLOBAL_EDIT, EDIT, or LOCAL_EDIT in the tabset. Below
is an example.

EDIT={globex:
PUTCHARS=----
RANKD_IF_INDICATED
PERCENT_SIGN
PDEC=2
}

TABSET={sample:
HEADER={:=

Table Heading for a Great Table
}

FOOTER={:=
Wonderful Client and Associates

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -185

}
GLOBAL_EDIT=globex

}
Here is a list of frequently used LOCAL_EDIT options:

ALL_POSSIBLE_PAIRS_TEST
ANOVA
ANOVA_SCAN
CHI_SQUARE
COLUMN_MEAN
COLUMN_MEDIAN
COLUMN_SE
COLUMN_SIGMA
COLUMN_STD
COLUMN_STATISTICS_VALUES
DO_STATISTICS
FISHER
LEAVE_PAGE_OPEN
LEAVE_TABLE_OPEN
NEWMAN_KEULS_TEST
USE_RANK_INFO

See Mentor, Appendix B, ~DEFINE EDIT for detail on each of these options.

4.3.3 Changing Table Processing Defaults (The SET Statement)

The SET statement controls table-processing defaults for the entire run. SET
statements can be located at the beginning of the specification file, within table sets,
or inside the EXECUTE block. Put SET statements at the beginning of a
specification file for settings you want to be in effect for an entire run. SET
statements can also be specified inside the ~EXECUTE block so they can be turned
off and on to control processing for individual tables. Or, SET commands can be
included in the definition for a table in combination with one of the SET DROP
commands to drop the corresponding element(s) after the table set is used. See
below for a list of the SET drop commands.

B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

-186 MENTOR

From the ~SET block you control Mentor's processing defaults. Default settings
are listed under ~SET in Appendix B: TILDE COMMANDS. In general, these
controls are set for the entire run, but it is possible to specify the SET commands in
a TABLE_SET or from the ~EXECUTE block. The first SET command you will
probably use is AUTOMATIC_TABLES (abbreviated SET AUTOTAB). This
automatically builds a table when Mentor encounters the ROW keyword, rather
than requiring a TABLE or STORE command in each tabset. For details, see “4.4
TABLE BUILDING (The INPUT and EXECUTE statements)”.

Mentor retains table elements, such as titling, as a default until they are redefined
or turned off. Keywords can be turned of by using -KEYWORD or KEYWORD=;.
Since table elements remain set until they are specifically turned off, this can cause
unwanted elements to show up in subsequent tables. To prevent this from
happening, you can use the following ~SET DROP commands, which causes
Mentor to use a table element for one table only and then discard it. This can be
reversed, meaning table elements, once defined, will once again be carried to
subsequent tables, by using the SET command within a tabset or ~EXECUTE
block with the DROP command with a minus sign in front of it, for example, SET
-DROP_BANNER.

Here is the list of the SET DROP commands:

DROP_BANNER
DROP_BANNER_TITLE
DROP_BASE
DROP_COLUMN
DROP_COLUMN_SHORT_WEIGHT
DROP_COLUMN_WEIGHT
DROP_EDIT
DROP_FILTER
DROP_FILTER_TITLE
DROP_FOOTER
DROP_HEADER
DROP_LOCAL_EDIT
DROP_ROW
DROP_ROW_SHORT_WEIGHT
DROP_ROW_WEIGHT

. .
 .

. .B A S I C TA B L E S
4.3 DEFINING TABLE ELEMENTS

MENTOR v 8.1 -187

DROP_STATS
DROP_STUB
DROP_STUB_PREFACE
DROP_STUB_SUFFIX
DROP_TABLE_SET
DROP_TITLE
DROP_TITLE_2
DROP_TITLE_4
DROP_TITLE_5
DROP_WEIGHT

See Mentor, Volume II, Appendix B, ~SET for definitions of each of the DROP
commands.

~SET TABLE_EFFORT controls what is put into the tables. It can save you time by
building tables without actual data, allowing you to find processing or syntactical
errors in your spec file. Here are the options for TABLE_EFFORT:

TABLE_EFFORT=1 Makes tables with data from the file specified in
the INPUT statement (DEFAULT).

TABLE_EFFORT=3 Makes zero-filled tables, allowing you to preview
tables without processing the data file. In addition
to formatting problems and specification syntax
errors, errors in table size will be apparent using
TABLE_EFFORT=3. You might want to test run
your specifications with this setting before running
a large job.

TABLE_EFFORT=4 Processes only the specification file and prints a
table of contents. Tables are not made and the data
file is not read. Use this setting to check
specification syntax only.

B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

-188 MENTOR

TABLE_EFFORT=5 Makes zero-filled tables, and shows all of the
elements in effect on the printed table for
debugging purposes. This includes all default
values being used, the column and row variables,
the category descriptions, and the stubs, banner,
and data locations used to calculate statistics.

4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

~INPUT opens the data file. Mentor assumes the filename has an extension of TR,
because that is the default extension for CfMC data files (also called a System
File). You can eliminate the expectation for the TR by preceding the file name with
a dollar sign ($) or with the META command >-CFMC_FILE_EXTENSIONS.
The INPUT command has several options, which allow you to use different data
file types or use only selected cases from the data file. See Appendix B: TILDE
COMMANDS, ~INPUT for a complete list of options. If you need to copy or
reformat your data file, see the COPYFILE utility in the Utilities manual.

~EXECUTE is the command that triggers the construction and printing of tables.
For maximum flexibility and control, Mentor provides several ways to build
tables. This allows you to make table creation and printing separate procedures, for
example, if you want to run the tables and print them later. See ~EXECUTE in the
Mentor Appendix B for all of the options.

It is possible to define table elements or tabsets directly in the EXECUTE block,
but available memory limits the size of some variables (such as the column or row)
that you can define, and you cannot save any elements using this method. You
could also define each table element in the DEFINE block, and call each item in
the EXECUTE block separately. For example,

~DEFINE

ROW=R1: [12^3/2/1/9]

COLUMN=C1: Total WITH [2^1] WITH [2^2]

~EXECUTE

ROW=R1

. .
 .

. .B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

MENTOR v 8.1 -189

COLUMN=C1

This method, while straightforward, requires lots of typing and would result in huge
specification files. It is much more efficient to define tables in tabsets and then call
them in the EXECUTE block. If you are building only a few tables, you can store
tabsets in memory and call them individually in the EXECUTE block
(TABLE_SET or TABLE=). It is more efficient to have all the tables built at once,
and then printed, you can do this and you can also store tabsets in a db file so you
can print them later (STORE_TABLES=). Or, you can print all of the tables created
in the run with one command (MAKE_TABLES). Below are examples of each of
these methods.

PRINTING INDIVIDUAL TABLES (USING TABLE_SET OR TABLE=)

An easy way to define and build tables is to define table elements as a group in a
table set, and then store those elements in memory. In the table set, use the
TABLE= command. The TABLE= command in the DEFINE block stores the table
elements and data in memory, and then the TABLE_SET command in the
EXECUTE block causes the table to be built and printed. This method is best for a
building a single table or a few tables because it only makes one table for each pass
through the data, which would be very slow and inefficient for many tables. This is
the method used in the first two examples in this chapter:

~DEFINE

TABLE_SET={example:

 COLUMN=: Total

 ROW=: [1^1/2]

 TABLE=*

 }

~INPUT $

~EXECUTE

B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

-190 MENTOR

 TABLE_SET=example

You can use TABLE= in the EXECUTE block instead of TABLE_SET. TABLE=
causes Mentor to build a table using the current table elements and then print the
table immediately. TABLE= can specify a specific table name or asterisk (*) to
mean use the current table name and increment by one. The first tabset has the
default table name T001, and tabset two would have the name T002. (You can use
the SET command TABLE_NAME to specify the current table name.)

STORING TABSETS IN THE DB FILE (USING STORE_TABLES)

Instead of the TABLE= command, you can use STORE_TABLES (abbreviated
STORE). STORE_TABLES saves table specifications in memory until memory is
full and then stores tables in a DB file. This is faster than TABLE_SET or
TABLE= because it processes the data in the tables first and then prints them.
Unlike TABLE, tables are not automatically printed, so you must include a
printing command in the EXECUTE block.

Example:

>CREATE_DB tabstuff

>PRINTFILE mytables

~DEFINE
 TABLE_SET={one:
 HEADER=: These Are My Tables }
 BANNER=:
 Total Male Female
 ------ ------ ------ }
 COLUMN=: Total WITH [2^1] WITH [2^2]
 }

 TABLE_SET={two:
 TITLE={:
 How much do you like building tables? }
 STUB={mystub:
 3-Very Much

. .
 .

. .B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

MENTOR v 8.1 -191

 2-Somewhat
 1-Not Much
 9-Don't Know }
 ROW=: [12^3/2/1/9]
 STORE=*
 }

 TABLE_SET={three:
 TITLE={:
 How much do you like Roadrunner's Pizza? }
 STUB={mystub }
 ROW=: [13^3/2/1/9]
 STORE=*
 }

~INPUT $

~EXECUTE
 TABLE_SET=one
 TABLE_SET=two
 TABLE_SET=three
 PRINT_ALL

~END

The advantage of saving tables to the db file is that you can print tables without
having to construct them again. This is useful if you have to make simple changes
to the table labels (see 5.6 REPRINTING TABLES for how you can reprint tables
that have been stored in a DB file from a previous run) or for printing a single table
out of a large group of tables.

With either TABLE= or STORE_TABLE=, Mentor stores table elements in
memory before making a pass through the data to build the tables. The number of
tables that can be made in a single pass depends on the amount of memory
available. This is either the default for your machine or what you set memory to on
the CORE option from the command line. Refer to your Utilities manual Appendix
D: CfMC CONVENTIONS, Command Line Keywords for more information on
setting core memory higher to fit more tables per data pass.

B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

-192 MENTOR

Instead of using the STORE=* command in every tabset, you can use the ~SET
AUTOMATIC_TABLES command. This causes Mentor to store tables every time
it encounters the ROW keyword. (Be careful, if you include both
STORE_TABLES or TABLE in a TABLE_SET when you have also specified SET
AUTOMATIC_TABLES, two tables will be built for each ROW keyword!)

Example:

~SET AUTOMATIC_TABLES

~DEFINE

 TABLE_SET={one:

 Header=: These Are My Tables }

 Banner=:

 Total Male Female

 ------ ------ ------ }

 Column=: Total WITH [2^1] WITH [2^2]

 }

 TABLE_SET={two:

 Title={:

 How much do you like building tables? }

 Stub={mystub:

 3-Very Much

 2-Somewhat

 1-Not Much

 9-Don't Know }

 Row=: [12^3/2/1/9]

 }

 TABLE_SET={three:

. .
 .

. .B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

MENTOR v 8.1 -193

 Title={:

 How much do you like Roadrunner's Pizza? }

 Stub={mystub }

 Row=: [13^3/2/1/9]

 }

~INPUT $

~EXECUTE

 TABLE_SET=one

 TABLE_SET=two

 TABLE_SET=three

PRINT_ALL

~END

MAKING SEVERAL TABLES (USING MAKE_TABLES)

For a standard run (several tables, a single banner, and sequential table numbers)
use the MAKE_TABLES command in the EXECUTE block. MAKE_TABLES
builds and prints all of the tables defined by reading a TAB file for a list of tables
and an LPR file for a list of LOAD and PRINT commands for those tables. If you
use the ~SPEC_FILES command, Mentor will generate the TAB and LPR files for
you automatically. (Survent users: If you used ~PREPARE COMPILE
Mentor_SPECS to generate a TAB file, ~SPEC_FILES will overwrite it. If you
need to keep the Survent generated TAB file, rename it or move it to another
directory.)

(MAKE_TABLES actually calls the BUILD_TABLES, RESET and PRINT_RUN
commands. You can use these commands separately to have more control over your
run. See Mentor, Appendix B: ~EXECUTE LOAD_TABLE, STORE_TABLE, and
PRINT_ALL.)

B A S I C TA B L E S
4.4 TABLE BUILDING (The INPUT and EXECUTE statements)

-194 MENTOR

Here is a typical spec files that takes advantage of both SET
AUTOMATIC_TABLES and EXECUTE MAKE_TABLES.

~SPEC_FILES
~SET AUTOMATIC_TABLES

~DEFINE
 TABLE_SET={one:
 Header=: These Are My Tables }
 Banner=:
 Total Male Female
 ------ ------ ------ }
 Column=: Total WITH [2^1] WITH [2^2]
 }

 TABLE_SET={two:
 Title={:
 How much do you like building tables? }
 Stub={mystub:
 3-Very Much
 2-Somewhat
 1-Not Much
 Don't Know }
 Row=: [12^3/2/1/9]
 }

 TABLE_SET={three:
 Title={:
 How much do you like Roadrunner's Pizza? }
 Stub={mystub }
 Row=: [13^3/2/1/9]
 }

~INPUT $

~EXECUTE
MAKE_TABLES

~END

. .
 .

. .B A S I C TA B L E S
4.5 META COMMANDS

MENTOR v 8.1 -195

4.5 META COMMANDS

Meta (>) indicates a command that can be invoked in most CfMC software
programs and across tilde blocks. They are used for general programming controls,
variable data base access, and specification file control. Here is a description of
some of the meta commands you are likely to use. Refer to your UTILITIES manual
for definitions of all meta commands.

>DEFINE @STUDY sample >DEFINE defines a keyword that can be used as a
substitution for any string. In this case, it is used to
give the name of the study at the top of a run, so it
can easily be referenced on any command
requiring the study name. This allows you to use
“@STUDY” on each command line and Mentor
will automatically pull the name “sample” into the
line. This format is used for the rest of the meta
commands in this section.

>PRINT_FILE @STUDY~ >PRINT_FILE opens a file to be printed to for
tables or procedure output. There are also options
to print to the screen, print to multiple files, or
control the page size. NOTE: The tilde mark (~)
acts as a delimiter for user-defined variables. This
means you can append letters and/or numbers to
the STUDY name, for example, >PRINT_FILE
@STUDY~2 would open the print file
SAMPLE2.PRT.

>AllOW_INDENT Allows indentation of meta commands and
&filename, otherwise, they must start in the first
column of the specification file.

>PURGE_SAME Purges existing files with the same name as any
newly created file. This is useful if you are
repeating runs often and do not want several
intermediate files saved. Without

B A S I C TA B L E S
4.5 META COMMANDS

-196 MENTOR

>PURGE_SAME, Mentor renames the existing
files by changing the first character of the file
name up one alpha character (for example
drop.prt would be renamed erop.prt). NOTE: Use
>PURGE_SAME with caution, it deletes existing
files with the same name!

THE DB FILE

A DB file is a machine-readable file which allows you to store variables and tables
for fast retrieval by Mentor. By default, Mentor stores variables in a “local” DB
file, which disappears after the current run. To store items for a later run, you
create the DB file in one spec file, and then make a reference to it in another spec
file. Here are the DB commands:

>CREATE_DB @STUDY~ >CREATE_DB opens a new data base (DB) file
to store any new variables or tables made by
Mentor. Later you can refer to this file to reprint
built tables or rebuild tables using variables that
exist in the DB file. (See the note above about
the tilde mark (~) under >PRINT_FILE.)

>USE_DB @STUDY~ >USE_DB opens a data base (DB) file
containing previously defined Mentor or Survent
variables or tables. See “4.11 SAMPLE
SPECIFICATION FILES”, for an example of
using the DB file for table elements. Two
ampersands (&&) followed by a name will store
the item in a data base (DB) file and then
execute it. The file or data base item can include
executable program commands and syntax
suitable for the current tilde block, or it may
include other tilde commands or meta
commands. (See the note above about the tilde
mark (~) under >PRINT_FILE.)

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -197

4.6 DEFINING DATA

Data definitions tell Mentor where to find the data to tabulate, what type of data it
is, and how it is organized. You can use data definitions to define the table's vertical
and horizontal axes, exclude respondents from a table (this is known as a base), or
give more weight to some data. Use these data definitions in your COLUMN and
ROW statements.

You can join two or more variables together to form expressions. Expressions
create new data categories, and you can use them to: perform across-case statistical
calculations; execute functions to change or manipulate the data in specific ways;
or, create special kinds of tables (such as break and overlay tables).

This section covers the rules for creating simple data definitions. In “4.6.1
Summary of Rules for Defining Data”, there are several examples illustrating the
syntax for data field locations and category definitions. The next section, “4.7
DEFINING THE BANNER”, has an example of a complex table banner using the
WITH joiner. Joiners and expressions are covered in detail in section “5.1
Expressions and Joiners”.

A data definition is usually enclosed in brackets []. It can be assigned a name for
future reference or as you saw earlier Mentor can generate default variable names
derived from the TABLE_SET name and the table element keyword. The data
definition can also include text that will print as a title any time the variable is
referenced in a table or text to label each data category (i.e., stub labels). Optional
data modifiers can be used to change how data categories are tabulated.

Variables are defined with the keyword VARIABLE, and can be used in data
modification, data reporting, or tables. To create cross-case statistics or need special
table building controls, use the AXIS commands to define the COLUMN, BASE,
or ROW. AXIS commands can only be used on tables. Refer to “5.2 Axis
Commands/Cross-Case Operations”.

B A S I C TA B L E S
4.6 DEFINING DATA

-198 MENTOR

Syntax: VARIABLE= varname: $T="text" & [record/col.wid, mod
type categories] joiner [record/col.wid, etc.]

VARIABLE= The ~DEFINE keyword to start a variable definition.
It is not required since it is the default keyword used
by ~DEFINE.

varname The name of the variable; this is required unless you
have a simple variable that has a name on its data
specification; i.e., varname[5^1]. It can be 1 to 14
alphanumeric characters starting with a letter, and may
include periods (.), and underscores (_).

: Required only if the variable definition contains any
functions or joiners to form a complex variable
expression. Remember that within the TABLE_SET
structure keyword=: tells Mentor that this is a new
definition and if no varname is specified then generate
the default name.

$T="text" The title of the variable (optional). The text prints as
the title of a table element whenever the variable is
referenced and another title is not provided. In a
TABLE_SET, this is the same as defining a TITLE=
variable. If $T is not specified, then the varname prints
as the default title if no other title is provided.

Text can be continued onto the next line by placing a double ampersand (&&)
immediately after the last quote. Continue the text on the next line by placing it in
quotes also.

& Required at the end of any line within the definition
which continues to the next line.

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -199

[] Required around each new data element specification,
but is not required if all references are to previously
named data specifications.

record The record number for the location of the data. By
default CfMC programs report all data locations in the
record/col.wid format. (Data locations can be referenced
by absolute column as well.)

col.wid The starting column location and number of columns. If
you don't include a width, then one column is assumed.
You can also specify the location as column1-column2,
where column1 is the first column and column2 the last
column. For a multiple column/item specification, use
commands to separate column specifications, or an
ellipsis (,...,) to say 'columns starting here and going to
there'. Multiple column specifications create a set of
categories for each single column description. Non-
consecutive data locations are separated by a comma
(,). See “4.6.1 Summary of Rules for Defining Data”.

mod Refers to the variable modifier used to determine how to
combine categories in variables referencing multiple
columns, or to modify numeric data references. The
default is make separate categories for all the data
locations. (optional)

Multiple data column references: col1,col2,...,coln:

*F or FIRST nets the counts per category across columns (i.e., it counts only
the first mention of each category).

*L or LAST sums the counts per category across columns (i.e., it sums all
mentions for each category).

B A S I C TA B L E S
4.6 DEFINING DATA

-200 MENTOR

Use *F to count cases (respondents, how many) and use *L to count things in the
cases (family members, how much, or how often). For example, you would use *F
when you want to know how many people bought the products they were asked
about, but not how much they bought. If you are asking did they buy it, use it or eat
it, use *F, if you are asking how many did they buy, how much did they eat or how
often did they use it, use *L.

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -201

Numeric data references:

! Return a zero (0) when the location is blank, e.g., [!5/10.2] says if record
five columns 10 and 11 are blank then return a zero. Note that the
exclamation (!) is prior to the location being referenced, unlike the other
modifiers.

*D# The variable contains decimals, e.g., [1.10*D1] says this variable has one
decimal in the data. If there is not one decimal, the value will be treated as
'Missing' (ignored). The maximum number of decimal places is 14.

*F# This variable has implied decimals, e.g., [1.10*F2] says this variable has
two implied decimals. If there is an actual decimal in the data, that will be
used instead of the implied decimals.

*RANGES=#-#,#,a=#,b,c Specifies the numeric range and exception codes of
the variable. This is useful to exclude codes in the data
from future calculations, such as for Means.
Exception codes can also be assigned a value to be
used in statistical calculations, otherwise they are
excluded from stats.

#-# range of values to be included in evaluation of the data

numeric value to be excluded from evaluation, but allowed

a=# exception code1 to be recoded to this number (#) for evaluation

b exception code2 to be counted, but not included in numeric evaluation

c exception code3 same as above

*Z The data contains leading zeros (0), e.g., [10.2*Z#1-10]. If there is no
leading zero, the location will be considered "missing", and will be
ignored

B A S I C TA B L E S
4.6 DEFINING DATA

-202 MENTOR

Example: row1: [15.2#1-50/RF/DK &

$[MEAN,STD,SE] [15.2*RANGES=1-50,,RF=0]

row1 The variable name

: Required for a complex variable or axis definition

[Defines the start of a data reference

15.2 The data location, columns 15 and 16

Specifies the type of data, ASCII or numeric

1-50 The range of responses allowed for this data category

RF The literal allowed for this category

DK Another allowed literal

& Ampersand continues the definition to the next line

$[MEAN,STD,SE] The statistical tests that will be performed on
the data (mean, standard deviation, and
standard error) For more information, see
“5.2 Axis Commands/Cross-Case
Operations” and Appendix B: TILDE
COMMANDS, ~DEFINE AXIS=.

[15.2*RANGES=1-50,,RF=0] Defines which columns will be tested (15.2)
and which values will be included in the
evaluation. A value has been assigned to the
exception code RF.

 Modifiers can be combined in the same variable where it

 makes sense to do so. Specify only one asterisk (*) when you

 combine options.

Example: [5.4*ZD2]

This variable contains leading zeros and two decimals.

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -203

DATA TYPES

type The type of data variable, either punch or ASCII. Data type is
identified by one of two symbols: caret (^) indicating punch binary
codes, pound sign (#) indicating either numeric ranges or ASCII
characters. If no type is specified (i.e., just a data location is given
with no categories), then data type defaults to numeric and must be a
valid number that is right-justified in the field.

Punch Data

Punch Data (^) is stored as 12 punches per column, 1-9, 0, X, and Y. (You can
substitute 10, 11, and 12 for 0, X, and Y.) Survent CAT question returns punch data.
This example represents punch data found in record 1, column 5, a width of one
column, punches 1 and 2:

[1/5^1/2]

Punch data can be any width. For categories wider than one column, punches are
represented as their position relative to the first punch of the first column in the data
field. For example, the third punch in the second column of a data field would be
referenced as 15:

[1/6.2^15]

This example represents punch data found in record 1, column seven, a width of
two columns, the third punch:

[1/7.2^3]

^5/4/3/2/1/10 means punches 5,4,3,2,1, and 0 (10th punch) are stored in the data as
separate categories in the order shown. The slash (/) acts to separate categories.

You can precede any punch with the letter N to mean "is not these punches," the
letter B to mean "is blank" (no punch), or the letter A to mean "has all these

B A S I C TA B L E S
4.6 DEFINING DATA

-204 MENTOR

punches." You can combine N with B to mean "is not blank," and N with A to
mean "is not all of these punches."

[10^A1,2/N3,4/AN5,6]

This example creates three categories. The first will contain records which have
both 1 and 2 punched. The second category will contain records which have
neither 3 or 4 punched. The third category will contain records which do not have
both 5 and 6 punched.

ASCII data (#)

Can be alphabetic, numeric, or special characters (enclosed in quotes), or some
combination. The maximum data field width for numbers is 20 and 9 for
alphabetic characters. Survent FLD and NUM question types return ASCII data.

[1/55.2#0-3/4-5/6-10/RF]

0-3/4-5/6-10/RF represent the numeric ranges for each data category. RF is an
exception code. Codes are not case-sensitive, and quotes are not required.

Quotes are necessary when you want to match special characters (i.e., ? / *) or
blanks. Quotes are also necessary if you want to have Mentor treat numbers as
ASCII characters, meaning they must be an exact match (for example, left-
justified in the field).

[1/5.4#99]

In this example, 99 is treated as a number and must be right-justified in the field
(columns 7 and 8) to match this definition. That means it could be blank or zero-
filled in columns 5 and 6 to match (99) or (0099).

[1/5.4#"99"]

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -205

In the second example "99" will be treated like all other ASCII characters and must
be left-justified in the field to match the definition (99).

USING PUNCTUATION TO CREATE CATEGORIES

Categories

The codes or values that describe categories within the data variable. The number
of categories defined will determine either the number of stub rows or banner
points when tables are made.

You can use a modifier to further determine how categories are represented in a
table. By default, when there are multiple column references, the category list will
include one category for each column referenced, such that the total number of
categories will be the product of the number of column references times the number
of category descriptions. If you use the *F or *L modifiers, the categories are
grouped across the data locations specified, and you will only have one set of
categories to describe all of the data locations.

Slash (/) defines categories as single elements, e.g. 1/2/3/4/5 or A10/B52/55D to
describe individual punch or ASCII categories.

Dash (-) indicates either netted punch values or a range of ASCII values, e.g., 0-
3/4-5/6-10. This means for a respondent to be included in the first category there
must be a zero, one, two, or three (punch or value depending on data type) in the
data.

Comma (,) also creates netted categories, e.g., 5,4/5/4/3/2/1 meaning values four
and five are netted into the first category.

Dashes and commas may be combined within a category.

Double slash (//) means that multiple categories will be made starting from the first
category through the last, e.g., 5,4/5//1. This creates six categories where: cat1 nets

B A S I C TA B L E S
4.6 DEFINING DATA

-206 MENTOR

values 4 and 5; cat2 is 5; cat3 is 4; cat4 is 3; cat5 is 2; and cat6 is 1. For punch
references, // is always consecutive from the first category to the last. For ASCII
categories, the prior two categories to a // determine the range to be used when
creating new categories. For example, 1/3//9 would create categories 1,3,5,7, and
9.

Punch data can use the letters N (“not this punch”), A (“not all of these punches”)
and B (“is blank”) to create categories. See the punch data definition on a prior
page for an example.

You can control when statistical (~DEFINE STATISTICS) tests are to be done on a
particular category or group of categories with a plus sign (+) or the keyword
(stats) before the category. It can come before or after any category text and must
be enclosed in parentheses ().

Example:

RATING1: [1.5^TOP:(+)1,2/1//6/BOTTOM:(+)5,6]

In this example, statistical tests will be done on the "top box" row (netted
categories one and two) and the "bottom box" row (netted categories five and six)
only.

You can specify text on a category by specifying it before the category followed by
a colon, e.g., [2/12^Male:1/Female:2]. The text defined here would print whenever
the category was printed in data reports, or on tables, either as row stub labels or
banner labels. Text must be enclosed in quotes (") when it contains either spaces or
special characters, e.g., [2/12^Male:1/"All Females":2].

[1/5#1//5]

The same as [1/5#1/2/3/4/5] or five categories which are the numbers 1, 2, 3, 4,
and 5.

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -207

[1/5.2#A1/B2/C3]

Defines three categories which are the ASCII characters A1, B2, and C3.

[1/5^1,2/3,4/5]

Defines three punch categories where punches 1 or 2 are counted in the first
category, 3 or 4 in the second, and punch 5 in the third.

[1/5.2^1-5,23,24]

Defines one category that could contain any punch code 1, 2, 3, 4, 5, 23, or 24.

[19.2,...,23*F#1//17])

The variable modifier *F counts only the first mention across the columns
specified, in effect ignoring duplicates by counting only the data categories with a
different valid mention. Categories with the same mention are thus netted together.
For example, the first category is 19.2#1, 21.2#1, and 23.2#1. *F nets these
together as one mention even if all three fields contain a value of one. This would
be reflected in the frequency on the table. On the other hand, the *L modifier would
sum the mentions for a total of three in this case.

JOINERS

Joiner

A command that joins two or more variables together to form an expression.
Joiners can be either logical (true or false) or vector (combines variables to create
new categories).

B A S I C TA B L E S
4.6 DEFINING DATA

-208 MENTOR

Using what we have learned about data variables we can define a column variable
to present the data using two variables from the RRUNR questionnaire, respondent
sex and age. For this example we will use the vector joiner WITH to append the
categories for respondent sex to the categories for respondent age. This will form a
single expression with the categories from each.

[1/57^1/2] WITH [1/51^1,2/3,4/5,6/7]

Sex Age

NOTE: We have combined or netted some of the age categories into single
categories by separating them with a comma. Comma means add another
value to this category. Respondents who answered either 1 or 2 are
counted in the first category, either 3 or 4 are counted in the second, and
either 5 or 6 as the third age category, 7 being Don't know/Refused.

The joiner WITH creates a total of six categories from these two variables, two
respondent sex categories and four age categories. The categories to the left of the
joiner print first. You can see this WITH example and the table it creates in “4.8
FORMATTING BANNER TEXT”.

4.6.1 Summary of Rules for Defining Data

The next few pages provide several examples of how you can define data in
Mentor. The first column is a sample data definition and the second and third
columns show the actual locations the definition refers to.

SAMPLES OF DATA FIELD LOCATIONS

RECORD COLUMN

NUMBER NUMBER(S) REFERENCED

------------ ---------------------------------

1. Single Column Locations

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -209

[1/5] 1 5

[5] (defaults to 1) 5

[7/48] 7 48

2. Locations Wider than 1 Column

[1/5-9] 1 5, 6, 7, 8, and 9

[5-9] (defaults to 1) 5, 6, 7, 8, and 9

[1/2.5] 1 2, 3, 4, 5, and 6

[4/1.3] 4 1, 2, and 3

3. Multiple Locations

[1/8,1/9] 1 8 and 9

[4/32,4/35,4/46] 4 32, 35, and 46

[1/16,...,1/20] 1 16, 17, 18, 19, and 20

[5/32,...,5/27] 5 32, 31, 30, 29, 28, and 27

[2/17-18,...,2/25-26] 2 17 & 18; 19 & 20; 21 & 22; 23 & 24; 25
& 26 (i.e., five fields, each two columns
wide)

[1/24.3,...,1/33.3] 1 24 & 25 & 26; 27 & 28 & 29; 30 & 31 &
32; 33 & 34 & 35; (i.e., four sets of three
columns)

NOTE: The last ".3" is not required since once a width is stated, either explicitly
(24.3) or by default (8 implies 8.1), it stays in effect for all locations in the
same set of brackets.

B A S I C TA B L E S
4.6 DEFINING DATA

-210 MENTOR

PUNCTUATION USED IN REFERENCING DATA FIELD
LOCATIONS

Single Slash (/): Used to separate the record number from column
number(s).

Period (.): Used after the leftmost column number of a data
field, and followed by a number giving the width
of the field (in number of columns).

Comma (,): Used after a data field location reference to
indicate that multiple column fields are being
specified.

Ellipsis (...): Used after a column number in a data field
location to abbreviate the listing of a sequence of
consecutive locations when multiple column
locations are specified.

Square Brackets ([]): Used to enclose a variable definition.

CATEGORY DEFINITIONS USING CARET (^) FOR PUNCH DATA

NUMBER OF PUNCH CODES

CATEGORIES TO CREATE USING THESE PUNCHES

------------------------------------- ----------------------------------

EXAMPLE SET A: For Separate Punch Position Categories

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -211

1/12 2 1 and Y

1//12 12 1,2,3,4,5,6,7,8,9,0,X, and Y

1/2/3/11 4 1,2,3, and X

12/11/10/9/8/7/6/5 8 Y,X,0,9,8,7,6, and 5

11//7 5 X,0,9,8, and 7

1/4//9/12 8 1,4,5,6,7,8,9, and Y

13//24 12 1,2,3,4,5,6,7,8,9,0,X, and Y in the second
column of the field

1,4.9/12 2 "1,4,5,6,7,8,9", and Y

EXAMPLE SET B: For Netted Punch Position Categories

1,2,3 1 "1,2,3" (A new, single netted category)

1,2/3/12 3 "1,2",3, and Y

5-12 1 "5,6,7,8,9,0,X,Y"

1/3/4.6/7//12 9 1,3,"4,5,6",7,8,9,0,X, and Y

1-12 1 "1,2,3,4,5,6,7,8,9,0,X,Y"

12-1 1 "Y,X,0,9,8,7,6,5,4,3,2,1"

1,13,25 1 A new single netted category of the 1
punches in first 3 columns of the
field.

B A S I C TA B L E S
4.6 DEFINING DATA

-212 MENTOR

EXAMPLE SET C: For Negative Punch Position Categories

B 1 Absence of all codes 1-Y

N1 1 Not 1

N1/3/7/9 4 "Not 1",3,7, and 9

6//9/N1-5 5 6,7,8,9, and "NOT 1-5"

NB 1 "1,2,3,4,5,6,7,8,9,0,X,Y" (same as 1-Y)

EXAMPLE SET D: Specifying Locations and Categories for Punch Data

RECORD COLUMN NUMBER OF PUNCH CODES

NUMBER NUMBERS CATEGORIES REFERENCED

------------ -------------- ----------------- ------------------

[1/5^1/2/12] 1 5 3 1,2, and Y

[3/7^1//6] 3 7 6 1,2,3,4,5, and 6

[5^11/7/2/1] 1 5 4 X,7,2, and 1

[5/5.2^01//24] 5 5-6 24 1,2,3,4,5,6,7,8,9,0,X,Y in
column 5 and
1,2,3,4,5,6,7,8,9, 0,X,Y
in column 6

PUNCTUATION USED IN DEFINING PUNCH DATA

Comma (,): Used to create a single netted category of the
punches' positions listed.

Dash (-): Used to indicate the net of all consecutive punch
positions between the first punch position
specified, and the last punch position specified.
(same as period)

. .
 .

. .B A S I C TA B L E S
4.6 DEFINING DATA

MENTOR v 8.1 -213

Caret (^): Indicates punch type data, single or multi-column
punch field. Note that you can specify the punch
codes as a position relative to the first column in
the field, e.g.,12 or the actual code Y.

Period (.): Used to indicate the net of all consecutive punch
positions between the first punch position
specified, and the last punch position specified.
(same as dash)

Slash (/): Used to indicate separate punch code categories.

Double Slash (//): Used to indicate a set of separate but consecutive
punch code categories.

Square Brackets ([]): Used to enclose a data variable definition.

CATEGORY DEFINITIONS USING POUND SIGN (#) FOR ASCII
AND NUMERIC DATA

EXAMPLE SET A: ASCII CATEGORY DEFINITIONS

Record Column Number

Number Number of Cats. Values

---------- ---------- ---------- --------

[8/4.2#17/26/AA/ZZ] 8 4-5 4 17, 26, AA,ZZ

[2/2.3#ABC/999/&&&] 2 2-4 3 ABC, 999,&&&

[6/38.3#190/B27/321/55D] 6 38-40 4 190,B27,321, 55D

B A S I C TA B L E S
4.6 DEFINING DATA

-214 MENTOR

EXAMPLE SET B: NUMERIC CATEGORY DEFINITIONS

Record Column Number

Number Number of Cats. Values

---------- ---------- ---------- --------

[3/7.3#157/305/872] 3 7-9 3 157, 305,872

[1/1.2#28/77/93,94] 1 1-2 3 28, 77, "93 or 94"

[4/27.2#1//99] 4 27-28 99 99 separate categories

[1/37.2#1-10/11-20/31-40] 1 37-38 3 The range 1-10, the
range 11-20, the range
31-40.

[1/10.5#1.99-10.99/RF] 1 10-14 2 The range 1.99 - 10.99,
the exception code RF

[1/5.2] 1 5-6 1 All real numbers* in
this location. *Meaning
any positive, negative,
or decimal number.

PUNCTUATION USED IN DEFINING ASCII AND NUMERIC DATA

Pound Sign (#): Used to indicate Numeric or ASCII type data.

Dash (-): Used as in "n-m", to represent a range of values from n
to m.

Comma (,): Used within a category definition to separate
alternative values.

. .
 .

. .B A S I C TA B L E S
4.7 DEFINING THE BANNER

MENTOR v 8.1 -215

Quotation Marks (""): Used to set off and identify special characters such as
literals, including blank spaces.

4.7 DEFINING THE BANNER

Printed tables have two main elements, a banner and a stub. Since a banner
normally includes the variable(s) you want on all of your tables, you can make one
banner definition and just change the stubs. Generally you will use one
TABLE_SET to combine the elements of each banner (including the banner text,
the column variable, the table printing (EDIT) options), and one TABLE_SET for
each of the stubs (including the titles, stub labels, bases, and row variables).

The banner TABLE_SET can also include an overall filter variable for the set of
tables (BASE or FILTER), a definition to control what prints at the top or bottom of
each table (EDIT STUB_PREFACE or STUB_SUFFIX), a weight variable to give
weights to the cases included in the tables, or specifications to choose the type of
statistics to do and which columns to be included in the comparisons (see Appendix
B: TILDE COMMANDS, ~DEFINE STATISTICS and ~EXECUTE
COLUMN_WEIGHT).

Stub TABLE_SETs can include items to control specific table printing needs
(LOCAL_EDIT), a variable to filter respondents (BASE), base titling (TITLE_4),
and row weighting (ROW_WEIGHT). You can use the SET command to turn on or
off certain production controls to affect groups of tables, such as whether to drop
items after one table, or how to assign table names.

If you have more than one banner definition, then you can use a global
TABLE_SET to define such things as the header and footer to print on the tables,
global SET commands, or a main EDIT statement for table building and printing
controls. Here is a typical TABLE_SET for a banner:

TABLE_SET={BAN1:

 STUB_PREFACE=ONLY_AR1

B A S I C TA B L E S
4.7 DEFINING THE BANNER

-216 MENTOR

 EDIT={: -COLUMN_TNA

 COLUMN_WIDTH=6,STUB_WIDTH=21,

 COLUMN_INFO=(C=8 W=7/C=9 W=7/C=10 W=7),

VERTICAL_PERCENT=AR,PERCENT_DECIMALS=1,-PERCENT_SIGN,

STAR_PERCENT=0,STATISTICS_DECIMALS=2,PUT_CHARACTERS=---
,

 CALL_TABLE="", RUNNING_LINES=1,

 TCON=(-TABLE_NAMES,PRINT_PAGE_NUMBERS,-TITLE_2)

 }

BANNER={:

| CITY SEX

| =========== =========== AGE Q1. BEST NAME

| DEN- DAL- FE- =========== ====================

| TOTAL VER LAS MALE MALE 18-34 35+ CHOICE SELECT SOURCE

| ----- ----- ----- ---- ---- ----- ----- ------ ------ ------
}

COLUMN=: TOTAL WITH &

 [5^1/2] WITH & ''city

 [6#M/F] WITH & ''sex

 [65^1,2/3,4] WITH & ''age

 [16^1//3] ''q1

}

1.Controls format and printing of rows at the top of the table, which are often system
generated rows (i.e., Total, No Answer, Any Response). The variable ONLY_AR was
previously defined with the keyword STUB= and then assigned to this table element:

STUB={ONLY_AR:

[SUPPRESS] TOTAL

. .
 .

. .B A S I C TA B L E S
4.7 DEFINING THE BANNER

MENTOR v 8.1 -217

[SUPPRESS] NO ANSWER

[PRINT_ROW=AR] ANY RESPONSE }

Table edit and text elements such as BANNER= and EDIT, require a closing right
brace (}). The matching open left brace ({) is optional. Refer to the list of
keywords under the heading Default Varname Generation for a list of which
elements require a closing brace.

Other EDIT options that you can use in the banner TABLE_SET are:

BOTTOM_MARGIN= PAGE_WIDTH=

CONTINUED= PREFIX=

CUMULATIVE_PERCENT PRINT_ALPHA_TABLE_NAMES

DATA_INDENT= RANK_COLUMN_BASE=

EMPTY_CELLS= RANK_IF_INDICATED

FREQUENCY RANK_LEVEL=#

FREQUENCY_DECIMALS= RANK_ORDER=

FREQUENCY_ONLY SKIP_LINES=

HORIZONTAL_PERCENT= STUB_INDENT=

INDENT= STUB_RANK_INDENT=

MINIMUM_BASE= STUB_WRAP_INDENT=

MINIMUM_FREQUENCY= SUFFIX=

MINIMUM_PERCENT= SUPPRESS_ROWS_BASE=

NUMBER_OF_CASES TFRP

PAGE_LENGTH= TOP_MARGIN=

Other EDIT options relating to statistical testing that could logically be stored with
the banner TABLE_SET include:

ALL_POSSIBLE_PAIRS_TEST

CHI_SQUARE_ANOVA_FORMAT

B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

-218 MENTOR

NEWMAN_KEULS_TEST

TABLE_TESTS=<region>

These EXECUTE elements are also typically associated with a banner:

COLUMN_WEIGHT=

COLUMN_SHORT_WEIGHT=

STATISTICS=

All of the EDIT options are defined in Appendix B: TILDE COMMANDS,
~DEFINE EDIT=. See also “5.3 Changing Table Specifications”.

4.8 FORMATTING BANNER TEXT

To create a banner for a table you need to define a variable that specifies the exact
text, spacing, underlining, headings, etc. for each data column or banner point. To
print a table with a user-defined banner it must either be assigned to the table
building keyword ~EXECUTE BANNER=varname or be defined in a ~DEFINE
TABLE_SET= with the keyword BANNER=.

The BANNER keyword only defines text; it does not affect the data printed under
the column labels.

In designing a banner you need to consider the number of banner points you want,
the width of the widest label, and the width of the stub(row) labels. Remember that
the wider the banner the less room will be available for the stub labels. Most wide
carriage printers allow a maximum of 132 columns with a regular font and up to
250 columns with a compressed font.

This example uses the default column width of eight spaces, suppress the default
Total summary and the No Answer columns, and creates its own Total summary
column. The banner has seven banner points at eight columns each for a total of

. .
 .

. .B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

MENTOR v 8.1 -219

56 columns. If you are printing a percent sign (%) for either the vertical or
horizontal percents this adds one more column to the total table width. The percent
sign prints one character to the right of the frequency printed above it. Stub labels
default to 20 spaces making a total table width of 77 columns. An easy way to get
started on the definition is to lay out the total columns needed for all the labels
using some sort of spacing guide to follow for each label.

Example: 7 banner points, each 8 columns wide

---- ------- ------- ------- ------- ------- -------

Starting with the Total column, this guide lines up each of the banner points over
the data that will print below it. Frequencies, by default, will be right-justified
within the column width. The text for each label can be placed over these guides.
Vertical bar (|) marks the start of text including any blank spaces. Lines will be
indented depending on where you place the vertical bar.

BANNER=:

| <------SEX------><-----------AGE------------>

|

|

Don't

Under Over know/

Total Male Female 35 35-54 54 Refused

---- ---- ------ ----- ------ ---- -------}

This banner definition specifies headings for the two groups of banner points, a
blank line, and labels for each data column. The last line uses dashes to underline
each label. Blank spaces preceding each label count as part of the total column
width of eight.

Since this banner definition is inside a TABLE_SET= structure, you must use
BANNER keyword to define banner text and assign it to a table element. Unlike

B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

-220 MENTOR

other table text, banner labels must be defined with the BANNER keyword and,
once defined, the banner is not interchangeable with other text elements.

SAMPLE SPECIFICATIONS AND TABLE

Here is a sample specification file that includes a banner TABLE_SET and calls in
the stub TABLE_SET from another file. With this structure, you have Survent
build the stub TABLE_SETs for you.

>PURGE_SAME

>RUN_LABEL= “Sample Formatted Banner”

>DEFINE @STUDY rrunr

>PRINT_FILE @STUDY~

~SPEC_FILE @STUDY~

~DEFINE

 TABLE_SET=tabtop:

 SET AUTOMATIC_TABLES

 EDIT=: -COLUMN_TNA,-ROW_NA,RUNNING_LINES=1,TCON}

 BANNER=:

| <------SEX------><-----------AGE------------>

|

|

Don't

Under Over know/

Total Male Female 35 35-54 54 Refused

---- ---- ------ ----- ------ ---- -------}

COLUMN=:TOTAL WITH [1/57^1/2] WITH [1/51^1,2/3,4/5,6/7]

 }

&@STUDY~^DEF

. .
 .

. .B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

MENTOR v 8.1 -221

~INPUT @STUDY~

~EXECUTE MAKE_TABLES

~END

THE STUB TABLE_SET

Here is the contents of the rrunr.def file:

TABLE_SET= { qn1_z:

TITLE=:

Q1. How much do you agree with the following
statement: The fast food at Road Runners is worth
what I pay for it.}

STUB=:

(5) Completely agree

(4) Somewhat agree

(3) Neither agree nor disagree

(2) Somewhat disagree

(1) Completely disagree

Don't Know/Refused to answer}

ROW=: [1/6^5//1/10]

}

TABLE 001

Q1. How much do you agree with the following statement: The fast food at Road Runners is worth what I
pay for it.

<------SEX------><-----------AGE------------>

B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

-222 MENTOR

Don't

Under Over know/

Total Male Female 35 35-54 54 Refused

---- ---- ----- ---- ----- ---- ------

Total 500 263 237 141 140 143 76

 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

(5) Completely agree 88 49 39 21 29 23 15

 17.6% 18.6% 16.5% 14.9% 20.7% 16.1% 19.7%

(4) Somewhat agree 92 43 49 26 27 27 12

 18.4% 16.4% 20.7% 18.4% 19.3% 18.9% 15.8%

(3) Neither agree 86 48 38 23 26 24 13

nor disagree 17.2% 18.3% 16.0% 16.3% 18.6% 16.8% 17.1%

(2) Somewhat 73 36 37 13 23 21 16

disagree 14.6% 13.7% 15.6% 9.2% 16.4% 14.7% 21.1%

(1) Completely 86 43 43 29 17 26 14

disagree 17.2% 16.4% 18.1% 20.6% 12.1% 18.2% 18.4%

Don't Know/Refused 75 44 31 29 18 22 6

to answer 15.0% 16.7% 13.1% 20.6% 12.9% 15.4% 7.9%

When defining your own banners, we recommend you always define your own
Total column in the TABLE_SET and in the column variable expression(TOTAL
WITH variable...), then suppress the System Total/No Answer columns on the

. .
 .

. .B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

MENTOR v 8.1 -223

EDIT statement with -COLUMN_TNA. This will ensure that operations like
statistical testing are calculated off of the values you have defined for the Total
column and not the system generated Total column, which only reflects a count of
the number of cases that satisfy conditions for inclusion in this table.

FORMATTING A BANNER WIDER THAN 80 COLUMNS

If your editor does not allow you to type beyond column 80 then you will have to
format banners wider than 80 columns a little differently.

For this example uses the vector joiner WITH, which appends the categories for
respondent income to the categories for marital status to form a single expression.

Example: TOTAL WITH [1/52^1/2,3/4,5/6/9] WITH
[1/54^1//6]

The income categories are 1, 2 or 3, 4 or 5, 6, and 9. Notice that categories 2 and 3,
and 4 and 5 uses a comma, so respondents who answered either 2 or 3 (or 4 or 5) on
the income question will be counted as a single category.

NOTE: The second variable uses the double slash (//) to say six categories which
are punches 1,2,3,4,5, and 6 instead of specifying each category separated
by a single slash (/).

The joiner WITH creates twelve categories, one for the total, five income
categories, and six marital status categories.

The width for this table is 117: 12 eight column banner points (plus one column if
you are printing the percent sign, see previous example), for a total of 97 columns
in the banner and 20 spaces for the stub labels.

Example: 12 banner points, each 8 columns wide

B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

-224 MENTOR

| ------- ------- ------- ------- ------- ------- &

| ------- ------- ------- ------- ------- -------

Starting with the Total column, this guide lines up each of the banner points over
the data that will print below it. The text for each label can be placed over these
guides. Vertical bar (|) marks the start of text including any blank spaces. Lines
will be indented depending on which column you place the vertical bar in.
Ampersand (&) at end of a line means print the following line on the same line
with this one. Again, you only need to do this if your editor cannot go beyond 80
columns.

Example:

 BANNER=:

 | <----------------INCOME--------------->&

 | <----------------MARITAL STATUS--------------->

 |

 | $15,000 $35,000 &

 | Single

 | Under to to $50,000 &

 | never Living

|Total $15,000 $34,999 $49,999 or more Refused Married&

 | Di- Widowed Married To- Refused

| &

 | vorced gether

|----- ------- ------- ------- ------- -------&
|------- ------- ------- ------- ------- -------}

The first two lines are headings for the two groups of banner points, then a blank
line is printed before the labels, followed by labels for each data column. The last
two lines will underscore each label. Labels Divorced and Together are longer than

. .
 .

. .B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

MENTOR v 8.1 -225

the default column width, so are hyphenated and placed on two lines to fit the
column width.

B A S I C TA B L E S
4.8 FORMATTING BANNER TEXT

-226 MENTOR

TABLE 001

Q1. How much do you agree with the following statement: The fast food at Road Runners is worth what
I pay for it.

<----------------INCOME---------------> <----------------MARITAL STATUS--------------->

$15,000 $35,000 Single

Under to to $50,000 never Living
Total $15,000 $34,999 $49,999 or more Refused Married Di- Widowed MarriedTo- Refused

vorced gether
----- ----- ------ ------- ------- ------ ------ ------ ------- ------ ------ -----

Total 500 74 148 145 70 63 85 83 96 74 80 82
100.0% 100.0% 100.0% 100.0%100.0% 100.0% 100.0%100.0% 100.0% 100.0% 100.0%100.0%

(5) Completely agree 88 10 30 21 15 12 17 12 17 14 14 14

17.6% 13.5% 20.3% 14.5% 21.4% 19.0% 20.0% 14.5% 17.7% 18.9% 17.5% 17.1%

(4) Somewhat agree 92 14 30 28 7 13 10 16 17 17 20 12

18.4% 18.9% 20.3% 19.3% 10.0% 20.6% 11.8% 19.3% 17.7% 23.0% 25.0% 14.6%

(3) Neither agree 86 13 22 36 9 6 14 19 14 17 11 11

nor disagree 17.2% 17.6% 14.9% 24.8% 12.9% 9.5% 16.5% 22.9% 14.6% 23.0% 13.8% 13.4%

(2) Somewhat 73 13 21 17 16 6 11 10 17 9 11 15

disagree 14.6% 17.6% 14.2% 11.7% 22.9% 9.5% 12.9% 12.0% 17.7% 12.2% 13.8% 18.3%

(1) Completely 86 8 27 23 14 14 22 16 16 12 9 11

disagree 17.2% 10.8% 18.2% 15.9% 20.0% 22.2% 25.9% 19.3% 16.7% 16.2% 11.3% 13.4%

Don't Know/Refused 75 16 18 20 9 12 11 10 15 5 15 19

to answer 15.0% 21.6% 12.2% 13.8% 12.9% 19.0% 12.9% 12.0% 15.6% 6.8% 18.8%23.2%

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -227

EDITING THE BANNER

The text element banner_title follows the same rules as the other title elements and
when present appears after the title and before the title_4. There is a corresponding
edit option, drop_banner_title, which follows the same rules as the other options in
the “drop” family.

You can use an asterisk (*) in a stats=: statement in order to indicate the last
column of the banner . This feature allows a user to run stats in a job that has many
different banners of varying lengths. It was introduced, in part, to allow stats to be
run in a job set up to allow every question of a questionnaire to be a potential
banner.

Example:

stats=: a-c,g-*

Also, since the number of banner points in WebTables is not constrained by the size
of a piece of paper, this feature can ease the spec'ing of stats on extremely wide
banners. A stats statement that uses “*” behaves no differently than one where the
actual last column letter of the banner was spec’ed explicitly.

For example, if you only have three banner points and you specify stats=: c-* or
stats=: d-* you will get errors.

4.9 GENERATING BANNER SPECS

Mentor provides an improved way of writing banners that is designed:

1 to simplify the process of writing banners

2 to consolidate everything so that you have one set of banner specs that generate a
print banner, a delimited banner, and an html banner.

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-228 MENTOR

This new style of writing uses banner element keywords, such as the options used
with the edit statement and "banner front" keywords, which is similar to the way
"stub fronts" are used.

New "banner front" keywords (only level is required):

level=# - this specifies what banner level you are describing

NOTE: Auto_colspan is the default keyword.

Typically text associated with level 1 would be total, male, female and level 2
items would be age, income, etc. Every level 1 banner point needs a corresponding
description in the column element.

colspan=# - used to specify how many levels are "spanned" by this banner text and
associated underlining characters

justify=option - used to specify the justification for this banner text

The default justification for level 1 is right and the default justification for all other
levels is center. The justification only applies to the print banner and the html
banner. No justification is used for the delimited banner.

underline=character - used to specify the character to use for underling this text

The default underlining character for level 1 is a dash and the default underlining
character for all other levels is an equal sign. The underline character only applies
to the print banner. No underlining is used in the delimited or html banners.

New banner element keywords (only make_banner is required):

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -229

make_banner=option - is used to generate banner specs for a print banner, a
delimited banner, and an html banner.

where options are:

• \k(p,h,d) generate all 3 types of banners (this is the default)

• \k(p) generate only a print banner

• \k(h) generate only an html banner

• \k(d) generate only a delimited banner

• any combination of the above types

justify_level(#)=option - is used to specify the justification for the

banner text

where # matches the "banner front" level

where options are center, right or left

The default justification for level 1 is right and the default justification for all other
levels is center. The justification options only apply to the print banner and the html
banner. No justification is used for the delimited banner.

underline_level(#)=character - is used to specify the character to use for
underlining the banner text

where # matches the "banner front" level

The default underlining character for level 1 is a dash and the default underlining
character for all other levels is an equal sign. The underline character only applies
to the print banner. No underlining is used for the delimited or html banners.

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-230 MENTOR

auto_colspan - is used when you want the banner level text and underlining
characters to "span" columns until:

• another banner front for the same level is seen

• there are no more level 1 items in the banner

• stopped by banner front option of colspan

Auto_colspan is the default.

fill_to_level=# - is used to have Mentor "fill-in" missing levels above level 1.

If any lower level banner item has a level above it then all items on

the lower level must have a level above them. This option allows Mentor to fill-in
the missing levels so the user doesn't need to provide "place holders".

total_lines=# - is used to specify the height of the banner in lines

If you have multiple print banners and you want each banner to be exactly the
same height, you can use this option to have Mentor fill the banner with additional
blank lines at the top until it reaches the number of total lines specified. This
option only affects print banners.

Banner element keywords are overridden by banner front keywords.

The simplest example of using this technique in a tabset with an edit and column
statement would be:

tabset={ban1:
 edit={:
 -coltna
 }
 banner={: make_banner

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -231

 [level=1] Total
 [level=1] Male
 [level=1] Female
 }
 col=: total with [396^1/2]
 }

This would create a print banner using the default column width (if none was
specified) and the default level 1 underlining character (dash) and default level 1
text justification (right):

 Total Male Female
 ------- ------- -------

 If you have a ~specfile statement, the banner specs that are created are
 saved into a file named <specfilename>.ban and look like this:

 banner=ban1_bn:
 \k(p)
 | Total Male Female
 | ------- ------- -------
 \k(d)
 ,"Total","Male","Female"
 \k(h)
 <tr>
 <td colspan="1">
 <td colspan="1" align="right"> Total
 <td colspan="1" align="right"> Male
 <td colspan="1" align="right"> Female
 </tr>
 }

The default for the make_banner option is to make all 3 types of banners.

If you only want a print banner, you can use make_banner=\k(p) or any
combination of \k(h) or \k(d) to get exactly what you want.

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-232 MENTOR

If you want to print the automatic total column and/or the automatic na column
then you must provide your own banner text for those columns.

The make_banner option uses features (column_width, etc.) set in the global_edit,
edit, local_edit and col_info statements.

An example of a two level print banner would be:

 Gender
 ===============
 Male Female
 ------- -------

 This banner was created using the default column width (if none was specified)
and the default level 2 underlining character (equal sign) and default level 2 text
justification (center). The specs to create this banner look like this:

 banner={: make_banner
 [level=2 colspan=2] Gender
 [level=1] Male
 [level=1] Female
 }

The colspan option says this banner text (Gender) and it's associated underlining
characters will span the next two level 1 items.

An example of a three level print banner would be:

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -233

 Denver
 ===============================
 Age
 Gender ===============
 =============== Under 30 and
 Male Female 30 over
 ------- ------- ------- -------

 And the specs to create it look like:

 banner={: make_banner
 [level=3 colspan=4] Denver
 [level=2 colspan=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2 colspan=2] Age
 [level=1] Under 30
 [level=1] 30 and over
 }

 You could write all level 3's, followed by all the level 2's, followed by all the level
1's.

 banner={: make_banner
 [level=3 colspan=4] Denver
 [level=2 colspan=2] Gender
 [level=2 colspan=2] Age
 [level=1] Male
 [level=1] Female
 [level=1] Under 30
 [level=1] 30 and over
 }

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-234 MENTOR

The level 3 banner text (Denver) spans all four level 1 items. The level 2 banner
text (Gender) spans the next two level 1 items and the level 2 banner text (Age)
spans the remaining two level 1 items.

Using the additional banner element keyword of auto_colspan, these specs would
produce the same print banner:

 banner={: make_banner auto_colspan
 [level=3] Denver
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2] Age
 [level=1] Under 30
 [level=1] 30 and over
 }

 If you write all level 3's, followed by all the level 2's, followed by all the level 1's,
you must use the banner front colspan option to specify how many levels are
spanned and you can't use the auto_colspan option.

If you had a single item that was included in level 3 but not under level 2 as in the
following example:

 Denver
 =======================================
 Age
 Gender =============== Income
 =============== Under 30 and over
 Male Female 30 over $50K
 ------- ------- ------- ------- -------

You would need to add a level 2 (without any text) in the banner specs before
"Income over $50K" as a colspan stopper:

 banner={: make_banner auto_colspan

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -235

 [level=3] Denver
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2] Age
 [level=1] Under 30
 [level=1] 30 and over
 [level=2] ''place holder
 [level=1] Income over $50K
 }

Or you could write this banner without using auto_colspan and add your own
banner front colspan items as in:

 banner={: make_banner
 [level=3 colspan=5] Denver
 [level=2 colspan=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2 colspan=2] Age
 [level=1] Under 30
 [level=1] 30 and over
 [level=2 colspan=1] ''place holder
 [level=1] Income over $50K
 }

To add a total column to a banner, without any level 2 text, there is a rule

for banner levels to be followed.

If any lower level banner item (Male, Female) has a level above it (Gender), then
all items on the lower level (Total) must have a level above them. In other words, if
there is ever a level 2, then every level 1 must have a level 2. If there is ever a level
3, then every level 1 must have a level 3, and so on.

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-236 MENTOR

 Gender
 ===============
 Total Male Female
 ------- ------- -------

 A level 2 place holder needs to be added for the total column:

 banner={: make_banner auto_colspan
 [level=2] ''place holder
 [level=1] Total
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 }

Or, an additional banner element option of fill_to_level=# could be used. This says
if there is ever an unspecified upper level, fill it in. The same print banner could be
created by using:

 banner={: make_banner auto_colspan fill_to_level=2
 [level=1] Total
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 }

This is an example of a three level banner with a total column:

 Denver
 =======================================
 Age
 Gender =============== Income
 =============== Under 30 and over
 Total Male Female 30 over $50K
 ------- ------- ------- ------- ------- -------

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -237

One way to write the specs for this banner would be:

 banner={: make_banner auto_colspan fill_to_level=3
 [level=1] Total
 [level=3] Denver
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2 colspan=2] Age
 [level=1] Under 30
 [level=1] 30 and over
 [level=1] Income over $50K
 }

HOW TO CREATE A BANNER USING MAKE_BANNER FORMAT

This section describes the steps on how you would write a banner using the
make_banner format.

1) This is the banner request from the client:

 Q.B Male / Female
 Q.24 25-34 / 35-54 / 55+
 Q.21 High school grad or less / Some college, trade school / College grad+
 Q.26 Hispanic - Yes / No
 Q.22 Conservative / Middle-of-the-road / Liberal
 Q.28 Party - Republican / Democrat / Independent
 Q.29 Voter History - Newly registered / Repeat voter

2) Edit (or cut and paste) the banner request to get each item on a

 separate line.

 Q.B
 Male
 Female

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-238 MENTOR

 Q.24
 25-34
 35-54
 55+
 Q.21
 High school grad or less
 Some college, trade school
 College grad+
 Q.26 Hispanic
 Yes
 No
 Q.22
 Conservative
 Middle-of-the-road
 Liberal
 Q.28 Party
 Republican
 Democrat
 Independent
 Q.29 Voter History
 Newly registered
 Repeat voter

3) Add a total column, change question numbers into question text, add
 level designators. Level 2's provide the titles that span across
 level 1 banner points.

 [level=1] Total
 [level=2] Gender
 [level=1] Male
 [level=1] Female
 [level=2] Age
 [level=1] 25-34
 [level=1] 35-54
 [level=1] 55+
 [level=2] Education
 [level=1] High school grad or less
 [level=1] Some college, trade school
 [level=1] College grad+
 [level=2] Hispanic
 [level=1] Yes

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -239

 [level=1] No
 [level=2] Think of Yourself As...
 [level=1] Conservative
 [level=1] Middle-of-the-road
 [level=1] Liberal
 [level=2] Party
 [level=1] Republican
 [level=1] Democrat
 [level=1] Independent
 [level=2] Voter History
 [level=1] Newly registered
 [level=1] Repeat voter

4) (Optional) Count the level 1 items. This is used to confirm the
 number of banner points and to determine the column_width,
 stub_width and page_width.

 [level=1] Total '' 01
 [level=2] Gender
 [level=1] Male '' 02
 [level=1] Female '' 03
 [level=2] Age
 [level=1] 25-34 '' 04
 [level=1] 35-54 '' 05
 [level=1] 55+ '' 06
 [level=2] Education
 [level=1] High school grad or less '' 07
 [level=1] Some college, trade school '' 08
 [level=1] College grad+ '' 09
 [level=2] Hispanic
 [level=1] Yes '' 10
 [level=1] No '' 11
 [level=2] Think of Yourself As...
 [level=1] Conservative '' 12
 [level=1] Middle-of-the-road '' 13
 [level=1] Liberal '' 14
 [level=2] Party
 [level=1] Republican '' 15
 [level=1] Democrat '' 16
 [level=1] Independent '' 17
 [level=2] Voter History

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-240 MENTOR

 [level=1] Newly registered '' 18
 [level=1] Repeat voter '' 19

5) Put these lines in a banner tabset adding appropriate tabset items
 like:

 an edit statement specifying -coltna, a column width and a stub width

 a column statement (where every level 1 item has a corresponding
 column and response description)

 Use these banner options:

 make_banner (make a banner for me)
 fill_to_level=2 (this is a two level banner)
 auto_colspan (span each level 1 with the specified level 2)

 Run this setup using the ~set preview_titles option.

6) Look at the print file created and make any adjustments necessary
 to the banner tabset specs. For example, use \n to force word
 breaks. Note that \n only forces word breaks in the print file and
 not the html file or delimited file.

 [level=1] Total '' 01
 [level=2] Gender
 [level=1] Male '' 02
 [level=1] Female '' 03
 [level=2] Age
 [level=1] 25-34 '' 04
 [level=1] 35-54 '' 05
 [level=1] 55+ '' 06
 [level=2] Education
 [level=1] High school grad or less '' 07
 [level=1] Some col\nlege, trade school '' 08
 [level=1] Col\nlege grad+ '' 09
 [level=2] Hispanic
 [level=1] Yes '' 10
 [level=1] No '' 11
 [level=2] Think of Yourself As...

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -241

 [level=1] Con\nserva\ntive '' 12
 [level=1] Middle\n-of-\nthe-\nroad '' 13
 [level=1] Lib\neral '' 14
 [level=2] Party
 [level=1] Repub\nlican '' 15
 [level=1] Demo\ncrat '' 16
 [level=1] Inde\npen\ndent '' 17
 [level=2] Voter History
 [level=1] Newly regis\ntered '' 18
 [level=1] Repeat voter '' 19

7) Look at the print file created and add dashes to hyphenate words in the
 banner where desired.

 [level=1] Total '' 01
 [level=2] Gender
 [level=1] Male '' 02
 [level=1] Female '' 03
 [level=2] Age
 [level=1] 25-34 '' 04
 [level=1] 35-54 '' 05
 [level=1] 55+ '' 06
 [level=2] Education
 [level=1] High school grad or less '' 07
 [level=1] Some col-\nlege, trade school '' 08
 [level=1] Col-\nlege grad+ '' 09
 [level=2] Hispanic
 [level=1] Yes '' 10
 [level=1] No '' 11
 [level=2] Think of Yourself As...
 [level=1] Con-\nserva-\ntive '' 12
 [level=1] Middle\n-of-\nthe-\nroad '' 13
 [level=1] Lib-\neral '' 14
 [level=2] Party
 [level=1] Repub-\nlican '' 15
 [level=1] Demo-\ncrat '' 16
 [level=1] Inde-\npen-\ndent '' 17
 [level=2] Voter History
 [level=1] Newly regis-\ntered '' 18
 [level=1] Repeat voter '' 19

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-242 MENTOR

8) (Optional) Add stats letters to level 1 items. This is used to
 assign stats= values for stats testing.

 [level=1] Total '' 01 A
 [level=2] Gender
 [level=1] Male '' 02 B
 [level=1] Female '' 03 C
 [level=2] Age
 [level=1] 25-34 '' 04 D
 [level=1] 35-54 '' 05 E
 [level=1] 55+ '' 06 F
 [level=2] Education
 [level=1] High school grad or less '' 07 G
 [level=1] Some col-\nlege, trade school '' 08 H
 [level=1] Col-\nlege grad+ '' 09 I
 [level=2] Hispanic
 [level=1] Yes '' 10 J
 [level=1] No '' 11 K
 [level=2] Think of Yourself As...
 [level=1] Con-\nserva-\ntive '' 12 L
 [level=1] Middle\n-of-\nthe-\nroad '' 13 M
 [level=1] Lib-\neral '' 14 N
 [level=2] Party
 [level=1] Repub-\nlican '' 15 O
 [level=1] Demo-\ncrat '' 16 P
 [level=1] Inde-\npen-\ndent '' 17 Q
 [level=2] Voter History
 [level=1] Newly regis-\ntered '' 18 R
 [level=1] Repeat voter '' 19 S

9) Add remaining banner tabset items like:

 statistics
 weights

10) (Optional) Add ~set statements to create a delimited and an html
 file.

11) If you use dashes to hyphenate words in the banner, then those dashes
 also go to the delimited file and the html file.

. .
 .

. .B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

MENTOR v 8.1 -243

 If you are creating a delimited file and an html file from these
 same banner specs then use \k(p) to add dashes to the print file
 only. Use \k(p,h,d) to resume sending characters to all 3 files.

 [level=1] Total '' 01
 [level=2] Gender
 [level=1] Male '' 02
 [level=1] Female '' 03
 [level=2] Age
 [level=1] 25-34 '' 04
 [level=1] 35-54 '' 05
 [level=1] 55+ '' 06
 [level=2] Education
 [level=1] High school grad or less '' 07
 [level=1] Some col\k(p)-\k(p,h,d)\nlege, trade school '' 08
 [level=1] Col\k(p)-\k(p,h,d)\nlege grad+ '' 09
 [level=2] Hispanic
 [level=1] Yes '' 10
 [level=1] No '' 11
 [level=2] Think of Yourself As...
 [level=1] Con\k(p)-\k(p,h,d)\nserva\k(p)-\k(p,h,d)\ntive '' 12
 [level=1] Middle\n-of-\nthe-\nroad '' 13
 [level=1] Lib\k(p)-\k(p,h,d)\neral '' 14
 [level=2] Party
 [level=1] Repub\k(p)-\k(p,h,d)\nlican '' 15
 [level=1] Demo\k(p)-\k(p,h,d)\ncrat '' 16
 [level=1] Inde\k(p)-\k(p,h,d)\npen\k(p)-\k(p,h,d)\ndent '' 17
 [level=2] Voter History
 [level=1] Newly regis\k(p)-\k(p,h,d)\ntered '' 18
 [level=1] Repeat voter '' 19

12) (Optional) Or use >define @d \k(p)-\k(p,h,d).

 [level=1] Total '' 01
 [level=2] Gender
 [level=1] Male '' 02
 [level=1] Female '' 03
 [level=2] Age
 [level=1] 25-34 '' 04
 [level=1] 35-54 '' 05

B A S I C TA B L E S
4.9 GENERATING BANNER SPECS

-244 MENTOR

 [level=1] 55+ '' 06
 [level=2] Education
 [level=1] High school grad or less '' 07
 [level=1] Some col@d\nlege, trade school '' 08
 [level=1] Col@d\nlege grad+ '' 09
 [level=2] Hispanic
 [level=1] Yes '' 10
 [level=1] No '' 11
 [level=2] Think of Yourself As...
 [level=1] Con@d\nserva@d\ntive '' 12
 [level=1] Middle\n-of-\nthe-\nroad '' 13
 [level=1] Lib@d\neral '' 14
 [level=2] Party
 [level=1] Repub@d\nlican '' 15
 [level=1] Demo@d\ncrat '' 16
 [level=1] Inde@d\npen@d\ndent '' 17
 [level=2] Voter History
 [level=1] Newly regis@d\ntered '' 18
 [level=1] Repeat voter '' 19

The make_banner option uses features (background color, font size, font type, font
color) set in a web_format_banner statement to affect the appearance of the html
file.

The make_banner option uses features (background color, font size, font type, font
color) set in a style sheet file and referenced by a class statement associated with
the banner to affect the appearance of the html file.

13) (Optional) Add any extra desired banner features like:

 underline_level(1)== (change level 1 underlining to equal signs)
 underline_level(2)=- (change level 2 underlining to dashes)
 justify_level(1)=left (left justify level one items)
 justify_level(2)=right (right justify level two items)

14) After final review of print the banner, delimited banner and html
 banner, remove ~set preview_titles. Add the name of the .tr and the
 .def file when available.

. .
 .

. .B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

MENTOR v 8.1 -245

4.10 DEFINING INDIVIDUAL TABLES

Stub table sets include definitions for the table title, stub labels, data row variable,
and EDIT statements. It can also include LOCAL_EDIT statements, a base, base
title, and possibly SET commands for additional control.

Here is an simple stub table set:

TABLE_SET= {Q1:

TITLE={:

Q1. What is your favorite month of the year?

}

STUB={:

January

February

March

April

May

June

July

August

September

October

November

December

 }

ROW=: [6^1//12]

}

Here is a more detailed explanation of the table elements defined in this example.

B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

-246 MENTOR

TITLE= Instructs Mentor to print this text as the main table title. It prints
below the table name and prior to the banner text. The EDIT
keyword, RUNNING_LINES, controls how this text will print across
the top of the page. The default is to print text as written.
RUNNING_LINES=1 will print as much text can be fit across the
page before going to a new line. See 5.3 CHANGING TABLE
SPECIFICATIONS, Print Options for more on RUNNING_LINES.
An example table in that section shows the print positions for other
table titling.

 Table titling elements follow the same rules and have the same
options as ~DEFINE LINES. Within the TABLE_SET they are
assigned to a specific table element with the appropriate keyword.

STUB= Defines the stub labels for each data row printed on your table.
Excluding stubs marked as [COMMENT] or [PRINT_ROW] labels,
the number of labels must match the number of data categories
defined in your row variable. (see Appendix B: TILDE COMMANDS,
~DEFINE EDIT options EXTRA_STUBS_OK and
EXTRA_ROWS_OK and ~SET
TABLE_SET_MATCH_ERROR/WARN).

ROW= Assigns an axis or data variable definition as the table row. See “4.6
DEFINING DATA” for the rules on defining data variables. These
rules will apply to any data variable regardless of what table element
you will assign it to, i.e., COLUMN, BASE, FILTER,
ROW_WEIGHT. See Appendix B: TILDE COMMANDS, ~DEFINE
AXIS, for the additional rules regarding axis definition for
COLUMN= and ROW= specification or axis-only definitions.

HOW TO ADD RANKING TO A TABLE

If you want to rank a table so the stub items are ranked from high to low, then add
the KEEP_RANK option (abbreviated KR) to the STUB keyword, as follows:

. .
 .

. .B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

MENTOR v 8.1 -247

TABLE_SET= {Q1:

TITLE={:

 Q1. What is your favorite month of the year?

 }

 STUB={:

 [KR=1] January

February

March

April

May

June

July

August

September

October

November

December

 }

 ROW=: [6^1//12]

 }

KR=1 (or KEEP_RANK=1) means to rank this and subsequent stubs at a rank
level of one (until a new rank level is indicated). You use up to ten rank
levels (0-9), and the default is to rank from high to low.

To rank tables, you must also add the RANK_IF_INDICATED option to
your EDIT statement.

HOW TO ADD A BASE TO A TABLE

B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

-248 MENTOR

A base is a way to include only a subset of a sample. For example:

TABLE_SET= {Q1:

 BASE=: [5^3]

 TITLE_4={: BASE: Respondents who own dogs

 }

 TITLE={:

 Q1. What is your favorite month of the year?

 }

 STUB={:

 [KR=1] January

February

March

April

May

June

July

August

September

October

November

December

 }

 ROW=: [6^1//12]

 }

Here are the new elements:

BASE= Defines a base for this table. Only those respondents meeting the
data criteria defined here will be included in this table. In this

. .
 .

. .B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

MENTOR v 8.1 -249

example, only those respondents who had a three punch in column
five are included in the table. You can also use FILTER to describe
an additional data criteria for a set of tables.

TITLE_4= Prints below the text defined on TITLE=, is often used to describe a
base or additional considerations on a table.

HOW TO ADD SUMMARY STATISTICS TO A TABLE

Mentor makes it easy to add summary statistics, such as means, standard
deviations, and standard errors to your tables. It requires the STATISTICS_ROW
option to the stub command, and the statistic defined as a part of the row variable.

Here is a simple example:

TABLE_SET= {Q5:

TITLE={:

Q5. ALL THINGS CONSIDERED, HOW SATISFIED OR
DISSATISFIED WERE YOU WITH THE WAY COMMUNITY
GENERAL HANDLED YOUR STAY THERE? WOULD YOU SAY
YOU WERE VERY SATISFIED, SOMEWHAT SATISFIED,
SOMEWHAT DISSATISFIED OR VERY DISSATISFIED?\N

 }

 STUB={:

4-VERY SATISFIED

3-SOMEWHAT SATISFIED

2-SOMEWHAT DISSATISFIED

1-VERY DISSATISFIED

DON'T KNOW/REFUSED

[STAT] MEAN

[STAT] STANDARD DEVIATION

B A S I C TA B L E S
4.10 DEFINING INDIVIDUAL TABLES

-250 MENTOR

}

ROW=: [47^4/3/2/1/0] $[MEAN,STD] [47*RANGES=1-4]

 }

STAT (or STATISTICS_ROW) Controls printing on the row.
This identifies this as a statistics row, so it will print
only the frequencies and not percentages. (To control
the number of decimals on the frequencies, use the
EDIT option STATISTICS_DECIMALS.) Various
stub options are covered in 5.3 CHANGING TABLE
SPECIFICATIONS, Row Print Options. A complete list
can be found in Appendix B: TILDE COMMANDS,
~DEFINE STUB=.

$[MEAN,STD] The list of statistics you want to include in the row.

[47*RANGES=1-4] If all the answers to the question were numeric, you
could just put the column location [47] as the row
definition. But in this case, the Don't Know/Refused
answer was coded as a number, so including it will
make the mean wrong (the mean will be much too high
if the Don't Know/Refused was coded as a 99!). Using
the RANGES modifier only includes answers one
through four, and therefore eliminates the Don't
Know/Refused answer from the mean.

For more information, Chapter 6 has several examples of how to add means and
medians to your tables and Chapter 7 shows you how to do tests dealing with
statistical significance, such as T-tests, chi square tests, and ANOVA tests.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -251

4.11 SAMPLE SPECIFICATION FILES

What follows are sample specification files, first is an example of how to save
elements to a DB file, then "real world" specs from the Roadrunner's Pizza study,
and then, finally, specs that can make tables with complex banners process more
quickly.

USING THE DB FILE

When you have job specifications that will be used in several jobs, or a job with
multiple sections that have common elements, you may wish to store the common
elements in a DB file. You can then call these elements by name in a later run. For
instance, if your project calls for multiple banners, the EDIT statement associated
with each banner can be simplified by storing those parts of the EDIT statement
that will remain constant to a DB file. You can then reference that DB file entry in
each banner TABLE_SET. In this way, EDITs can be developed for different clients
or different presentation requirements, stored, and called in when needed.

When Mentor creates tables, the program automatically creates and stores elements
in a local database file that is automatically removed at the end of a run. If you want
to have your own permanent database file, you can write a small spec file to create
DB elements, or include these commands in your larger spec file. First, you must
create a DB file with the meta command >CREATE_DB. Enter:

>CREATE_DB edit1

Use the >FILE_TO_DB meta command to put items from the EDIT statement into
the DB file. The basic syntax is:

>FILE_TO_DB name #

"Name" can be any string up to 14 characters, including underscores (_) and
periods (.). The pound sign (#) means to read all the items until Mentor encounters
an >END_OF_FILE command.

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-252 MENTOR

Example:

>FILE_TO_DB edit_standard #

 -COLUMN_TNA

 VERTICAL_PERCENT=AR

 PERCENT_DECIMALS=1

 -PERCENT_SIGN

 STATISTICS_DECIMALS=2

 CALL_TABLE=""

 RUNNING_LINES=1

 STAR_PERCENT=0

 TCON=(-TABLE_NAMES,PRINT_PAGE_NUMBERS,

-TCON_PAGE_NUMBERS,-TITLE_2)

 PUT_CHARACTERS=---

>END_OF_FILE

Now, "edit_standard" is a DB item stored in the DB file called edit1. You can
access "edit_standard" for any banner by first opening the DB file and then
accessing the db item on the EDIT keyword in the TABLE_SET.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -253

>USE_DB edit1 ''meta command that opens the DB

 ''file created earlier

TABLE_SET= {BAN1:

EDIT={:

 COLUMN_WIDTH=6

 STUB_WIDTH=21

 COLUMN_INFO=(C=8 W=7/C=9 W=7/C=10 W=7)

 &&EDITSTANDARD ''double ampersand (&&) gets

 ''item from DB file

}

BANNER={:

| CITY SEX

| =========== =========== AGE Q1. BEST NAME

| DEN- DAL- FE- =========== ====================

| TOTAL VER LAS MALE MALE 18-34 35+ CHOICE SELECT SOURCE

| ----- ----- ----- ----- ----- ----- ----- ------ ------ ------
}

 COLUMN=: TOTAL WITH &

 [5^1/2] WITH & ''city

 [6#M/F] WITH & ''sex

 [65^1,2/3,4] WITH & ''age

 [16^1//3] ''q1

}

NOTE: COLUMN_WIDTH, STUB_WIDTH, and COLUMN_INFO have been
specified separately in the EDIT statement since these items would
typically change for each banner. Remember, the last occurrence of an
option in the EDIT statement supersedes any prior occurrence of the same
option.

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-254 MENTOR

PUTTING IT ALL TOGETHER

So far in this chapter, we have covered the parts of table, how to define data
variables, banner tabset, and stub tabsets. Now, let's put all that knowledge
together. First, let's take advantage of Mentor's ability to "call in" on file from
another. In the main spec file (which we'll give the extension SPX), we'll put the
META commands, the SET commands, the banner tab set, the INPUT command,
and EXECUTE commands, and call a separate file that contains all the individual
question information (the stub tab sets). Below is a sample SPX file, a sample DEF
file, and the tables they create.

To have Mentor call in the specs from another file, put an ampersand in front of the
file name. To read a file that has the DEF extension, you could put the line

&filename.DEF

If your DEF file is the name of your study and you have defined the study name
with the >DEFINE command, then you can use:

&@STUDY~^DEF

This reads in a file, in this case the file containing your table definitions. If you
have Survent, the DEF file has already been generated for you based on your
Survent questionnaire specifications.

NOTE: The use of a caret (^) before the file extension; Mentor reads this as a
period (.) on DOS or UNIX platforms, and as nothing in MPE, so you
could use your specification file on DOS, UNIX or MPE without
modifying it. The tilde mark (~) acts as a delimiter for user-defined
variables. This means you can append letters and/or numbers to the
STUDY name, for example, with the STUDY variable defined as
"sample", &@STUDY~2^DEF would open the file SAMPLE2.DEF.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -255

Sample specification files are provided with your Mentor software to run the
example tables discussed in this section. The files are located in either
\CFMC\Mentor\ROADRUNR (DOS and UNIX) or ROADRUNR.CFMC (MPE).

Following is the entire TABS.SPX file:

>ALLOW_INDENT

>PURGE_SAME

>RUN_LABEL="CfMC Sample Tables"

>DEFINE @STUDY rrunr

~INPUT @STUDY~,ALLOW_UPDATE,MAYBE_BACKUP,DOTS=100

>PRINT_FILE @STUDY~

>CREATE_DB @STUDY~1,DUPLICATE=WARN

~COMMENT

This is part of the Road Runner Study.

~SPEC_FILES @STUDY~

~DEFINE

 TABLE_SET={global:

 SET AUTOMATIC_TABLES

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-256 MENTOR

 HEADER={: =Road Runner Fast Food Test Tables

 Prepared on #date# }

 FOOTER{: =Tables prepared by Computers for Marketing
Corp.

 Page #page_number# }

 }

 TABLE_SET={banner1:

 SET AUTOMATIC_TABLES

 HEADER=: =Road Runner Fast Food Sample Tables

 Prepared on #date# }

 FOOTER=: =Tables prepared by Computers for Marketing
Corp.

 Page #page_number# }

 EDIT=: -COLUMN_TNA, -ROW_NA, PERCENT_DECIMALS=0,

 STATISTICS_DECIMALS=2,

 COLUMN_WIDTH=7, STUB_WIDTH=40,

 RUNNING_LINES=1,

 TCON=(-TABLE_NAMES,PRINT_PAGE_NUMBERS, &

 -TCON_PAGE_NUMBERS, -FOOTER)

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -257

TABS.SPX file (con’d)

 BANNER=:

 | <-------AGE-------> <-----INCOME------> <--RATING-->

 | Neu-

 | Under Over Under $15- Over tral/

 | Total 35 35-54 54 $15k $35k $35k Good Poor

 | ----- ----- ----- ---- ----- ----- ---- ---- ---- }

 COLUMN=: TOTAL WITH &

 [1/51^1,2/3,4/5,6] WITH &

 [1/52^1/2,3/4,5,6] WITH &

 [1/47^4,5/1,2,3]

}

 &@STUDY^DEF

~INPUT @STUDY~

~EXECUTE

 MAKE_TABLES

~END

Here are each of the lines of the spec file explained:

>PURGE_SAME

Purges same named files. The default is to alpha-kick the first letter of the file name
of the older file.

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-258 MENTOR

>ALLOW_INDENT

Allows indentation of meta commands; by default they must start in column 1 of
the specification file.

>RUN_LABEL= “CfMC Sample Tables”

Identifies this run with this label. This label will print at the end of the run or if you
type CTRL-Y during the program run.

>DEFINE @STUDY rrunr

Allows you to create user-defined variables to substitute a file name or to execute a
command. In this case >DEFINE assigns the variable, @STUDY, to the file name,
RRUNR. Wherever the file name RRUNR would normally appear, @STUDY is
substituted. By replacing references to a particular file name with a variable, we
can substitute a different file name for the same variable throughout a standardized
specification file by specifying a new name on this line. We will make use of this
command in the TABS.SPX file.

~INPUT @STUDY~,ALLOW_UPDATE,MAYBE_BACKUP,DOT=100

Loads the data file but allows you to modify it with the keyword
ALLOW_UPDATE. MAYBE_BACKUP creates a copy (TRX) if one does not
exist, preserving the original data file. DOT=100 will print a dot to the screen for
every 100 cases read. We will be generating and storing new data for the banner.
The tilde mark (~) acts as a delimiter between user-defined keywords.

>CREATE_DB @STUDY~1,DUPLICATE=WARN

This line creates the db file. We are calling the DB file "study1" to make sure it
doesn’t write over an existing DB file that could have been generated from a
Survent compile. Everything defined in the ~DEFINE block and all the tables built
in the ~EXECUTE block will be stored in this DB file. The tilde character (~) after
@STUDY~ is a delimiter. The tilde delimiter allows you to include options after
the defined keyword name. DUPLICATE=WARN prints a warning every time an
existing item is replaced in the file.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -259

The DB file is a machine readable file, which means you cannot view or edit it in a
word processing program. (Use the utility DBUTIL to look at the items in a DB
file, see the Utilities manual.) It is an efficient way to store items generated by
Mentor that you might want to use again. For instance, tables can be stored in a DB
file. If you needed to reprint some or all of them to change the format, correct an
error in the text, or add statistics rows you could instruct Mentor to look up the
tables in the DB file and reprint them, without forcing the program to process the
data file again for each table.

Table components such as stub labels, other text, and print options are already
stored as a single entry in the DB file that Mentor can retrieve easily.

DB files are NOT REQUIRED for you to tabulate your data, but they do provide a
way to store items that you might want to use again.

~COMMENT

Any text following this tilde command is considered a spec file comment and is not
executed by Mentor. Everything is ignored until the next tilde command.

~SPEC_FILES @STUDY~

This has Mentor generate TAB and LPR files.

~DEFINE TABLE_SET={global:

Defines the initial TABLE_SET. As you saw in “4.3 DEFINING TABLE
ELEMENTS”, the TABLE_SET structure can be used to define table elements that
will control all the tables in a particular run such as SET commands, headers,
footers, edit statement, banner text, and the column variable. You could define these
individually, but this would require re-specifying each varname on its
corresponding ~EXECUTE keyword. By defining them inside a TABLE_SET you
eliminate this extra step since TABLE_SET= automatically causes the correct
~EXECUTE specification to be written to the program-generated TAB file (see
~SPEC_FILES).

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-260 MENTOR

The global and banner TABLE_SETs are defined before the file containing the
stub TABLE_SETs (RRUNR^DEF) is read in. That is because we want them in
effect for all the tables made.

SET AUTOMATIC_TABLES

Tells program to make tables from the elements specified whenever a ROW
variable is seen.

HEADER={ :=Road Runner Fast Food Test Tables Prepared on #date# }

Defines the text that will print as the header on each table. The equal sign (=)
centers the text, #date# prints the date in the format MM DD 19YY. (see Appendix
B: TILDE COMMANDS, ~DEFINE LINES= to print system #time# or
#table_name# anywhere in the table titling). The lines will print centered for the
page width. RUNNING_LINES=1 will not affect these titles.

FOOTER{ :=Tables prepared by Computers for Marketing Corp. Page
#page_number# }

Defines the text that will print as the footer on each table. The equal sign (=)
centers the text, #page_number# prints the page number.

}

Ends this TABLE_SET definition.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -261

EDIT={: -COLUMN_TNA -ROW_NA PERCENT_DECIMALS=0

 STATISTICS_DECIMALS=2

 COLUMN_WIDTH=7 STUB_WIDTH=40

 RUNNING_LINES=1

 TCON=(-TABLE_NAMES,PRINT_PAGE_NUMBERS, &

 -TCON_PAGE_NUMBERS, -FOOTER)

This is the main EDIT statement that will control the format of the printed tables.
There are several new keywords not previously mentioned:

-COLUMN_TNA

Suppresses printing of the default system-generated Total and No Answer summary
columns.

-ROW_NA

Suppresses printing of the default system-generated No Answer summary row.

PERCENT_DECIMALS=0

Prints percents with zero decimal places. The default is one decimal place.

STATISTICS_DECIMALS=2

Prints two decimal places on statistics rows. The default is one decimal place. This
sample table run utilizes the DEF file made from PREPARE question specifications
compiled with ~PREPARE COMPILE Mentor_SPECS. The default is to generate
statistics specifications for NUM questions. See “5.1 Expressions and Joiners” for
details on defining expressions.

COLUMN_WIDTH=7

Controls the width of table columns; the default is eight.

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-262 MENTOR

STUB_WIDTH=40

Controls the width of table stubs; the default is 20.

RUNNING_LINES=1

Controls how the table titles, header, and footer will print. The default is
RUNNING_LINES=0, which prints the lines exactly as defined.
RUNNING_LINES=1 will wrap the lines according to the PAGE_WIDTH setting
(or default) and any INDENT (indents the whole table either by number specified
(greater than 0) or the keyword CENTER). RUNNING_LINES=2 means print the
first line like RUNNING_LINES=1, then indent the second and subsequent lines
by the length of the first word (from the first line) and any blanks immediately
following, in addition to any INDENT specified. This keyword is useful when you
want to set the question number off from the rest of the title text.

RUNNING_LINES=1 or 2 is overridden if you specify a position character before
the text: = to center, > to right-justify, or < to left-justify (default) all lines of text.
See the definitions for HEADER= and FOOTER= for examples.

TCON

Prints a table of contents at the end of the print file. You can control what prints in
the table of contents. Headers, footers, and all titles except TITLE_5 print by
default; you can suppress any of these. You can indent text with the keyword
INDENT=#; the default is zero (0), do not indent. You must use an ampersand (&)
to continue the TCON= specification to another line.

Justification commands (< to left-justify; > to right-justify; and = to center)
specified in titling do not affect how text is printed in the table of contents.

-TABLE_NAMES Suppresses printing of the
table name, e.g., T0002.

PRINT_PAGE_NUMBERS Prints the page number.

-TCON_PAGE_NUMBERS Suppresses the table of
contents page number that
prints at the top of each table
of contents page.

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -263

-FOOTER Suppresses printing of the
footer in the table of contents.

BANNER=:

 | <-------AGE-------> <-----INCOME------> <--RATING-->

 | Neu-

 | Under Over Under $15- Over tral/

 | Total 35 35-54 54 $15k $35k $35k Good Poor

 | ----- ----- ----- ---- ----- ----- ---- ---- ---- }

BANNER= Defines the banner labels. Banner text formatting controls were explained
in “4.8 FORMATTING BANNER TEXT”.

&@STUDY~^DEF Reads in the table definitions file either generated when PREPARE specifi-
cations were compiled with ~PREPARE COMPILE Mentor_SPECS or
written by you.

EDIT_DUMP A debugging tool, prints the edit options in effect for each table.

MULTIPLE_WEIGHT_STATISTICS Allows T-tests using the STATISTICS= keyword on tables that have
different weights on some columns.

STATISTICS_BASE_AR Sets the standard base for the T-tests executed by the table using the STA-
TISTICS keyword to be the Any Response System row, rather than the
Total row (the default).

~INPUT @STUDY~ Opens the data file RRUNR^TR.

~EXECUTE This is the block where you execute tables or procedures against the data
file.

 MAKE_TABLES This option builds and prints the tables. As explained earlier in 4.4 TABLE

BUILDING, when you use SET AUTOMATIC_TABLES, Mentor table
building is triggered by the ROW= command. All of the table elements

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-264 MENTOR

either specified before the ROW= variable or defined in the same
TABLE_SET are in effect for that table. The EXECUTE command
MAKE_TABLES builds and prints each table. MAKE_TABLES actually
executes three separate commands: BUILD_TABLES, RESET, and
PRINT_RUN, These commands utilize program-generated files created
with the ~SPEC_FILES command to read and store each TABLE_SET
definition, reset all table elements, then print the tables either to the open
print file or list file.

SAMPLE TABLE

 Road Runner Fast Food Sample Tables

 Prepared on 13 AUG 1992

TABLE 001

Q1. How much do you agree with the following statement: The fast food at Road Runners is worth what I pay
for it.

 <-------AGE-------> <-----INCOME------> <--RATING-->

Neu-

 Under Over Under $15- Over tral/

 Total 35 35-54 54 $15k $35k $35k Good Poor

 ----- ----- ----- ---- ----- ----- ---- ---- ----

Total 500 141 140 143 74 148 215 166 247

 100% 100% 100% 100% 100% 100% 100% 100% 100%

(5) Completely agree 88 21 29 23 10 30 36 26 51

 18% 15% 21% 16% 14% 20% 17% 16% 21%

(4) Somewhat agree 92 26 27 27 14 30 35 29 42

 18% 18% 19% 19% 19% 20% 16% 17% 17%

(3) Neither agree nor disagree 86 23 26 24 13 22 45 27 42

 17% 16% 19% 17% 18% 15% 21% 16% 17%

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -265

(2) Somewhat disagree 73 13 23 21 13 21 33 27 34

 15% 9% 16% 15% 18% 14% 15% 16% 14%

(1) Completely disagree 86 29 17 26 8 27 37 22 49

 17% 21% 12% 18% 11% 18% 17% 13% 20%

Don't Know/Refused to answer 75 29 18 22 16 18 29 35 29

 15% 21% 13% 15% 22% 12% 13% 21% 12%

Mean 3.05 2.97 3.23 3.00 3.09 3.12 3.00 3.08 3.06

Standard deviation 1.42 1.47 1.37 1.43 1.32 1.47 1.40 1.38 1.48

Standard error 0.07 0.14 0.12 0.13 0.17 0.13 0.10 0.12 0.10

 Tables prepared by Computers for Marketing Corp.

 Page 1

Road Runner Fast Food Test Tables

Prepared on 18 MAR 1994

T A B L E O F C O N T E N T S

P. 1 Q1. How much do you agree with the following statement: The fast food at Road Runners is worth
what I pay for it.

B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

-266 MENTOR

DEFINING A PROCEDURE FOR COMPLEX BANNERS

The most basic use of the DEFINE command is to define variables, for example:

~DEFINE

Banvar[1/80^1//9]

Then you can reference the variable later in the same spec file:

COLUMN=Banvar

As you saw in the cleaning chapter, you can also use the DEFINE statement to
define procedures. You can use this capability to define elements when you have
complex tables. For example, you can use DEFINE to generate and store banner
data under a simple punch data variable. This is effective if you have a very
complex banner or many rows. If you define the column variable or expression
with TABLE_SET, Mentor will have to generate the horizontal axis for each table
during the build and print phase. Using DEFINE will speed processing of the data
file. Here are lines we would add to the previous Roadrunner spec file:

~DEFINE

 Age[1/51^1,2/3,4/5,6]

 Income[1/52^1/2,3/4,5,6]

Rating[1/47^4,5/1,2,3]

Banexpr: TOTAL WITH Age WITH Income WITH Rating

Banvar[1/80^1//9]

PROCEDURE= {make_ban:

MODIFY banvar = banexpr

. .
 .

. .B A S I C TA B L E S
4.11 SAMPLE SPECIFICATION FILES

MENTOR v 8.1 -267

DO_TABLES }

And later, in the EXECUTE block:

~EXECUTE

READ_PROCEDURE=MAKE_BAN

Here we defined the three data variables that will form an expression for the tables'
column variable.

NOTE: No colon is needed after the varname since these are simple variables
containing no joiners or functions. It is not necessary for you to pre-define
the variable components of an expression, but it is easier to reference them
later by their variable names rather than retyping the definition. Here is
each line described in detail:

Banexpr: TOTAL WITH Age WITH Income WITH Rating

Defines an expression connecting all the categories from the data variables
referenced by AGE, INCOME, and RATING. In BANEXPR a user-defined Total
column is created with the Mentor constant, TOTAL. Program-generated Total and
No Answer columns will be suppressed at print time and replaced by this total.
Since we want Total to be the first column printed in the table banner, it is specified
at the beginning of the expression.

Banvar[1/80^1//9]

Defines a new data variable for the nine categories created by BANEXPR: 1 for
Total, 3 for Age, 3 for Income and 2 for Rating. The data will be stored in column
80 of record 1 of the RRUNR data file (TR) which is currently blank. Note that
BANVAR is defined as a punch data variable. Two slashes (//) define nine separate
but consecutive categories.

PROCEDURE=

The ~DEFINE block keyword that allows you to perform some operation on every
case in the data file or specified subset.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-268 MENTOR

{make_ban:

The name of the procedure.

MODIFY banvar = banexpr

A CLEANER command that modifies data. In this case the result of the expression
BANEXPR will replace the data in BANVAR, blanking the categories first. See
Mentor Appendix B: TILDE COMMANDS, ~CLEANER for more information.

DO_TABLES

Another ~CLEANER command. DO_TABLES allows you to make data
modifications for the printed tables without changing the input data file. This way,
Mentor only has to check in one place to read a complicated expression, and it
speeds processing. A DO_TABLES procedure is executed with the ~EXECUTE
keyword READ_PROCEDURE.

}

Ends the procedure.

READ_PROCEDURE=MAKE_BAN

This keyword will execute the DO_TABLES procedure defined above.

4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

You can use Survent questionnaire specifications to produce two table building
specification files, ready to be used by Mentor, called the DEF file and the TAB
file. You can use the ~PREPARE COMPILE Mentor_SPECS command or CfMC's
menu-assisted EZWriter application to create these files. The DEF file contains the
syntax to define a table for each question and the TAB file contains the commands
to build the tables defined in the DEF file. The DEF file can also be edited to add

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -269

basing, weights, statistics, print format controls, etc. The TAB file can be remade
by Mentor to reflect any changes to the DEF file. Refer to “4.11 SAMPLE
SPECIFICATION FILES” for details on using these files to make tables. All
examples refer to the RRUNR sample specification files included with your Mentor
software.

Refer to 2.2.1 FILES CREATED BY Survent in your Survent manual for more
information on the DEF and TAB files.

Here is a basic specification file followed by examples of the DEF, TAB and LPR
files, and then the table they created. For the purposes of this example we used a
converted Survent variable stored in the DB file, RRUNR.DB. In “4.6 DEFINING
DATA”, you can see the rules to define data variables in general and how to join
data variables to form a complex banner. “4.8 FORMATTING BANNER
TEXT”covers how to format the banner text.

>PURGE_SAME

>RUN_LABEL=“First Sample Table”

>DEFINE @STUDY rrunr

>PRINT_FILE @STUDY~

>USE_DB @STUDY~ opens the DB file for access to a converted
Survent variable.

~SET AUTOMATIC_TABLES

~SPEC_FILES @STUDY~

~DEFINE

EDIT={defedt: -COLUMN_NA, -ROW_NA, COLUMN_WIDTH=7,
RUNNING_LINES=1, TCON

}

&@STUDY~^DEF this calls in the RRUNR.DEF file

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-270 MENTOR

~INPUT @STUDY~

~EXECUTE

COLUMN=qn21 is the converted Survent variable for respondent
sex assigned as the table column. Mentor will
generate banner labels from this variable's text.

 EDIT=defedt

 MAKE_TABLES

~END

&@STUDY~^DEF reads in RRUNR^DEF which contains the definitions for each
table. Here is the section of the definition file for the example table printed below.
See “4.3 DEFINING TABLE ELEMENTS”and “4.6 DEFINING DATA” for details
on defining tables and data variables.

TABLE_SET= { qn1_z:

TITLE=:

Q1. How much do you agree with the following
statement:

The fast food at Road Runners is worth what I pay
for it.}

STUB=:

 (5) Completely agree

 (4) Somewhat agree

 (3) Neither agree nor disagree

 (2) Somewhat disagree

 (1) Completely disagree

 Don't Know/Refused to answer }

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -271

ROW=: [1/6^5//1/10]

 }

MAKE_TABLES reads in the RRUNR^TAB and the RRUNR^LPR files.
RRUNR.TAB has a list of tabsets and triggers table building, for this example it
would have one line:

TABSET qn1_Z

RRUNR^LPR has load and print statements for each table. For this example, it
would have one line:

LOAD T001 PRINT

TABLE 001

P. 1 Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.

 Total Male Female

Total 500 263 237

 100.0% 100.0% 100.0%

(5) Completely agree 88 49 39

 17.6% 18.6% 16.5%

(4) Somewhat agree 92 43 49

 18.4% 16.4% 20.7%

(3) Neither agree 86 48 38

nor disagree 17.2% 18.3% 16.0%

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-272 MENTOR

(2) Somewhat 73 36 37

disagree 14.6% 13.7% 15.6%

(1) Completely 86 43 43

disagree 17.2% 16.4% 18.1%

Don't Know/Refused 75 44 31

to answer 15.0% 16.7% 13.1%

T A B L E O F C O N T E N T S

PAGE 1

P.1 Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.

Here is a list of what Mentor table building components are generated from
Survent:

question label Generates the variable name for that table's definition

question text Generates the table title

question type Determines the row data type

numeric range Generates the stub label set, the row data categories and
default statistics for NUM questions

response codes Generates the row data categories for CAT and FLD
questions

response text Generates the stub label set for CAT and FLD questions

Here are examples of Survent specs and the Mentor tabsets Survent generates for
the basic question types (CAT, NUM, FLD).

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -273

CAT QUESTION

Survent specs Mentor tabset

 { QN21: 1/57 tabset={ qn21_z:

 Q21. Respondent Sex title=:

 Q21. Respondent Sex}

 ! CAT stub=:

 1 Male Male

 2 Female Female }

 } ''qn21(1/2)

 row=: [1/57.1^1/2]

 }

For CAT questions the comment line ''qn21(1/2) indicates the Survent
response codes which might differ from the corresponding punch codes found in
the data for that question.

FLD QUESTION

Survent specs Mentor tabset

{status: 1/5 tabset= { status_z:

Marital status title=:

Marital status}

! FLD stub=:

M Married Married

S Single Single

W Widowed Widowed}

} row=: [1/5.1#M/D/S/W]

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-274 MENTOR

}

For FLD questions, the row variable for multiple-response FLD questions defaults
to the *F modifier, meaning net all responses across columns.

SURVENT SPECS

 {QN11: 1/8.20

Which brands are you aware of?

!FLD,,10

01 COKE

02 COCA-COLA CLASSIC

03 NEW COKE

04 DIET COKE

05 CHERRY COKE

06 CAFFEINE FREE COKE

07 DR. PEPPER

08 REGULAR DR. PEPPER

09 DIET DR. PEPPER

10 GATORADE

11 MELLO YELLOW

12 REGULAR MELLOW YELLOW

13 OTHERS

99 DON'T KNOW }

MENTOR TABSET

tabset= { qn11_z:

title=:

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -275

 Which brands are you aware of?}

stub=:

 COKE

 COCA-COLA CLASSIC

 NEW COKE

 DIET COKE

 CHERRY COKE

 CAFFEINE FREE COKE

 DR. PEPPER

 REGULAR DR. PEPPER

 DIET DR. PEPPER

 GATORADE

 MELLO YELLOW

 REGULAR MELLOW YELLOW

 OTHERS

 DON'T KNOW}

''qn11(01/02/03/04/05/06/07/08/09/10/11/12/13/99)

row=: [1/8.2, 1/10, 1/12, 1/14, 1/16, 1/18, 1/20, 1/22,&
1/24,1/26 *f#
01/02/03/04/05/06/07/08/09/10/11/12/13/99]

}

If you specify a recode table to be [SAMEAS label] or do the same in Script
Composer by going to the F5 screen and filling in "Use the recode table from
question______", the DEF file will reflect that by automatically assigning that table
element's variable name to mean 'the same as'.

MENTOR TABSET

tabset= { qn2b_z:

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-276 MENTOR

 title=:

Q2B. Please rate the following characteristics:

The quality of service.}

stub= qn2a_s <-- means use the stub variable qn2a_s.

''qn2b(5/4/3/2/1/0)

row=: [1/8.1^5/4/3/2/1/10]

 }

NUM QUESTION

Survent specs

{ QN20: 1/55.2

 Q20. How many children are in your household?

! NUM,,,0,10,,RF

}

Mentor tabset

tabset= { qn20_z:

title=:

Q20. How many children are in your household?}

stub=:

0-3

4-5

6-10

RF

[stat] Mean

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -277

[stat] Standard deviation

[stat] Standard error}

row=: [1/55.2#0-3/4-5/6-10/"RF"] &

$[mean,std,se] [1/55.2 *ranges=0,10,,RF,,]

}

By default, minimum and maximum allowable values for NUM questions are
broken out into one to five categories of numeric values in the DEF file depending
on the difference between the high and low values:

Difference between Number of categories:

high and low values:

1 1

2-8 2

9-20 3

21-50 4

>50 5

If the difference between high and low is over 1000 then the first four categories are
evenly divided with the remainder into the fifth category. The ranges are not meant
to reflect any proportional divisions in the data. They are there to help you set up
your own categories.

SURVENT SPECS

{house: 1/9.6

 What is the current value of your home?

 !NUM,,,100000-500000,,RF}

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-278 MENTOR

MENTOR TABSET

tabset= { house_z:

title=:

What is the current value of your home?}

stub=

100000-100125

100126-100250

100251-100375

100376-100500

100501-500000

RF

[stat] Mean

[stat] Standard deviation

[stat] Standard error}

row=: [1/9.6#100000-100125/100126-100250/100251-
100375/100376-100500/ &

 100501-500000/"RF"]&

 $[mean,std,se] [1/9.6 *ranges=100000,500000,,RF,,]

}

You can specify a value for exception codes to be used in calculating statistics.
Using the above example, we will assign a value of zero (0) to the exception code
RF in the Survent specification. This will be reflected in the *Ranges
specification on the row variable.

SURVENT SPECS

{QN20: 1/55.2

Q20. How many children are in your household?

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -279

!NUM,,,0-10,,RF=0}

MENTOR TABSET

tabset= { qn20_z:

title=:

 Q20. How many children are in your household?}

stub=:

 0-3

 4-5

 6-10

 RF

 [stat] Mean

 [stat] Standard deviation

 [stat] Standard error}

row=: [1/55.2 # 0-3/4-5/6-10/"RF"] &

 $[mean,std,se] [1/55.2 *ranges=0,10,,RF=0]

}

CHANGING WHAT APPEARS IN THE DEF FILE

There are several options you can specify in your Survent questionnaire
specification file that changes what goes into the DEF file. You can use the
~SPEC_RULES command, the !MISC command, backslash options and compiler
commands. The backslash commands control where text appears (Survent only,
Mentor only, or both) while ~SPEC_RULES, !MISC, the compiler commands have
options that make general changes to the DEF file. These commands are described
in detail below.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-280 MENTOR

!MISC OPTION

CATEGORY_STATISTICS (CATSTATS)

Allows you to suppress statistical testing on rows that have the $[STATS=]option.
Using -CATEGORY_STATISTICS will prevent statistical testing on rows other
than means.

The only way to use this option is in its negative form,
-CATEGORY_STATISTICS. Including CATEGORY_STATISTICS (without the
minus sign) in your ~PREPARE specs does nothing.

CATEGORY_STATISTICS adds [-STATS] in front of the category part of a row
variable in the DEF file.If your ~PREPARE specifications look like:

{HOURS: 72.2

!MISC -CATEGORY_STATISTICS

In a typical day, how many hours do you spend listening
to the radio?

!NUM,,,1-24,,DK,VA=4 }

then the row variable for the tabset HOURS_Z will look like this in the .DEFfile:

ROW=: $[-STATS] [72.2 # 1-5/10-13/14-24/"DK"/"VA"] &
$[STATS,MEAN,STD] [72.2 *ranges=1,24,,DK,VA=4,]

If you use -CATEGORY_STATISTICS on a table that does not have a mean, no
statistical tests will be run on the table, and you will get a warning similar to the
following:

(WARN #5385) Table T0003 with STATS= ban1_st but no stattests

(are you using NUMITEMS()?)

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -281

To customize the statistics written to the .DEF file, use the COLUMN_MEAN
option to ~SPEC_RULES command in your ~PREPARE specs. (See Mentor,
Appendix B: ~SPEC_RULES.)

NUM_EXCEPTIONS=STUBTITLE,STUBTITLE

Adds additional stubs (e.g. exception codes or numbers outside the range) to NUM
type questions. All questions with [SAMEAS label] will have the same additional
stubs in the tabset unless a new !MISC NUM_EXCEPTIONS is in the question
definition.

If your ~PREPARE specifications look like:

{LISTHRS: 72.2

!MISC NUM_EXCEPTIONS="Don't Listen","Don't Know"

In a typical day, how many hours do you spend listening
to the radio?

!NUM,,,1-24,99,DK,VA=4 }

then the tabset in the DEF file will look like:

tabset= {listhrs_z:

title=:

In a typical day, how many hours do you spend
listening to the radio? }

stub=:

1-5

6-9

10-13

14-24

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-282 MENTOR

Don't Listen

Don't Know

VA

[stat] Mean

[stat] Standard Deviation

[stat] Standard Error }

row=: [72.4 # 1-5/6-9/10-13/14-24/99/"DK"/"VA"] &

$ [mean,std,se] [74.2 *ranges=1,24,99,DK,VA=4,]

}

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -283

RANGES="..."

Specifies which numeric ranges to use for rows. For NUM questions only. Any
legal range will be passed to the DEF file; no error checking is made on the ranges.

If your ~PREPARE specifications look like:

{ QN1b: 7

!MISC RANGES="1//10/11-20/21-50/51-98/99"

Q1b. How many catalogs are delivered to your office
weekly?

!NUM,,,1,99

}

then the tabset in the DEF file will look like:

tabset= { qn1b_z:

title=:

 1b. How many catalogs are delivered to your office
weekly?}

stub=:

 1

 2

 3

 4

 5

 6

 7

 8

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-284 MENTOR

 9

 10

 11-20

 21-50

 51-98

 99

 [stat] Mean

 [stat] Standard deviation

 [stat] Standard error

 }

row=: [1/7.2 # 1//10/11-20/21-50/51-98/99] &

 $[mean,std,se] [1/7.2 *ranges=1,99,,,,]

 }

RATING=n

Generates default statistics for rating scale CAT questions. N is the number of
categories in the rating scale. You may exclude Don't Know or Refused categories
by specifying a lower number. You may use -n to reverse the scale. This can only
be specified in a Survent spec file, not from EZWriter.

{QN1: 1/6
!MISC rating=5
ON A SCALE OF 1 TO 10, WHERE 10 MEANS YOU LIKE IT A LOT
AND 1 MEANS
YOU LIKE IT A LITTLE, HOW WOULD YOU RATE KRAL FOR PER-
SONAL APPEAL?
!CATEGORY
 5 (5) LIKE IT A LITTLE
 4 (4)
 3 (3)
 2 (2)
 1 (1)
 0 DON'T KNOW
}

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -285

Below is the tabset generated to the DEF file. The statistics rows added to the stub
definition and the statistics calculations on the row variable.(Remember to have the
AUTOPUNCHES option set in the spec file to have the definition match the
response codes.)

tabset= { qn1_z:
title=:
 ON A SCALE OF 1 TO 10, WHERE 10 MEANS YOU LIKE IT A
LOT AND 1 MEANS YOU LIKE IT A LITTLE, HOW WOULD YOU RATE
KRAL FOR PERSONAL APPEAL?}
stub=:
 (5) LIKE IT A LITTLE
 (4)
 (3)
 (2)
 (1)
 DON'T KNOW
 [stat] Mean
 [stat] Standard deviation
 [stat] Standard error
 }
''qn1(5/4/3/2/1/0)
row=: [1/6.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/6.1 *ranges=1-5]
 }

For a 10-point rating scale using a single column (one through ten, and X for Don't
Know), use !MISC RATING=10. If the answers were in column seven, the row
definition in the DEF file would look like:

row=: [7^1/2/3/4/5/6/7/8/9/10/11] &

$[mean,std,se] subscript([7^1//0])

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-286 MENTOR

SAMEAS_XXXX

If you use the Survent option of [SAMEAS label], the !MISC options are also
retained from the specified question.

USER_TEXT="string of text"

This option allows you to put additional text within the body of the PREPARE
spec file. While this text will NOT appear in the DEF file (or your table), it is text
associated with the question and can be displayed with the ~CLEAN
PRINT_LINES \v5 option. See Mentor, Appendix B ~CLEAN PRINT_LINES for
details. You can continue along line of text by putting an ampersand at the end of
the USER_TEXT line.

If your ~PREPARE specifications look like:

{LISTHRS: 72.2

!MISC USER_TEXT="This question was Q4 of last year's
survey." &

"It will be used again next year."

In a typical day, how many hours do you spend listening
to the radio?

!NUM,,,1-24,99,DK,VA=4 }

~CLEAN

PRINT_LINES "\v2s" LISTHRS

PRINT_LINES "\v5s" LISTHRS

~END

then your list file will include:

PRINT_LINES "\v2s" LISTHRS

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -287

In a typical day, how many hours do you spend listening
to the radio?

PRINT_LINES "\v5s" LISTHRTS

This question was Q4 of last year's survey. It will be
used again next year.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-288 MENTOR

Backslash options can be used in either question text or response text to control
where text is used, either by Survent only, Mentor only, or both:

\+ Displays text only on Survent interviewing screens.

\- Prints this text only on tables or when the variable is referenced (e.g.,
by utilities such as HOLE).

* Does both of the above. (default)

{ qn17: 1/52

\+Q17. Into which of the following categories does your
total family income

\+fall?

\-Q17. Respondent Income Category

! CAT

1 Under $15,000

2 $15,000 - $24,9994

3 $25,000 - $34,999

4 $35,000 - $44,999

5 $45,000 - $49,999

6 $50,000 or more

9 Don't know/Refused

}

tabset= { qn17_z:

title=:

Q17. Respondent Income Category}

stub=:

Under $15,000

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -289

$15,000 - $24,999

$25,000 - $34,999

$35,000 - $44,999

$45,000 - $49,999

$50,000 or more

Don't know/Refused}

''qn17(1/2/3/4/5/6/9)

row=: [1/52.1^1/2/3/4/5/6/9]

}

In this example the question presented on the interviewer's screen was recast as a
statement for the table title. Only the text after the \- is passed to the DEF file and
only the text after the \+ will display on a Survent screen.

Backslash commands, by default, are not passed to Mentor variables or spec files.
You must specify the ~SPEC_RULES option USE_PRINT_ENHANCEMENTS;
then when a Mentor variable is made or specifications are generated from Survent
the following rules are followed for backslash commands found in the text.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-290 MENTOR

For standard text or Survent only (*):

\A \H \OR# \O# _ \T \(#,#,#,#) are removed.

\B \U \I \F \E \N \^<character> are passed to the
\^<hexdigit><hexdigit> Mentor variable.

\\ is changed to \N.

\@ is replaced with the either the
question label or number.

\DC+fb+fb \DDC+fb+fb \C+fb+fb \C+f_ are passed to the Mentor variable
as is.

\:label:^-# is replaced with
ANSWERFROM(label)

\|:col.width:|, \|:col:|.width, or \|:col:|^width are replaced with
DATAFROM(loc.wid).

\|:label +offset#:| ^-width is replaced with
DATAFROM(label).

\#(label) is replaced with
ANSWERFROM(label,ALL).

\#(label,1,4) is replaced with
ANSWERFROM(label,1,4).

\[col.wid] is replaced with
PHONETEXT(col.wid).

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -291

For Mentor only text (\-):

\G \X \T \<color specs> \~<letter> \^<char> are all passed to the

\' \" \\ \W \U \I \F \B \E \N \-W \-U \-I \-F \-B Mentor variable.

Refer to your Survent manual 2.5 QUESTION TEXT for information on Survent
backslash commands, and to your Mentor manual Appendix B: TILDE
COMMANDS, ~CLEANER PRINT_LINES for information on Mentor print
controls.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-292 MENTOR

~SPEC_RULES specified before ~PREPARE COMPILE Mentor_SPECS causes
Survent to generate optional specifications to the DEF file.

Syntax: ~SPEC_RULES option option...

The options are BASE, BASE_COMMENT, CLN_CHECK, COLUMN_MEAN,
DO_LOOPS, NO_BASE, STORE_TABLES, STUB_DEFAULT, and
USE_PRINT_ENHANCMENTS, and they are described in the following pages.

Options: BASE

converts Survent !IF statements to BASE= and TITLE_4=
definitions in the Mentor DEF file. Note: !IF statements are passed to
the DEF file exactly as written in the Survent specification file, e.g.,
!IF QN6(1) becomes BASE=: QN6(1) in the DEF file. This would
require that variable QN1 be available in an open DB file in order to
correctly tabulate the data. TITLE_4 definitions substitute the
response text for the response code referenced in the !IF statement,
e.g.,(QN6 is Yes). To get around this limitation write your !IF
statements by referencing data locations instead of question labels,
e.g., !IF [1/31^1].

If your ~PREPARE specifications look like:

{ QN6A: 1/31

!IF [1/30^1]

Q6a. Which entertainment was participated in during the
past three months?

! CAT,,6

1 Video games

2 Billiards

3 Fun House

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -293

4 Musical Revue

5 Dunk the Moose

6 Other

(-) 7 Don't know/refused

}

then the tabset in the DEF file will look like:

tabset= { qn6a_z:

base=: ([1/30^1])

T4=:

([1/30^1])}

title=:

Q6a. Which entertainment was participated in during the
past three months?}

stub=:

Video games

Billiards

Fun House

Musical Revue

Dunk the Moose

Other

Don't know/refused}

''qn6a(1/2/3/4/5/6/7)

row=: [1/31.1^1/2/3/4/5/6/7]

}

BASE_COMMENT

Converts Survent !IF statements to BASE= and TITLE_4= definitions in the DEF
file, but comments them out.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-294 MENTOR

CLN_CHECK

Causes the compile option ~PREPARE COMPILE CLEANING_SPECS to write
out a CHECK [datavar] instead of the default EDIT varname statement to the CLN
file.

COLUMN_MEAN=

Customizes the default statistics written to the DEF file. You must provide your
own stub labels for the statistics rows generated with this option. Default statistics
are written for NUM questions and questions written with the !MISC option
explained above.

Syntax: COLUMN_MEAN="a" with b

Options:

"a" is the specification line needed to calculate statistics on the row
variable in the DEF file, e.g., $[MEAN,STD,SE,MEDIAN]

 b what text, if any, you want added to the STUB= line in the Mentor
DEF file. You can use this for a previously defined DB item, as in the
example below.

 >CREATE_DB rrunr

 >FILE_TO_DB statstub #

 statstub:

 [STATISTICS_ROW] Mean

 [STATISTICS_ROW] Standard Deviation

 [STATISTICS_ROW] Median }

 >END_OF_FILE

~SPEC_RULES COLUMN_MEAN="$[MEAN,STD,MEDIAN]" WITH
statstub

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -295

~PREPARE COMPILE Mentor_SPECS

Survent specifications ...

~END

tabset= { qn20_z:

title=:

Q20. Children}

stub=

0-3

4-5

6-10

 RF

[STATISTICS_ROW] Mean

 [STATISTICS_ROW] Standard Deviation

 [STATISTICS_ROW] Median }

row=: [1/55.2#0-3/4-5/6-10/"RF"] &

$[MEAN,STD,PTILE=.5] [1/55.2 *ranges=0,10,,RF,,]

}

Here are some of the lines from the previous spec file explained:

>CREATE_DB rrunr Creates the DB file rrunr.

>FILE_TO_DB Converts the spec lines into db items and stores them in
the open DB file.

statstub The name of the db item.

Has >FILE_TO_DB read the following lines until an
>END_OF_FILE command is reached.

statstub: Name of the STUB= variable defined here.

[STATISTICS_ROW] Mean the stub label.

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-296 MENTOR

>END_OF_FILE The end of the specifications.

Compiling Specifications From The Mentor Program:

 ~DEFINE

 STUB=statstub:

 [STATISTICS_ROW] Mean

 [STATISTICS_ROW] Standard Deviation

 [STATISTICS_ROW] Median }

 same specifications as example above. . .

If you are compiling Survent specifications with the Mentor program then follow
the example above to define a stub label set for the statistics rows generated by
~SPEC_RULES COLUMN_MEAN=.

DO_LOOPS

Converts Survent LOOP type questions into a Mentor loop variable in the DEF
file. The tabulated data will reflect all iterations of the loop in the frequency.
-DO_LOOPS turns this option off, but then you will only get the first iteration of
the loop. The loops are explained more after these specs:

 tabset= { phones_z:

 title=:

 Which of the following types of telephones do you
have?}

 stub=:

 Wall phone

 Desk phone

 Cordless phone

 Cellular phone

 Novelty phone (Garfield, Snoopy, Mickey Mouse, etc.)

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -297

 None of the above}

 ''phones(01/02/03/04/05/06)

 row=: [1/5.1^1/2/3/4/5/6]

 }

 tabset= { purchase_z:

 title=:

 Where did you purchase your PHONES?}

 stub=:

 From an ATT phone store

 From a department store

 From an audio/video/electronics specialty store

 From a mail order house

 None of the above}

 ''purchase(01/02/03/04/05)

 row=: [(5,3) 1/8.1 ^ 1/2/3/4/5]

 }

(5,3) in the previous example indicates the maximum number of times to loop (5)
and the number of columns or increment between iterations of the loop (3). In this
example, each iteration of the loop uses three data columns (two for the loop
controller and one for the response) for a total of 15 columns if the loop is executed
the maximum number of times. When the data is tabulated Mentor will check for a
response to the purchase question in the third column of all five iterations of the
loop, columns: 8; 11; 14; 17; and 20.

NO_BASE

Does not convert !IF statements (because the tab writer will define all of the bases).
(DEFAULT)

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-298 MENTOR

STORE_TABLES

Causes the default table names starting with T001 to be included in each
TABLE_SET definition. If you save your tables in a DB file then the table name
will be stored with the other table elements defined for that table. You can edit this
item in the DEF file to change these names.

Example:

 tabset= { qn1_z:

title=:

Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.}

stub=:

(5) Completely agree

(4) Somewhat agree

(3) Neither agree nor disagree

(2) Somewhat disagree

(1) Completely disagree

Don't Know/Refused to answer

[STATISTICS_ROW] Mean

[STATISTICS_ROW] Standard deviation

[STATISTICS_ROW] Standard error}

''qn1(5/4/3/2/1/0)

row=: [1/6.1^5/4/3/2/1/10] &

$[mean,std,se] [1/6.1*ranges=1-6]

store=T001

}

You cannot use the SET AUTOMATIC_TABLES command with this option since
ROW= causes Mentor to make a table with the next available table name (in this
example T001). STORE= also causes Mentor to make tables with either the name

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -299

assigned to it or the next available table name (see SET TABLE_NAME=). In the
example above, STORE= is already assigned the next available default table name
T001. Mentor would print an error message for a duplicate table name since
ROW= would make T001 then STORE=T001 would remake the same table.

Other SPEC_RULES keywords are:

STUB_DEFAULT=[options]

Allows you to specify default stub [options] for stub labels written to the STUB=
definition in the DEF file.

USE_PRINT_ENHANCEMENTS

Passes Survent text enhancements (e.g., \B) or Mentor print enhancements to the
titles and stub labels in the DEF file. Refer to Backslash options earlier in this
section for a list of which commands are passed.

Response Code Options

There are several options available which allow you to control the conversion of
Survent response codes in the Mentor row variable in the DEF file. You can create
subtotal (or netted) categories, suppress categories from the row variable, mark a
category as exclusive, and control which categories to include in statistics
calculations.

Syntax: (<options>) == (<punches or codes>) Response text

Options:

(<options>)

The standard Survent response code options: offset, <->punch, and SKIPTO; and
these Mentor options:

(-DISPLAY)

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-300 MENTOR

Suppresses this response during Survent interviewing. The default is DISPLAY.

(EXCLUSIVE)

Specifies this as an exclusive response during Survent interviewing. The default is
-EXCLUSIVE. This is the same as saying minus (-) or -punch in standard Survent
spec writing. The keyword allows you say this anywhere inside the options
parentheses. In the DEF file exclusive categories are marked in the row variable
with the keyword, e.g, [6^5/4/3/2/1/(exclusive)0].

(-Mentor_SPEC)

Says do not include this response as a category in the row variable in the DEF file.
The default is Mentor_SPEC. This also suppresses the comment, e.g.,
''qn1(5/4/3/2/1/0), in the DEF file.

(STATISTICS)

Controls which categories will be included in statistics calculations (only tests
defined on the ~DEFINE STATISTICS= statement). The default is STATISTICS
for all categories. However, if you specify (STATISTICS) on any response item,
then the default for all others is (-STATISTICS). The statistics categories are
marked in the row variable with the keyword stats: [2/10.2^1/2/(stats)3/4/5].

Statistics defined in the row variable, e.g., $[MEAN,STD,SE], are not affected by
this option.

=

A special response code indicating that this is a non-response item during
interviewing. There must be as many equal = signs as response code length. Please
refer to your C-Survent manual for more information.

(<punches or codes>)

The codes for the row variable category generated in the DEF file; punches for
CAT questions and codes for FLD questions.

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -301

If there are no parentheses ()s or an empty set of parentheses, then a [COMMENT]
line is included in the stub definition in the DEF file. The variable is stored in the
open DB file with the additional categories.

Response Text

Specifies the text that will appear during Survent interviewing and on the stub label
for this item.

In the example below, we have created two netted categories: punches four and five
(5,4); and punches one and two (2,1). These items will not display as responses
during Survent interviewing (-DISPLAY) and will be the only categories included
in tests defined on the ~DEFINE STATISTICS= statement (STATISTICS). The last
response will not be included in the row variable (-Mentor_SPEC), but it will be an
exclusive response during Survent interviewing (EXCLUSIVE).

 { QN1: 1/6.1

 !MISC RATING=5

 Q1. How much do you agree with the following statement:

 The fast food at Road Runners is worth what I pay for it.

 ! CAT

 (-DISPLAY, STATISTICS) = (5,4) TOP BOX

 5 (5) Completely agree

 4 (4) Somewhat agree

 3 (3) Neither agree nor disagree

 (-DISPLAY, STATISTICS) = (2,1) BOTTOM BOX

 2 (2) Somewhat disagree

 1 (1) Completely disagree

 (-Mentor_SPEC, EXCLUSIVE) 0 Don't Know/Refused to answer

 }

Here is the TABLE_SET definition created in the DEF file. Note the stub and row
definitions. The equal sign = response items and text specified on question QN1

B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

-302 MENTOR

were converted to stub labels and corresponding netted categories on the row
variable.

 tabset= { qn1_z:

 title=:

 Q1. How much do you agree with the follow-

 ing statement:

 The fast food at Road Runners is worth what I pay for
it.}

 stub=:

 TOP BOX

 (5) Completely agree

 (4) Somewhat agree

 (3) Neither agree nor disagree

 BOTTOM BOX

 (2) Somewhat disagree

 (1) Completely disagree

 [stat] Mean

 [stat] Standard deviation

 [stat] Standard error}

 row=: [1/6.1 ^ (stats)5,4/5/4/3/(stats)2,1/2/1] &

 $[mean,std,se] [1/6.1 *ranges=1-5]

 }

Compiler Commands

These are commands that you put in your Survent questionnaire specficications.
With them, you can control which questions get passed to the DEF file. In
addition, you can include Mentor specifications in your Survent questionnaire and
designate the program-generated file they should be passed to: CLN, DEF, or TAB.

. .
 .

. .B A S I C TA B L E S
4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES

MENTOR v 8.1 -303

{!-DO_Mentor}

Allows you to exclude a question or block of questions from the DB file and DEF
file. The default is to convert each CAT, FLD, and NUM question to a variable in
the DB file and a TABLE_SET definition in the DEF file. {!DO_Mentor} turns the
default back on.

{!Mentor_CLN}, {!Mentor_DEF}, and {!Mentor_TAB}

Used to pass Mentor specifications to the CLN, DEF, or TAB file, respectively. The
Survent compiler treats these blocks as comments and no syntax checking is done.
When you compile your questionnaire with either the option Mentor_SPECS or
CLEANING_SPECS, these blocks will be passed to the appropriate file.

 {!Mentor_DEF

 {TABLE_SET=tab1:

 EDIT= -COLUMN_TNA }_

 TITLE= table title }_

 ROW= [2/5^1//8]

 } }

NOTE: The first closing brace on the last line ends the TABLE_SET and the
second closing brace ends the !Mentor_DEF block.

Brace underscore (}_) allows you to imbed a right brace (}) inside the compiler
command block when it is the last character on a line that you want passed as part
of a specification. In the example above EDIT= and TITLE= each require a closing
right brace. The underscore is stripped when the specification is passed to the file
and the right brace is not interpreted as the end of the command block. The
specification passed to the DEF file will look similar to this:

 {TABLE_SET=tab1:

 EDIT= -COLUMN_TNA }

 TITLE= table title }

 ROW= [2/5^1//8]

B A S I C TA B L E S
USING E-TABS

-304 MENTOR

 }

USING E-TABS

Mentor makes files that are usable by E-Tabs. E-Tabs is a software package that
has a Writer module which can take a Mentor (or any number of other software
packages) print file and prepare it for viewing by a Reader module. The end user
can browse the tables, print the tables, do specific keyword searches, and cut/paste
portions of the tables to other software packages such as Excel, Word, or
PowerPoint. It can also create charts or graphs. E-Tabs will create a few files, one
with an extension of .ZTE (ebook.zte) which is the final output file which the user
will use.

The user can then modify that file as long as they keep the extension of .ZTE. E-
Tabs has a Dos/Windows version and also SCO/Sun Solaris Unix version.

The E-Tabs program needs these 3 files which Mentor now creates:

• tab1.prt (our normal tables excluding the table of contents)

• cfmctoc.ite (table of contents)

• ebook.ini (description of table regions)

These Mentor features are needed to create the E-Tabs files:

• Use ~set etabs_printfiles

This says create the three E-Tabs files.

• You must use >printfile statements to provide the names of the three E-Tabs
files.

. .
 .

. .B A S I C TA B L E S
USING E-TABS

MENTOR v 8.1 -305

 for tables file use:

 >print_file tab1 #1 page_width=132

for toc file use:

>print_file cfmctoc.ite,user -formfeed #2 page_width=2000

for ebook file use

>print_file ebook.ini,user -formfeed #3 page_width=2000

• You must add this edit option: tcon=(separate_file)

Spec writers should observe the following rules:

1) Lines in the table of contents cannot wrap, so make the page width

 long enough to accommodate this.

2) Works best with Mentor 8.1 banners created with make_banner.

3) Banner headers (age, income, etc.) should be on the same level.

This format is preferable:

 AGE INCOME RATING

B A S I C TA B L E S
USING E-TABS

-306 MENTOR

 ================= ==================== =============

Un- Un- Neu-

der Over der $15- Over tral

Total 35 35-54 54 $15k $35k $35k Good /Poor

------ ------ ------ ------ ------ ------ ------ ------ ------

This format is not preferable:

 AGE INCOME RATING

 ================= ==================== =============

Under Over Under $15- Over Neutral

Total 35 35-54 54 $15k $35k $35k Good /Poor

------ ------ ------ ------ ------ ------ ------ ------ ------

4) Edit tcon=() options should include:

 -tcon_page_numbers

 -header

 -footer

 -table_names

5) Do not use these edit tcon=() options:

 first

 print_page_numbers

6) To create the E-Tabs ebook.zte file from the CfMC print files, make

 sure the table of contents file is named cfmctoc.ite and the

 description of table regions file is named ebook.ini.

. .
 .

. .B A S I C TA B L E S
USING E-TABS

MENTOR v 8.1 -307

If you are working with more than one set of tables in the same directory you might
want to use the same root name when creating the CfMC files (tab1.prt, tab1.ite,
tab1.ini). Then using a batch file, rename the CfMC files before creating the
ebook.zte file. After the E-Tabs file is created, the same batch file can rename the
ebook.zte to tab1.zte.

More E-Tab Options
You can now change .prt, .ini and .ite files when using ~set etabs_printfiles.

Example: ~set etabs_printfiles

 >printfile mt3581a #1

 >printfile mt3581b #2

 >printfile mt3581c #3

 ~exc

 tabset=one

 set printtcon

 >printfile

 >printfile mt3581d #1

 >printfile mt3581e #2

 >printfile mt3581f #3

 ~exc

 tabset=one

 set printtcon

 >printfile

B A S I C TA B L E S
USING E-TABS

-308 MENTOR

Version 8.1

.

. .
I N T E R M E D I A T E T A B L E S 5

. .I N T R O D U C T I O N
n Chapter 4 you learned how to define the parts of a table and how to write a
basic specification file to print tables. This chapter goes into more detail about
the options in that chapter, including defining variable expressions and

controlling the format of what prints on a table. In addition, it covers how to
control printing on a row by row or column by column basis, how to run tables
against multiple banners, how to assign your own table names, and how to reprint
tables stored in a database file.

The specification file ALTTABS.SPX prints an alternate set of tables using the
Road Runner sample questionnaire to illustrate several of the options covered in
this chapter. See \CFMC\Mentor\ROADRUNR\ALTTABS.SPX (DOS/UNIX) or
ALTABSPX.ROADRUNR.CFMC (MPE).

5.1 EXPRESSIONS AND JOINERS

Chapter 4 describes how to define a simple data variable, meaning a variable that
defines one data field. This section describes how to write expressions.
Expressions allow you to write definitions made up of one or more data variables
and might include joiners, mathematical operators, functions, or commands to
calculate statistics or build special tables. Refer to Chapter 6 “Advanced Tables”
for special tables and mathematical operators and “9.3.2 Functions” for
information on functions.

The end of “4.6 DEFINING DATA”defines an expression that includes a user-
defined total column and joins the categories of two data variables to form the
table's column variable. You will use expressions to build statistical calculations
into either of the table's axes, to base or weight your tables, and to create special
tables such as break or overlay tables.

I

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-310 MENTOR

The basic syntax for an expression is:

varname: varname/[variable] joiner varname/[variable]

varname the name of this expression (optional if defined
inside a TABLE_SET structure).

: colon follows immediately to indicate this is an
expression.

varname/[variable] can be either the name of a previously defined
variable or expression or the variable definition
itself inside brackets ([]).

joiner any one of the logical, vector, or mathematical
joiners listed below used to join or connect the
variables on either side of it.

A: (B WITH C) BY ([5^N1] AND D)

Parentheses are helpful to indicate hierarchy in an expression with changing
joiners. Here is a brief summary of each joiner type followed by a more detailed
explanation and examples.

LOGICAL JOINERS

AND Both sides of joiner must be true, i.e., responses exist in the data.

OR Either side is true.

NOT Reverses the truth of the statement following it.

VECTOR JOINERS

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -311

WITH Extends the list of categories.

BY Crosses each category combination (all categories on the left by all
categories on the right).

WHEN Like BY, but only one category is returned from the right side of
the joiner.

INTERSECT If categories on both sides are true, then the combined category is
true (acts as an AND NET operation).

NET Nets the corresponding categories (acts as an OR NET operation).

OTHERWISE Uses the first category set if present, otherwise the second
category set.

MATH JOINERS

Relational: EQ or = Equal

 NE or <> Not equal

 LT or < Less than

 GT or> Greater than

 LE OR <= Less than or equal

 GE OR >= Greater than or equal

Operators: * Multiply

 / Divide

 + Add

 - Subtract

 % Percentage

 ++ Add (even if some element is missing)

*=,/=,+=,-=,%= Performs the operation on the item to the
left of the equal = sign.

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-312 MENTOR

5.1.1 Logical Joiners

Logical joiners evaluate an expression by first converting each variable referenced
from multi-category to single category, then combining the categories to determine
whether the entire expression is true. The categories are not considered separately,
rather they are "netted" into a single logical category, the result of a which is
always either TRUE or FALSE.

Example: example1: (a OR b) AND NOT(c OR d)

Regardless of how many categories are in A and B, they are treated as one
category by the OR joiner.

NOTE: Parentheses are recommended to indicate hierarchy in an expression with
changing joiners.

You are most likely to use logical joiners to define a table base, e.g., respondent is
female and has children, though it would also be appropriate to use them in a
complex banner.

AND Combines two or more expressions into a single logical category and is
true if some category of its components are true, but false if any of its
components are false.

example1: [1/51^1] AND [1/52^5,6]
 Age Income
 | |
 1 category 1 category
 <35 >$35k

Creates one category (respondents under age 35) AND (income >$35,000). The
respondent either falls into this age category AND the income category (TRUE) or
does not (FALSE).

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -313

 example2: [1/51^1,2/3,4/5,6] AND [1/52^1/2,3/4,5,6]

 Age Income

 | |

 3 categories 3 categories

 <35/35-54/>54 <$15k/$15-$35k/>$35k

Also creates one category (age is <35 or 35-54 or >54) AND (income is <$15k or
$15-$35k or >$35k). The respondent either falls into one of the three age categories
AND one of the three income categories (TRUE) or does not (FALSE).

OR Combines expressions into a single logical category and is true if any of
its components are true, but false if all of its components are false.

example1: [1/51^1] OR [1/52^5,6]
 Age Income
 | |
 1 category 1 category
 <35 >$35k

Creates one category (respondents under age 35) OR (income >$35K). The
respondent can either fall into this age category OR the income category to be
TRUE, but will only be FALSE if age is greater than 35 (or not specified) AND
income is less than $35K (or not specified).

NOT Creates a category with the opposite truth value of the expression stated.
Strictly speaking, NOT is a function rather than a joiner because it is
always specified as NOT([variable]) and can be combined with either the
OR or AND joiner in an expression. How you place parentheses can affect
the meaning of the entire expression. Think of all locations within a NOT
statement as having an AND NOT relationship. If you want to have an
OR NOT relationship, separate the variables with NOT preceding each
one:

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-314 MENTOR

example1: NOT([1/51^1,2] OR [1/52^1-3])

This expression defines one category including only those respondents who have
neither a 1 nor a 2 punch in record 1 column 51 AND have neither a 1, 2, nor 3
punch in record 1 column 52.

example2: NOT([1/51^1,2]) OR NOT([1/52^1-3])

This expression also defines one category: respondents who have neither a 1 nor a
2 punch in record 1 column 51 OR who have neither a 1, 2, nor 3 punch in record 1
column 52

To define an OR condition within a single data column, each punch position must
be defined with its own NOT statement.

example3: NOT([1/51^1]) OR NOT([1/51^2])

You could also write this as example3:[1/51^N1]) OR [1/51^N2] to mean the same
thing, record 1 column 51 is not a 1 punch OR a 2 punch.

Although you can use multi-category expressions with a logical joiner, remember
that the joiner lumps the categories together into one. The two examples below
return the same result.

[1/45^1,2/3,4] OR [1/47^1/2]

[1/45^1-4] OR [1/47^1,2]

5.1.2 Vector Joiners

Vector joiners combine expressions to alter their meaning or form other
expressions.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -315

WITH
Appends the categories from two or more variables to form one expression with all
categories, read and printed left to right. This joiner is used most often to generate a
complex banner (see “4.11 SAMPLE SPECIFICATION FILES” for an example
table).

example1:[1/51^1,2/3,4/5,6] WITH [1/52^1/2,3/4,5,6]

 Age Income
 | |
 3 categories 3 categories
 <35/35-54/>54 <$15k/$15-$35k/>$35k

1st category is punches 1 or 2 from 1/51
2nd category is punches 3 or 4 from 1/51
3rd category is punches 5 or 6 from 1/51
4th category is punch 1 from 1/52
5th category is punches 2 or 3 from 1/52
6th category is punches 4 or 5 or 6 from 1/52

BY
Creates categories for every combination of its component expressions. It crosses
all categories to the left of BY with the first category on the right, then all
categories on the left with the second category on the right, and so on until all
combinations have been created. This joiner is most often used to generate either a
complex banner or stub.

example1: [1/51^1,2/3,4/5,6] BY [1/52^1/2,3/4,5,6]

 Age Income
 | |
 3 categories 3 categories
 <35/35-54/>54 <$15k/$15-$35k/>$35k

This expression creates nine categories as follows:

 1st category (<35 and <$15k)

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-316 MENTOR

 2nd category (35-54 and <$15k)
 3rd category (>54 and <$15k)

 4th category (<35 and $15-35k)
 5th category (35-54 and $15-35k)
 6th category (>54 and $15-35k)

 7th category (<35 and >$35k)
 8th category (35-54 and >$35k)
 9th category (>54 and >$35k)

WHEN
WHEN acts to combine an expression and a logical expression, i.e., "A WHEN B"
means that the categories in A are counted only when B is true.

example1: [1/51^1,2/3,4/5,6] WHEN [1/52^6]

 Age Income
 | |
 3 categories 1 category
 <35/35-54/>54 >$35k

This expression produces three categories:

1st category counts respondents under age 35 only WHEN income is >$35k

2nd category counts respondents aged 35-54 only WHEN income is >$35k

3rd category counts respondents over age 54 only WHEN income is >$35k

NOTE: If the item on the right side of the WHEN is a multi-category item it will
be converted into one category returning either TRUE or FALSE.

INTERSECT
Combines the categories of the multi-category variable on the left and the multi-
category variable on the right in an AND operation. If BOTH categories are true
then the resulting category is true. The expression must have the same number of

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -317

categories on each side of the INTERSECT joiner. A practical example might be as
follows:

 [1/10^1//5] INTERSECT [1/11^1//5]
 saw advertisement purchased product

where the left side of the expression represents a multi-category question
determining whether the respondent saw an advertisement for products and the
right side represents another multi-category question determining which products
were purchased. The intersection of these two variables combines the categories on
both sides of the joiner with an AND operation: to be counted the respondent must
have a response in record 1 column 10 AND a response in record 1 column 11.

The example above will return five categories:

1st category 1/10^1 AND 1/11^1
2nd category 1/10^2 AND 1/11^2
3rd category 1/10^3 AND 1/11^3
4th category 1/10^4 AND 1/11^4
5th category 1/10^5 AND 1/11^5

NET
Combines the categories of the multi-category variable on the left and the multi-
category variable on the right in an OR operation. If EITHER category is true, then
the resulting category is true. Like INTERSECT, the expression must have the
same number of categories on each side of the joiner.

Referring to the previous example, NET would combine the categories on both
sides of the joiner in an OR operation: count respondent if he has a response in
record 1 column 10 OR has a response in record 1 column 11.

That example would return five categories:

1st category 1/10^1 OR 1/11^1

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-318 MENTOR

2nd category 1/10^2 OR 1/11^2
3rd category 1/10^3 OR 1/11^3
4th category 1/10^4 OR 1/11^4
5th category 1/10^5 OR 1/11^5

A more practical example might be netting the categories for aided and unaided
awareness questions to create a total awareness category.

OTHERWISE
Checks for some response in the variable specified to the left of the joiner. If
responses exist in any of the categories defined then those are used. If no
categories in the variable on the left are true, then the categories defined in the
variable to the right of the joiner are used.

OTHERWISE is most often used with single response variables, e.g., if male
respondent otherwise female respondent. Use this joiner with caution for multi-
response data, i.e., only if one side or the other of the joiner could have data and
not both, otherwise only the responses found for the left side of the expression will
be used. If both sides could have data you should use NET.

example1: [1/5^1] OTHERWISE [1/5^2]

Means count respondents who have a 1 punch in record 1 column 5, otherwise
check for a 2 punch in the same column.

JOIN
Combines multiple text variables or a text string within a text variable. For
example:

m [30.2$] = STRIP([11.3$]) JOIN STRIP([21.3$])

The STRIP function strips leading and trailing blanks from the field.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -319

Excluding Respondents From A Table

This example illustrates using an expression to base your tables. Respondents can
be excluded from a table or group of tables by assigning either a filter or base
during tabulation. There are three important distinctions to note, however.

First, a filter returns a single category (even if the variable referenced has multiple
categories) whereas a base returns the same number of categories as there are in the
variable referenced. For example, if your filter references a variable for respondent
sex it will return one category regardless of the response in the data. A base
referencing the same variable would return two categories, male and female. Using
respondent sex as a base would produce two sets of tables, one for the male
respondents and one set for the females.

Second, the ~SET option DROP_BASE affects only the variable defined with
BASE=, not FILTER=.

Finally, only BASE= generates an automatic TITLE_4 definition from the base
variable specified (see related command EDIT= TITLE_4_FOR_BASE).

You can define a filter for a table (e.g., women respondents only) and then use a
base (e.g., married with children) to further subset the filtered group.

TABLE_SET= { qn1_z:

FILTER=: [1/57^2]

TITLE_2=:Filter is women respondents only \N }

BASE=: [1/54^1] AND [1/55.2#1-10]

TITLE_4=:\NBase is married with children }

TITLE=:

Q1. How much do you agree with the following
statement:

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-320 MENTOR

The fast food at Road Runners is worth what I pay
for it.}

STUB=:

(5) Completely agree

(4) Somewhat agree

(3) Neither agree nor disagree

(2) Somewhat disagree

(1) Completely disagree

Don't Know/Refused to answer }

ROW=: [1/6.1^5//1/10]

}

FILTER= is the keyword that defines a table filter. In this example, record 1
column 57 must have a 2 punch for the case to be included in this table.

TITLE_2= is the keyword that defines a table title that will print directly above
the title defined with TITLE=. \N (new line) will cause a blank line to print after
the text.

BASE= is the keyword that defines a table base. In this example, we have defined
an expression with the AND joiner to further subset the filter already defined: to be
included in this table the case must have a 1 punch in record 1 column 54 AND a
number in the range 1-10 in record 1 columns 55 and 56.

TITLE_4= is the keyword that defines a table title that will print directly below
the title defined with TITLE=. As explained for TITLE_2, \N will print a blank
line before printing the TITLE_4 text.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -321

>PURGE_SAME
~INPUT rrunr,MAYBE_BACKUP,DOT=100
>DEFINE @STUDY base
>PRINT_FILE @STUDY~
~SPEC_FILE @STUDY~

~DEFINE
 TABLE_SET={tabtop:
 SET AUTOMATIC_TABLES

 HEADER=: =Road Runner Fast Food Sample Tables
 Prepared on #date# }

 FOOTER=: =Tables prepared by Computers for Marketing Corp.
 Page #page_number# }

 EDIT=: -COLUMN_TNA, -ROW_NA, PERCENT_DECIMALS=0,
 COLUMN_WIDTH=7, PAGE_WIDTH=95, RUNNING_LINES=2 }

 BANNER=:
 | <-------AGE-------> <-----INCOME------> <--RATING-->
 | Neu-
 | Under Over Under $15- Over tral/
 | TOTAL 35 35-54 54 $15k $35k $35k Good Poor
 | ----- ----- ----- ---- ----- ----- ---- ---- ---- }

 COLUMN=: TOTAL WITH &
 [1/51^^1,2/3,4/5,6] WITH & ''RESPONDENT AGE
 [1/52^^1/2,3/4,5,6] WITH & ''INCOME
 [1/47^^4,5/1,2,3] ''RATING
}

TABLE_SET= { qn1_z:
FILTER=: [1/57^2]
TITLE_2=:Filter is women respondents only \N }
BASE=: [1/54^1] AND [1/55.2#1-10]
TITLE_4=:\NBase is married with children }
TITLE=:
 Q1. How much do you agree with the following statement:

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-322 MENTOR

 The fast food at Road Runners is worth what I pay for it. }
STUB=:
 (5) Completely agree
 (4) Somewhat agree
 (3) Neither agree nor disagree
 (2) Somewhat disagree
 (1) Completely disagree
 Don't Know/Refused to answer }
ROW=: [1/6^5//1/10]
 }

~EXECUTE MAKE_TABLES
~END

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

MENTOR v 8.1 -323

 Road Runner Fast Food Sample Tables
 Prepared on 24 AUG 1994
TABLE 001
Filter is women respondents only

Q1. How much do you agree with the following statement: The fast food at Road Run-
ners is worth what I pay for it.

Base is married with children

 <-------AGE-------> <-----INCOME------> <--RATING-->
 Neu-
 Under Over Under $15- Over tral/
 TOTAL 35 35-54 54 $15k $35k $35k Good Poor
 ----- ----- ----- ---- ----- ----- ---- ---- ----

Total 34 11 11 4 3 11 14 8 18
 100% 100% 100% 100% 100% 100% 100% 100% 100%

(5) Completely agree 8 - 5 - 1 4 1 1 5
 24% 45% 33% 36% 7% 13% 28%

(4) Somewhat agree 4 3 1 - - 2 2 2 1
 12% 27% 9% 18% 14% 25% 6%

(3) Neither agree 4 2 - - 1 - 3 1 3
nor disagree 12% 18% 33% 21% 13% 17%

(2) Somewhat 7 2 3 1 - 2 4 3 3
disagree 21% 18% 27% 25% 18% 29% 38% 17%

(1) Completely 9 4 2 2 - 3 4 1 5
disagree 26% 36% 18% 50% 27% 29% 13% 28%

Don't Know/Refused 2 - - 1 1 - - - 1
to answer 6% 25% 33% 6%

 Tables prepared by Computers for Marketing Corp.
 Page 1

I N T E R M E D I A T E TA B L E S
5.1 Expressions and Joiners

-324 MENTOR

5.1.3 Mathematical Joiners And Operators

This class of joiners and operators is most likely used in data cleaning and data
generation procedures. This section provides an overview of each mathematical
joiner and operator.

Using relational joiners, expressions can be formed by defining a comparison of
variables and/or numbers using: less than (LT or <), less than or equal to (LE or
<=), greater than (GT or >), greater than or equal to (GE or >=), equal (EQ or =),
and not equal (NE or <>).

Here are some examples for logical comparisons that check for subsets among
categorical variables:

var1 > var2

Means that every category in var2 must be in var1 (i.e., var2 is a subset of var1),
but var1 may have some category that var2 does not; use LT (<) to reverse the
comparison.

var1 = var2

Means that var1 and var2 have exactly the same categories, including none at all.

var1 <> var2

Means each variable has some category that the other does not, but they may have
some categories in common.

The operators +, -, /, *, and % are used to define the addition, subtraction, division,
multiplication, and percentage of variables and/or constants. The ++ operator also

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.2 Axis Commands/Cross-Case Operations

MENTOR v 8.1 -325

performs addition but treats missing elements as zero, unless all elements are
missing:

A ++ B

Means A + B if both are present, A if B is missing, B if A is missing, and missing if
both A and B are missing. For vectors (multi-category variables), ++ evaluates on
a category by category basis (like NET).

An equal sign (=) after the operator means perform the operation on the element to
the left of the equation:

A += B returns the result of A + B and puts it in A
A /= B returns the result of A / B and puts it in A
A -= B returns the result of A - B and puts it in A
A *= B returns the result of A * B and puts it in A
A %= B returns the percent A is of B and puts it in A

5.2 Axis Commands/Cross-Case Operations

Axis commands are only used in expressions that form either your horizontal or
vertical table axis, meaning they operate across all cases in the data set when a table
is made. Axis commands are used to calculate statistical computations or make
special types of tables. Statistical calculations are included in the sample table run
files (see \CFMC\Mentor\ROADRUNR (DOS/UNIX) or ROADRUNR.CFMC
(MPE)) provided with your Mentor software. Refer to Chapter 6: “Advanced
Tables” for examples of special types of tables, break and overlay.

Syntax: AXIS= expression $[keywords] expression $[]expression

AXIS is optional. Axis command keywords must be specified inside brackets ([])
which are preceded by a dollar sign ($). Separate more than one keyword inside the
brackets with either a comma or a space. Output from these keywords will print on
the table in the order specified.

I N T E R M E D I A T E TA B L E S
5.2 Axis Commands/Cross-Case Operations

-326 MENTOR

This section describes how to include three statistical calculations (mean, standard
deviation, and standard error) to the row variable definition and how to add the
correct labelling to the stub set for the statistics rows. See Appendix B: TILDE
COMMANDS under ~DEFINE AXIS= for a complete list of $[keywords].

$[MEAN] Calculates the mean of the variables that follow. Means can be
computed on more than one numeric variable by connecting them
with the WITH joiner or referencing them within the brackets of a
data variable. You can also reverse values or assign categories
different values. See “6.2.1 Means on Rating Scales Using the
Variable Definition” for more details.

$[SE] Calculates the standard error of the sample from the mean of the
variable(s).

$[STD] Calculates the standard deviation of the sample from the mean of
the variable(s).

Here is a TABLE_SET definition that includes these three statistical tests. See “4.4
TABLE BUILDING (THE INPUT AND EXECUTE STATEMENTS)” for
information on TABLE_SET.

TABLE_SET= { qn4_z:
TITLE=:
 Q4. About how much do you pay per visit for Road
Runner fast food - that is, not including entertain-
ment?}
STUB=:
 $ 5-$10
 $11-$15
 $16-$20
 $21-$25
 $26-$30
 $31-$35
 $36-$40

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.2 Axis Commands/Cross-Case Operations

MENTOR v 8.1 -327

 $41-$45
 $46-$50
 Refused
 [STATISTICS_ROW] Mean
 [STATISTICS_ROW] Standard deviation
 [STATISTICS_ROW] Standard error}
ROW=: [1/15.2# 5-10/11-15/16-20/21-25/26-30/31-35/36-
40/41-45/46-50/"RF"] &
 $[MEAN,STD,SE] [1/15.2 *RANGES=5-50]
 }

ROW=: [1/15.2# 5-10/11-15/16-20/21-25/26-30/31-35/36-40/41-45/46-50/"RF"]

defines the data type and its categories for the row variable.

& ampersand continues the definition to the next line.

$[MEAN,STD,SE] says calculate these statistics across all cases for this table.

[1/15.2 is the location of data to be used in the statistical
calculations.

*RANGES=5-50] specifies which data categories to include (minimum value
of 5 through maximum value of 50) in the statistical
calculations for this variable. (see “4.6 DEFINING DATA”)

Note that the stub label set has three lines at the end for the
statistics calculated in the row variable.

[STATISTICS_ROW] is referred to as a stub option. The keyword
STATISTICS_ROW is required to identify this as a statistics
row. By default no percent sign will print and the number of
decimal places of significance is one unless otherwise
specified (see EDIT= STATISTICS_DECIMALS= in “5.3
Changing Table Specifications”, Print Options).

Mean is the label that will print for this table row.

I N T E R M E D I A T E TA B L E S
5.2 Axis Commands/Cross-Case Operations

-328 MENTOR

Here is a sample table generated from this TABLE_SET definition using the same
banner and edit controls from the model table run described in “4.11 SAMPLE
SPECIFICATION FILES”.

 Road Runner Fast Food Sample Tables
 Prepared on 13 AUG 1994
TABLE 001
Q4. About how much do you pay per visit for Road Runner fast food - that is, not
including entertainment?

 <-------AGE-------> <-----INCOME------> <--RATING-->
 Neu-
 Under Over Under $15- Over tral/
 TOTAL 35 35-54 54 $15k $35k $35k Good Poor
 ----- ----- ----- ---- ----- ----- ---- ---- ----

Total 500 141 140 143 74 148 215 166 247
 100% 100% 100% 100% 100% 100% 100% 100% 100%

$ 5-$10 58 23 21 10 10 14 29 23 26
 12% 16% 15% 7% 14% 9% 13% 14% 11%

$11-$15 52 15 16 12 6 14 22 15 27
 10% 11% 11% 8% 8% 9% 10% 9% 11%

$16-$20 55 11 18 17 6 14 26 21 29
 11% 8% 13% 12% 8% 9% 12% 13% 12%

$21-$25 42 14 9 12 9 14 13 14 19
 8% 10% 6% 8% 12% 9% 6% 8% 8%

$26-$30 53 16 16 12 5 12 26 11 29
 11% 11% 11% 8% 7% 8% 12% 7% 12%

$31-$35 47 12 9 17 6 16 18 15 27
 9% 9% 6% 12% 8% 11% 8% 9% 11%

$36-$40 52 12 15 18 11 14 24 16 23
 10% 9% 11% 13% 15% 9% 11% 10% 9%

$41-$45 51 15 17 13 10 16 21 19 23
 10% 11% 12% 9% 14% 11% 10% 11% 9%

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -329

$46-$50 45 12 10 18 7 21 11 16 23
 9% 9% 7% 13% 9% 14% 5% 10% 9%

Refused 45 11 9 14 4 13 25 16 21
 9% 8% 6% 10% 5% 9% 12% 10% 9%

Mean 27.28 26.10 25.98 29.71 28.39 29.33 25.93 27.11 27.22

Standard deviation 13.27 13.77 13.55 12.91 13.52 13.62 13.00 13.81 13.11

Standard error 0.62 1.21 1.18 1.14 1.62 1.17 0.94 1.13 0.87

 Tables prepared by Computers for Marketing Corp.

5.3 CHANGING TABLE SPECIFICATIONS

This section covers how you can control the format of what is printed on your
tables either for all tables, or on a row by row or column by column basis. Printing
controls allow you to override defaults for what is printed in the table's cells (e.g.,
frequency or percent only) and the format of what is printed (e.g., number of
decimal places or percent sign), to alter the printed order of the tables rows
(ranking), to enhance readability of tables (comments, underlining, and blank
lines), to control what summary information is printed, and to control overall
format such as page size, column and row widths.

Several of the print options covered in this section are illustrated in the sample table
run ALTTABS.SPX in \CFMC\Mentor\ROADRUNR (DOS/UNIX) or
ALTABSPX.ROADRUNR.CFMC (MPE).

GLOBAL PRINT OPTIONS

The edit statement defines a format for printing all tables. In a given table run you
could have many edit statements to control printing for specific tables or groups of

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-330 MENTOR

tables (see Appendix B: TILDE COMMANDS, ~EXECUTE LOCAL_EDIT=). Edit
statements are defined, like all other table elements, in the ~DEFINE program
block with the keyword EDIT= followed by any number of the allowable edit
options. You can include edit statements in a TABLE_SET structure as part of an
entire table definition (see “4.11 SAMPLE SPECIFICATION FILES”).

 Syntax: ~DEFINE

 EDIT={name:options }

EDIT= is the ~DEFINE keyword used to specify table and page formatting
controls.

{ left brace marks the beginning of the definition. (OPTIONAL)

name is the name of this definition. (OPTIONAL if defined within a
TABLE_SET structure).

: colon immediately follows name.

options are separated by commas or one or more spaces. Options can be
continued on as many lines as needed, with no continuation
character needed.

} ends the definition.

 COLUMN PRINT OPTIONS

The EDIT= option COLUMN_INFO= allows you to specify what is printed on a
table on a column by column basis. For example, you could specify a width for all
columns or a different width for each column of the table with the
COLUMN_INFO sub-option WIDTH=. This section includes a sample table to

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -331

illustrate this option. See Appendix B: TILDE COMMANDS, ~DEFINE EDIT=
COLUMN_INFO= for all column options.

Syntax: EDIT={ edit1: COLUMN_INFO=(a/b/c/d/e/f) }

a is options for first printed column (i.e., System Total)

b is options for second printed column, etc. (i.e., System No Answer).

c is options for third printed column (i.e., first user-defined printed column), etc.

If you suppress the system Total and No Answer columns then the first user-defined
column (e.g., TOTAL WITH) becomes the first printed column. See later in this
section for more information on specific column options.

ROW PRINT OPTIONS

Control what is printed on a table on a row by row basis with options specified on
the ~DEFINE STUB= statement.

Syntax: ~DEFINE

 STUB={ <name>:

 [options] row text or blank

 }

STUB= is the ~DEFINE keyword used to define the row labels or stub label
set.

{ left brace marks the beginning of the definition. (OPTIONAL)

name is the name of this definition. (OPTIONAL if defined within a
TABLE_SET structure).

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-332 MENTOR

: colon immediately follows name.

[options] are separated by commas, or one or more spaces.

row text or blank is the text that will print on the table for this row.

} ends the definition.

Where applicable, options or keywords are the same whether applied to all tables
(EDIT=), a single column (EDIT=COLUMN_INFO=), or a row (STUB=
[option]). This section covers only selected options you will use often. Please see
Appendix B: TILDE COMMANDS, ~DEFINE EDIT= for a complete list of edit
options and ~DEFINE STUB= for stub options.

SAMPLE TABLE PRINTED WITH DEFAULT OPTIONS

In the following table, notice the defaults:

System Total row and column

System No Answer row and column

Column width: 8 spaces

Row label width: 20 spaces

Frequencies with no decimal places

Frequencies with a value of zero print as a dash (-) in the cell

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -333

Vertical percentaging off the Total row to 1 decimal point.

Percent sign (%) prints. No horizontal percentaging.

Page length = 60 lines

Page width = 132 columns

TABLE 001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 500 - 263 237
 100.0% 100.0% 100.0%

N/A - - - -

(5) Completely agree 88 - 49 39
 17.6% 18.6% 16.5%

(4) Somewhat agree 92 - 43 49
 18.4% 16.4% 20.7%

(3) Neither agree 86 - 48 38
nor disagree 17.2% 18.3% 16.0%

(2) Somewhat 73 - 36 37
disagree 14.6% 13.7% 15.6%

(1) Completely 86 - 43 43
disagree 17.2% 16.4% 18.1%

Don't Know/Refused 75 - 44 31
to answer 15.0% 16.7% 13.1%

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-334 MENTOR

PRINT OPTIONS

Cell Manipulation Description Default
Options:

COLUMN_INFO=(options) Specifies column-specific options EDIT= options
such as width, percent decimals,
statistics, etc.

-FREQUENCY 1 Suppress printing frequencies in Print frequency
 the cells; prints percentages only.

FREQUENCY_ONLY 2 Prints frequency only, with Print frequency
 no percentages. and vertical
 percent

FREQUENCY_DECIMALS=#1 Specifies the number of decimal 0 (print whole
 places to print for frequencies. number
 # can be 0-7. frequencies)

HORIZONTAL_PERCENT 1 Prints horizontal percents off the Vertical percent
 System Total column.

HORIZONTAL_PERCENT=x1 Specifies the horizontal percent Total column
 base; x can be T for Total, AR for
 Any Response column, or # to specify
 the number of a particular column.

NUMBER_FORMAT=#1 Prints frequencies in cells with Numbers
printed
 commas and/or a dollar sign. without com-
mas
 # can be 0 for default, 1 for commas, or dollar sign.
 or 2 for commas and a dollar sign.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -335

NOTE: This option does not affect [STATISTICS_ROW] unless specifically
specified as a stub option.

PERCENT_DECIMALS=#1 Specifies number of decimal places 1
 to print for vertical and
 horizontal percents. Can be 0-7.

-PERCENT_SIGN 1 Suppresses printing of % sign Print %

An option is only available on the EDIT= statement unless marked as follows:

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

[option] means this option is only available as a STUB [option]

Cell Manipulation Description Default
Options: (continued)

STAR_PERCENT=# Prints an asterisk (*)in the percent -1
 line of the cell if the value is less
 than the value specified here.

can be -1, 0 , or .001-100:
0 do not print asterisk
-1 if PERCENT_DECIMALS=0 then print * when the percent

is less than .5; if PERCENT_DECIMALS=1 then print *
when the percent is less than .05, and if
PERCENT_DECIMALS=2 then print * when the percent is

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-336 MENTOR

less than .005. (Note: You cannot specify -1.)
print * if the percent in the cell is less than this number.

Note1: A footnote showing the STAR_PERCENT value prints on
the last line of the last page (in the print position as a footer) of
any table that has * in a percent cell.

Note2: This option is usually used to note numbers that print as if
they were 0%, but are actually slightly above 0%, especially on a
percentage-only table or where very few respondents answered in
some category.

STATISTICS_DECIMALS=#1 Number of decimal places to print 1
 for statistics. # can be 0-7.

TFRP Total, No Answer, and base rows Frequency/
 print as frequency only; all other vertical percent
 rows print as percents only.
 (TFRP=Total frequency, Rows percents)

VERTICAL_PERCENT= 1 Specifies the vertical percentage base Total row
 for the table. Can be T for system
 Total row, AR for the Any Response row,
 >=1 for that data row, or (col,row) to
 specify a particular cell. Does not
 suppress frequency.

An option is only available on the EDIT= statement unless marked as follows:

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -337

[option] means this option is only available as a STUB [option]

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-338 MENTOR

Summary Information Description Default
Manipulation Options:

-COLUMN_NA Suppress printing of No Prints
 Answer column.

-COLUMN_TNA Suppress printing of both the Prints
 Total and No Answer columns.

NUMBER_OF_CASES Prints the number of cases Does not print
 above the table title.

-ROW_NA Suppress printing of system No Prints
 Answer row.

-ROW_TNA Suppress printing of both the system Prints
 Total and No Answer rows.

Division Between
Columns/Rows: Description Default

COLUMN_WIDTH=# Number of spaces to allot for 8
 each column of data

STUB_WIDTH=# Number of spaces to allot for 20
 stub labels.

SKIP_LINES=#2 Number of lines to skip between 1
 rows. SKIP_LINES=0 condenses
 printing to fit the maximum number
 of rows per page.

An option is only available on the EDIT= statement unless marked as follows:

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -339

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

[option] means this option is only available as a STUB [option]

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-340 MENTOR

Page Configuration Description Default
Options:

BOTTOM_MARGIN=# Specifies a margin of # lines at the 6
 bottom of each page.

CONTINUED= Specifies what to print for TOP
 continued pages of a table. Can
 be NONE (no indication of continuation),

TOP prints (continued) next to the table
number on the second and subsequent
pages of the table, BOTTOM prints (continued)
on the bottom of the page to indicate continuation.

CONTINUED_LOCATION Specifies where to print “(continued)” TOP
on tables that span more than one
page. Can be NONE, TOP, TOP_CENTER,
TOP_RIGHT, BOTTOM, BOTTOM_CENTER,
or BOTTOM_RIGHT.

CONTINUED_NUMBER Adds a number suffix to the table NONE
name of tables that span more than
one page. Can be NONE, AFTER_TABLE_NAME,
or AFTER_CONTINUE. See Mentor,
Volume Two, Appendix B, ~DEF EDIT
CONTINUED_NUMBER for examples.

DATA_INDENT=# 2 Specifies the number of spaces to 0
 indent the data columns.

NOTE: Data is right-justified according to the specified
COLUMN_WIDTH. This option allows you to indent
the data beyond the normal print position. It is useful to
set off data in the table. Column headings are not affected
by the indenting of the data columns.

INDENT= Indents the entire table, text None
 labelling included. Options are to

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -341

 CENTER or the number of spaces
 to indent. Useful if tables are
 bound in a binder.

[STUB_INDENT=#] Specifies number of spaces to indent None
 this stub. Useful to set off a row
 such as Sigma or Super-Sigma.

You can also use a vertical bar (|) as a

placeholder to print blank spaces before the

start of the text.

An option is only available on the EDIT= statement unless marked as follows:

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

[option] means this option is only available as a STUB [option]

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-342 MENTOR

Page Configuration Description Default
Options: (continued)

STUB_WRAP_INDENT=# Number of spaces to indent sub- 0
 sequent stub lines when the label
 continues to more than one line.
 Default is 0 (do not indent), but may
 be any number 1+.

TOP_MARGIN=# Number of rows to leave blank at the 0
 top of each page.

Row Manipulation Description Default

Options:

[COMMENT] Prints a comment label, with no none
 corresponding row of data. This
 text will wrap at STUB_WIDTH=.

[\N] Kicks a single blank line none
 before printing this row.

[\P] Kicks to a new page before none
 printing this row.

[LONG_COMMENT] Like [COMMENT] but will print as none
 far across the page as there are
 characters, wrapping at the page
 width.

RANK_IF_INDICATED Checks the stub label set for any No ranking
 [RANK_LEVEL=] commands and
 ranks the table rows if any are

specified.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -343

RANK_LEVEL= 2 Level to rank all rows or specific Level 1
 row. Can be a number 0-9, where 0
 means do not rank. Used as a stub
 [option] it can also be L for low,
 H for high, or some combination of
 #L or #H. See also [KEEP_RANK=].

An option is only available on the EDIT= statement unless marked as follows:

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

[option] means this option is only available as a STUB [option]

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-344 MENTOR

Row Manipulation Description Default

Options: (continued)

[STATISTICS_ROW] Specifies this as a statistics row. none
 See section “5.2 Axis Commands/Cross-Case Operations” for
 example specifications and table.

STUB_PREFACE= Allows you to define your own Total
 summary row label set to be pre- N/A
 pended to all tables; can be stubset
 name, TNA, NONE, or ; to turn off a
 previous setting.

NOTE: This is very useful if you will be changing print options
for these summary rows often in a run. By defining a
stub preface you can use any allowable stub [option] to
control these rows. See also STUB_SUFFIX.

UNDERLINE2 Underlines this row. Default none
 character is a dash (-), but allows
 a user-specified character with
 UNDERLINE=<character>

Miscellaneous Options: Description Default

RUNNING_LINES=# Controls how table text will be 0
 printed, i.e., titles, headers,
 footers. # can be 0 (default)
 print as written, 1 to wrap lines
 according to any PAGE_WIDTH= or
 INDENT= setting, and 2 which means
 print the first line like
 RUNNING_LINES=1, then indent the
 second and subsequent lines by the
 length of the first word in line
 one and any blanks immediately

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -345

 following.

NOTE: Text positional characters (= center, < left-justify (default),
> right-justify) automatically set RUNNING_LINES to 0
for that item. Table of Contents is not affected by
RUNNING_LINES, titles are printed according to the
specified page width, with all lines indenting according to
the default TCON format for titles.

TCON Prints a table of contents of all No TCON
 tables, table number and title. printed

An option is only available on the EDIT= statement unless marked as follows:

1. Means this option is available on EDIT=, EDIT=COLUMN_INFO, and STUB=
[option].

2. Means this option is available on both EDIT= and STUB= [option]

[option] means this option is only available as a STUB [option]

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-346 MENTOR

Sample Tables

Title Print Positions

Text specified on HEADER= prints on line one of the table.
TABLE 001
Text specified on TITLE_2= prints on line three.
Text specified on TITLE= prints on line four.
Text specified on TITLE_4= prints on line five.

 Total N/A Male Female

Total 500 - 263 237
 100.0% 100.0% 100.0%

N/A - - - -

(5) Completely agree 88 - 49 39
 17.6% 18.6% 16.5%

(4) Somewhat agree 92 - 43 49
 18.4% 16.4% 20.7%

(3) Neither agree 86 - 48 38
nor disagree 17.2% 18.3% 16.0%

(2) Somewhat 73 - 36 37
disagree 14.6% 13.7% 15.6%

(1) Completely 86 - 43 43
disagree 17.2% 16.4% 18.1%

Don't Know/Refused 75 - 44 31
to answer 15.0% 16.7% 13.1%
Text specified on TITLE_5= prints as a footnote on each page.

Text specified on FOOTER= prints on the last line of each page.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -347

RUNNING_LINES=2 PAGE_WIDTH=60

TABLE 001
Q1. How much do you agree with the following statement:
 The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 500 - 263 237
 100.0% 100.0% 100.0%

N/A - - - -

(5) Completely agree 88 - 49 39
 17.6% 18.6% 16.5%

(4) Somewhat agree 92 - 43 49
 18.4% 16.4% 20.7%

(3) Neither agree 86 - 48 38
nor disagree 17.2% 18.3% 16.0%

(2) Somewhat 73 - 36 37
disagree 14.6% 13.7% 15.6%

(1) Completely 86 - 43 43
disagree 17.2% 16.4% 18.1%

Don't Know/Refused 75 - 44 31
to answer 15.0% 16.7% 13.1%

-PERCENT_SIGN

TABLE 001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 500 - 263 237
 100.0 100.0 100.0

N/A - - - -

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-348 MENTOR

(5) Completely agree 88 - 49 39
 17.6 18.6 16.5

(4) Somewhat agree 92 - 43 49
 18.4 16.4 20.7

(3) Neither agree 86 - 48 38
nor disagree 17.2 18.3 16.0

(2) Somewhat 73 - 36 37
disagree 14.6 13.7 15.6

(1) Completely 86 - 43 43
disagree 17.2 16.4 18.1

Don't Know/Refused 75 - 44 31
to answer 15.0 16.7 13.1

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -349

FREQUENCY_ONLY, FREQUENCY_DECIMALS=2

TABLE 001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 500.00 0.00 263.00 237.00

N/A 0.00 0.00 0.00 0.00

(5) Completely agree 88.00 0.00 49.00 39.00

(4) Somewhat agree 92.00 0.00 43.00 49.00

(3) Neither agree
nor disagree 86.00 0.00 48.00 38.00

(2) Somewhat
disagree 73.00 0.00 36.00 37.00

(1) Completely
disagree 86.00 0.00 43.00 43.00

Don't Know/Refused
to answer 75.00 0.00 44.00 31.00

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-350 MENTOR

-FREQENCY_ONLY (prints percents only), HORIZONTAL_PERCENT,

PERCENT_DECIMALS=2, STAR_PERCENT=-1 (default)

TABLE 001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 100.00% * 52.60% 47.40%
 100.00% 100.00% 100.00%

N/A * * * *

(5) Completely agree 100.00% * 55.68% 44.32%
 17.60% 18.63% 16.46%

(4) Somewhat agree 100.00% * 46.74% 53.26%
 18.40% 16.35% 20.68%

(3) Neither agree 100.00% * 55.81% 44.19%
nor disagree 17.20% 18.25% 16.03%

(2) Somewhat 100.00% * 49.32% 50.68%
disagree 14.60% 13.69% 15.61%

(1) Completely 100.00% * 50.00% 50.00%
disagree 17.20% 16.35% 18.14%

Don't Know/Refused 100.00% * 58.67% 41.33%
to answer 15.00% 16.73% 13.08%

NOTE: Percentage less than 0.005 printed as *.

SKIP_LINES=0

TABLE 001

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -351

Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total N/A Male Female

Total 500 - 263 237
 100.0% 100.0% 100.0%
N/A - - - -
(5) Completely agree 88 - 49 39
 17.6% 18.6% 16.5%
(4) Somewhat agree 92 - 43 49
 18.4% 16.4% 20.7%
(3) Neither agree 86 - 48 38
nor disagree 17.2% 18.3% 16.0%
(2) Somewhat 73 - 36 37
disagree 14.6% 13.7% 15.6%
(1) Completely 86 - 43 43
disagree 17.2% 16.4% 18.1%
Don't Know/Refused 75 - 44 31
to answer 15.0% 16.7% 13.1%

COLUMN_INFO= Controlling Column Widths

This example overrides the default column width of eight spaces for columns two,
four, five, six, and seven to create a more even-appearing spacing between some of
the banner points, and an obvious spacing between the different groupings
(TOTAL, SEX, and AGE). Only the columns named on the COLUMN_INFO
option are affected. For a discussion on the banner used in this example refer to
“4.8 FORMATTING BANNER TEXT”.

EDIT={edit1:COLUMN_INFO=(column=2 width=10/column=4 width=10/

 column=5 width=7/column=6 width=7/column=7 width=9) }

TABLE 001

Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-352 MENTOR

 <----SEX---> <-----------AGE----------->

 Don't

 Under Over know/

 Total Male Female 35 35-54 54 Refused

 ----- ---- ------ ----- ----- ---- -------

Total 500 263 237 141 140 143 76

 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

(5) Completely agree 88 49 39 21 29 23 15

 17.6% 18.6% 16.5% 14.9% 20.7% 16.1% 19.7%

(4) Somewhat agree 92 43 49 26 27 27 12

 18.4% 16.4% 20.7% 18.4% 19.3% 18.9% 15.8%

(3) Neither agree 86 48 38 23 26 24 13

nor disagree 17.2% 18.3% 16.0% 16.3% 18.6% 16.8% 17.1%

(2) Somewhat 73 36 37 13 23 21 16

disagree 14.6% 13.7% 15.6% 9.2% 16.4% 14.7% 21.1%

(1) Completely 86 43 43 29 17 26 14

disagree 17.2% 16.4% 18.1% 20.6% 12.1% 18.2% 18.4%

Don't Know/Refused 75 44 31 29 18 22 6

to answer 15.0% 16.7% 13.1% 20.6% 12.9% 15.4% 7.9%

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -353

Ranking Data Rows: EDIT= RANK_IF_INDICATED and STUB= [RANK_LEVEL=]

Here is an example stub definition indicating that the last four rows should be
ranked low, i.e., below the other rows which are ranked at the default level of 1.

This table continues to a second page. By default, (continued) prints at the top of
the continued page.

TABLE_SET= { qn8_z:

TITLE=:

 Q8. From your own experience and knowledge, what do you
especially like

 about Road Runner?}

STUB=:

 Good service/prompt service

 Dependable/continuous service

 The courteous employees they have/helpful

 I like the food/good food

 Food selection

 Good prices

 Computerized/accurate billing

 Helpful in explaining billing questions

 Good entertainment

 Variety of entertainment

 Nice family atmosphere

 Established place/has been around for awhile

 Accessible/Available/They're everywhere

 Like everything/good place

 [RANK_LEVEL=L] Other

 [RANK_LEVEL=L] No problem/No complaints

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-354 MENTOR

 [RANK_LEVEL=L] Don't know/No answer

 [RANK_LEVEL=L] Nothing}

ROW=: [1/40.2^1//15/22//24]

 }

Here is the EDIT statement for this example table. Note other EDIT= options used.

 EDIT=: -COLUMN_NA, -ROW_NA, PERCENT_DECIMALS=0, COLUMN_WIDTH=7,

 STUB_WIDTH=40, RUNNING_LINES=1, RANK_IF_INDICATED }

TABLE 001

Q8. From your own experience and knowledge, what do you especially like

aboutRoad Runner?

 Total Male Female

Total 500 263 237

 100% 100% 100%

Like everything/good place 53 26 27

 11% 10% 11%

I like the food/good food 48 25 23

 10% 10% 10%

Computerized/accurate billing 47 21 26

 9% 8% 11%

Helpful in explaining billing questions 46 23 23

 9% 9% 10%

Established place/has been around for 46 28 18

awhile 9% 11% 8%

Variety of entertainment 43 25 18

 9% 10% 8%

The courteous employees they have/ 42 21 21

helpful 8% 8% 9%

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -355

Food selection 40 20 20

 8% 8% 8%

Good prices 40 25 15

 8% 10% 6%

Nice family atmosphere 35 21 14

 7% 8% 6%

Good entertainment 34 17 17

 7% 6% 7%

Accessible/Available/They're everywhere 32 11 21

 6% 4% 9%

Dependable/continuous service 31 12 19

 6% 5% 8%

Good service/prompt service 28 11 17

 6% 4% 7%

Other 44 29 15

 9% 11% 6%

No problem/No complaints 21 12 9

 4% 5% 4%

Don't know/No answer 19 7 12

 4% 3% 5%

Q8. From your own experience and knowledge, what do you especially like about
Road Runner?

 Total Male Female

Nothing 23 15 8

 5% 6% 3%

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-356 MENTOR

HORIZONTAL_PERCENT= Changing the Percent Base

User-Defined Total In The Banner

In this example the percent base has been changed from the default
(system Total row/VERTICAL_PERCENT=T) to the user-defined
Total column. The default horizontal percent base is the system
Total column. Since that is suppressed on the EDIT statement with
-COLUMN_TNA we have specified the user-defined Total column
(column 1) as the percent base (HORIZONTAL_PERCENT=1).

Edit statement for this table:

EDIT={ edit1: -COLUMN_TNA, -ROW_NA,
PERCENT_DECIMALS=0,HORIZONTAL_PERCENT=1,

 COLUMN_WIDTH=7, STUB_WIDTH=40, RUNNING_LINES=2,
PAGE_WIDTH=106}

TABLE 001

Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for
it.

 <-------AGE-------> <-----INCOME------>

 Under Over Under $15- Over

 TOTAL 35 35-54 54 $15k $35k $35k

 ---- ----- ----- ---- ----- ----- ----

Total 500 141 140 143 74 148 215

 100% 28% 28% 29% 15% 30% 43%

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -357

(5) Completely agree 88 21 29 23 10 30 36

 100% 24% 33% 26% 11% 34% 41%

(4) Somewhat agree 92 26 27 27 14 30 35

 100% 28% 29% 29% 15% 33% 38%

(3) Neither agree nor disagree 86 23 26 24 13 22 45

 100% 27% 30% 28% 15% 26% 52%

(2) Somewhat disagree 73 13 23 21 13 21 33

 100% 18% 32% 29% 18% 29% 45%

(1) Completely disagree 86 29 17 26 8 27 37

 100% 34% 20% 30% 9% 31% 43%

Don't Know/Refused to answer 75 29 18 22 16 18 29

 100% 39% 24% 29% 21% 24% 39%

NOTE: The last two banner points were omitted from this table due to page size
limitations.

CHANGING PERCENT BASE WITHIN A STUB

In this example VERTICAL_PERCENT is used as a STUB [option] to change the
percent base for a row expression, respondent age by sex, where we want to show
what percentage each age category is of each sex category rather than of the total
sample. This table also illustrates several other options described above: EDIT=
STUB_PREFACE, -COLUMN_TNA, PERCENT_DECIMALS=, and STUB
options: [UNDER_LINE], [LONG_COMMENT], [SUPPRESS], [SKIP_LINES=],
and [STUB_INDENT=].

>PURGE_SAME

~INPUT RRUNR

>DEFINE @study vper

I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

-358 MENTOR

>PRINT_FILE @study~

~SPEC_FILE @study~

~DEFINE

STUB={ stubtop: ''Defines the stub for the total and no answer rows.

[SUPPRESS] TOTAL ''The stub option [SUPPRESS] prevents these rows from

[SUPPRESS] no answer} ''printing (same as EDIT= -ROW_TNA).

TABLE_SET={ tab1:

SET AUTOMATIC_TABLES

EDIT=: -COLUMN_TNA, STUB_PREFACE=stubtop, PERCENT_DECIMALS=0 }

TITLE=: Respondent sex BY age with changing percent base}

STUB=:

 [LONG_COMMENT] Percent base is the total row (suppressed)

 [UNDER_LINE, VERTICAL_PERCENT=T] Male

 [LONG_COMMENT] Percent base changed to first printed row: Male

 [VERTICAL_PERCENT=1]| Under 25

 | 25 to 34 ''| vertical bar acts as a placeholder on stub text

 [STUB_INDENT=2] 35 to 44 ''[STUB_INDENT=2] does the same thing as |,

 | 45 to 54 ''but also indents subsequent lines.

 | 55 to 64

 | 65 or over

 [SKIP_LINES=3, LONG_COMMENT] Percent base changed back to total row

 [UNDER_LINE, VERTICAL_PERCENT=T] Female

 [LONG_COMMENT] Percent base changed to eighth printed row: Female

 [VERTICAL_PERCENT=8]| Under 25

 | 25 to 34

 | 35 to 44

 | 45 to 54

 | 55 to 64

 | 65 or over}

 ROW=:[1/51^1-6/1//6] BY [1/57^1/2] ''1-6 nets age categories for all males

 } ''and all females, then breaks out

 ''each category by male and female 1//6

~EXECUTE

 COLUMN=TOTAL ''defines a total column and banner text1

 MAKE_TABLES

~END

1. TOTAL is a System Constant. It says use the System TOTAL as the column variable and
print “TOTAL” as the banner label. See “9.3.1 System Constants”.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.3 Changing Table Specifications

MENTOR v 8.1 -359

TABLE 001

Respondent sex BY age with changing percent base

 TOTAL

Percent base is the total row (suppressed)

Male 229

---- 46%

Percent base changed to first printed row: Male

 Under 25 41

 18%

 25 to 34 42

 18%

 35 to 44 38

 17%

 45 to 54 30

 13%

 55 to 64 48

 21%

 65 or over 30

 13%

Percent base changed back to total row

Female 195

------ 39%

I N T E R M E D I A T E TA B L E S
5.4 Printing Multiple Banners For Each Table Row

-360 MENTOR

Percent base changed to eighth printed row: Female

 Under 25 24

 12%

 25 to 34 34

 17%

 35 to 44 33

 17%

 45 to 54 39

 20%

 55 to 64 32

 16%

 65 or over 33

 17%

5.4 Printing Mult iple Banners For Each Table Row

There may be occasions when you want to print the same row variable and stub
label set against more than one column variable and banner label set, while
maintaining the order of the table names. SET COLUMN_REPEAT1 is the
command that causes Mentor to print multiple banners consecutively for each row
in a table run.

 Syntax: SET COLUMN_REPEAT=#

indicates the number of column variables each row variable will be cross-
tabulated by. There is no practical maximum value for #.

When Mentor processes tables in COLUMN_REPEAT mode it assigns table
names leaving room for the number of column variables specified. The program
builds all tables defined for the first COLUMN= variable specified, then

1. Refer to SET COLUMN_REPEAT_OVERRIDE to override program defaults.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.4 Printing Multiple Banners For Each Table Row

MENTOR v 8.1 -361

reprocesses the table definitions for the next column variable, and so on until the
number of column variables specified on the COLUMN_REPEAT has been
satisfied. Tables are then printed in ascending table name order showing the same
stub label set against however many banners were specified.

>PURGE_SAME

~INPUT rrunr,MAYBE_BACKUP,DOT=100

>DEFINE @STUDY colrep

>PRINT_FILE @STUDY~

~SPEC_FILE @STUDY~

~DEFINE

TABLE_SET={tabtop:

SET AUTOMATIC_TABLES, COLUMN_REPEAT=2, DROP_LOCAL_EDIT

HEADER=: =Road Runner Fast Food Sample Tables

Prepared on #date# }

FOOTER=: =Tables prepared by Computers for Marketing
Corp.

Page #page_number# }

EDIT=: -COLUMN_TNA, -ROW_NA, PERCENT_DECIMALS=0,
STATISTICS_DECIMALS=2,

 VERTICAL_PERCENT=T, COLUMN_WIDTH=7,
STUB_WIDTH=40,

 RUNNING_LINES=1,TCON }

I N T E R M E D I A T E TA B L E S
5.4 Printing Multiple Banners For Each Table Row

-362 MENTOR

}

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

MENTOR v 8.1 -363

TABLE_SET={banner1:

BANNER=:

 | <-------AGE-------> <-----INCOME------> <--RATING-->

 | Neu-

 | Under Over Under $15- Over tral/

 | Total 35 35-54 54 $15k $35k $35k Good Poor

 | ----- ----- ----- ---- ----- ----- ---- ---- ---- }

COLUMN=: TOTAL WITH &

 [1/51^1,2/3,4/5,6] WITH & ''AGE

 [1/52^1/2,3/4,5,6] WITH & ''INCOME

 [1/47^4,5/1,2,3] ''RATING

}

&@STUDY~^DEF ''reads in a file containing TABLE_SET definitions (title,

 ''stub, row) for each table.

TABLE_SET={banner2:

LOCAL_EDIT=: -COLUMN_WIDTH} ''resets column width to default. Other options

 ''remain in effect.

BANNER=:

 | <---------------STATUS----------------> <---RATING--->

 |

 | Living Neu-

 | Di- Wi- to- tral/

 | Total Married vorced dowed Single gether Good Poor

 | ----- ------- ------ ----- ------ ------ ---- ---- }

COLUMN=: TOTAL WITH &

 [1/54^1//5] WITH & ''MARITAL STATUS, Refused category excluded

 [1/47^4,5/1,2,3] ''RATING

}

~EXECUTE MAKE_TABLES

~END

5.5 TABLE NAMES
Mentor automatically assigns table names starting with T001, though the T by
default does not appear as part of the table name on the printed table. T001
represents the variable name for a particular table and is the name this table is
stored under in a DB file for future retrieval in table manipulation (“9.2 TABLE
MANIPULATION”) or to load and print a table stored in a DB file (see “5.6
Reprinting Tables”). Table names follow the same rules for other variable names.

I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

-364 MENTOR

They can be from 1 to 14 alphanumeric characters in length, must begin with an
alpha character, and can include . (period), and _ (underscore).

There are several options available to you regarding table names:

• Print the leading alpha character as part of the table name.

• Specify the starting table name for automatic table naming.

• Append up to a 16 character prefix or suffix to each table name.

• Change the default text 'TABLE ' preceding each table name.

• Specify a unique name for each table.

• Print a table name different fromthe name stored in the DB file (see “5.6
Reprinting Tables”).

PRINTING LEADING ALPHA CHARACTER

EDIT= PRINT_ALPHA_TABLE_NAMES prints the leading alpha character on
every table name.

 EDIT={edit1: PRINT_ALPHA_TABLE_NAMES }

TABLE T001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.

 Total Male Female

Total 500 263 237
 100.0% 100.0% 100.0%

(5) Completely agree 88 49 39
 17.6% 18.6% 16.5%

(4) Somewhat agree 92 43 49

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

MENTOR v 8.1 -365

 18.4% 16.4% 20.7%

(3) Neither agree 86 48 38
nor disagree 17.2% 18.3% 16.0%

(2) Somewhat 73 36 37
disagree 14.6% 13.7% 15.6%

(1) Completely 86 43 43
disagree 17.2% 16.4% 18.1%

Don't Know/Refused 75 44 31
to answer 15.0% 16.7% 13.1%

SPECIFY STARTING NAME

The ~SET TABLE_NAME=name option allows you to specify what the initial
table name will be for automatic table naming by Mentor (i.e, SET
AUTOMATIC_TABLES, ~EXECUTE STORE=* or TABLE=*). The program
will generate table names from this initial name either by incrementing the last
number (T001, T002, T003,...), or by alpha-kicking the last letter (T10A, T10B,
T10C,...). The leading alpha character of the table name will not print on the tables
unless otherwise specified on the EDIT statement as in the example above. This
SET command can be used inside the ~DEFINE TABLE_SET= structure.

~SET TABLE_NAME=T0001

NOTE: For this and subsequent tables, we are printing the titling only, not the
entire table.

TABLE 0001
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for
it.

I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

-366 MENTOR

PRINTING NAME WITH PREFIX OR SUFFIX

The SUFFIX= and PREFIX= EDIT options allow you to prepend (prefix) or
append (suffix) up to 16 characters of text, including blanks and special characters,
to the table name (either default or user-specified). Double quotes are required
when the text includes blanks or special characters, or when other EDIT options
are specified on the same line. PREFIX=; or SUFFIX=; will reset the option to
null.

EDIT={edit1: SUFFIX="_Road_Runner" }

TABLE 0001_Road_Runner
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for
it.

REPLACING “TABLE”

The default text 'TABLE ' precedes every table name printed before the title for
each table. Use the CALL_TABLE option either to suppress this text entirely or to
specify your own. Maximum length is 16 characters including blanks and special
characters. CALL_TABLE=; will reset this option to the default ‘TABLE’.
EDIT= CALL_TABLE=" " will suppress the printing of 'TABLE ' before the table
name.

EDIT={edit1: CALL_TABLE="REPORT " }

This will replace TABLE with REPORT before each table name. Include at least
one blank space after the text; if not, the table name will print immediately after
this text.

REPORT 0001_Road_Runner
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for
it.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

MENTOR v 8.1 -367

SPECIFYING UNIQUE TABLE NAMES

In “4.11 SAMPLE SPECIFICATION FILES”, table production was triggered
automatically by specifying ~SET AUTOMATIC_TABLES. In this mode it is the
ROW= keyword that causes Mentor to make a table from the elements defined and
to assign it the next available table name (either from the default table name starting
at T001 or from the user-specified beginning table name on the ~SET
TABLE_NAME= command).

The ~EXECUTE keyword STORE_TABLES= also causes Mentor to process table
specifications. Table names are generated from the name specified on the
STORE_TABLES= command (e.g., STORE_TABLES=T001) or
STORE_TABLES=* to assign the next available name (either default or user-
specified on the ~SET TABLE_NAME command).

In “4.3 DEFINING TABLE ELEMENTS”, we discussed the general form of the
TABLE_SET structure to define tables. Any table building ~EXECUTE command
can be specified in this structure. STORE_TABLES= specified in the TABLE_SET
structure allows you to do two things:

• specify a unique name for each table, overriding the default pattern of automatic
table name generation by the program (see STORE_TABLES=*).

• store the table name as part of the TABLE_SET definition in a DB file,
associating that set of table elements with this table name.

~DEFINE
TABLE_SET={ qn1_z:
TITLE=:
Q1. How much do you agree with the following statement:
The food at Road Runners is worth what I pay for it.}
STUB=:
 (5) Completely agree
 (4) Somewhat agree
 (3) Neither agree nor disagree
 (2) Somewhat disagree
 (1) Completely disagree

I N T E R M E D I A T E TA B L E S
5.5 TABLE NAMES

-368 MENTOR

 Don't Know/Refused to answer }
 ROW=: [1/6^5//1/10]
 STORE_TABLES=RRUNR_QN1
 }

Since STORE_TABLES= causes Mentor to process table specifications defined to
that point, specify it last in the TABLE_SET definition. Table elements defined
after STORE_TABLE= would not be included in that table.

If you make tables using SET AUTOMATIC_TABLES remember that the ROW=
keyword causes Mentor to make tables in this mode. Referring to the example
above, this TABLE_SET would generate two tables: T001 when ROW= is
processed (assuming that this is the first table made) and RRUNR_QN1 with the
same elements when the STORE_TABLES= command is processed. SET -
AUTOMATIC_TABLES would produce one table.

TABLE_SET= { qn1_z:
TITLE=:
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for
it.}
STUB=:
 (5) Completely agree
 (4) Somewhat agree
 (3) Neither agree nor disagree
 (2) Somewhat disagree
 (1) Completely disagree
 Don't Know/Refused to answer }
 ROW=: [1/6.1^5/4/3/2/1/10]
 BASE=: [1/57^2]
 TITLE_4: Base is women respondents only
 STORE_TABLES= T001_a
 }

In this example SET AUTOMATIC_TABLES mode would cause Mentor to make
a table with the title, stub, and row defined above when the ROW= variable is
processed (with the next available table name). STORE_TABLES=T001_a would

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -369

then cause Mentor to make a based version of the same table with the name
T001_a.

PRINTING DIFFERENT TABLE NAMES

You can assign table names to be printed that are different from the actual table
names stored in the DB file with the option PRINT_TABLE_NAME. The same
rules apply as with regular table names: the name must begin with an alpha
character; it must be between 1 and 14 characters long; and, if the first alpha
character is followed by a number, the alpha character will be stripped.

Like regular table names, Mentor will automatically increment numbers or alpha
characters on sequential tables. You can use either ~SET or ~DEFINE EDIT
PRINT_TABLE_NAME.

Example: ~SET PRINT_TABLE_NAME=t1

This will print table names Table1, Table 2, etc. See Mentor, Appendix B, ~DEFINE
EDIT PRINT_TABLE_NAME for more details and examples.

5.6 Reprinting Tables

If you have stored your finished tables in a DB file then they are available for
reprinting (see “4.11 SAMPLE SPECIFICATION FILES”). This is especially
useful if you have a very large sample and need to make changes to the finished
tables that do not require reprocessing the data file. Such changes might be
corrections to any table text element, i.e., header, footer, banner text, stub labels,
etc., different print options such as percentaging or number of decimal places, or
adding printer statistics rows (meaning statistics computed on the existing numbers
stored for a table's cells).

You will need the following files to reprint existing tables: the DB file that the
tables are stored in and the LPR file generated automatically by Mentor when
~SPEC_FILES is specified in a table run.

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-370 MENTOR

Each table is stored as an entry in the DB file under the table name, e.g., T001
would be the DB entry name for table 001. T001 stores the matrix (the numbers
that make up this table) and the variable names for each of its table elements
(banner and stub labels, titling, and EDIT statement). Each table element is stored
as a separate entry in the DB file. Mentor reprints a table by searching through the
open DB files for the actual entry that stores each of the table element variables.
Up to five DB files can be open at any one time so it is not necessary to have all the
parts of the table stored in the same DB file, i.e., the table definitions could be in
one DB file and the actual tables in another. Mentor prints an error message if a
table element cannot be located in the open DB files.

The LPR file contains a table printing statement for each table made in the original
run. Edit this file to reprint only the tables wanted by deleting lines.

Example: LOAD=T001 PRINT

This statement loads (into system memory) all of the variables needed to print the
table named, and then prints the table.

LOAD_TABLES= (abbreviated to LOAD=) is the ~EXECUTE keyword that
loads the table specified and its elements from the open DB file into system
memory. T001 is the name of the table to be loaded.

PRINT_TABLES (abbreviated to PRINT) is the ~EXECUTE keyword that prints
the table currently held in memory.

Here are sample specifications that reprint tables from the Road Runner example
set changing the header and adding horizontal percentaging. Note that the data file
is not reopened (~INPUT name); it is not needed to reprint existing tables.

>PURGE_SAME
>USE_DB rrunr1
>PRINT_FILE retabs

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -371

~DEFINE
TABLE_SET={ tabtop2=tabtop:
LOCAL_EDIT=: HORIZONTAL_PERCENT}
HEADER=:=THIS IS THE NEW TABLE HEADING }
}

~EXECUTE
 TABLE_SET=tabtop2
&rrunr^LPR
~END

Here is an explanation of the commands from the previous spec file:

ACCESSING THE DB FILE

>USE_DB rrunr1 Opens the DB file where the tables were stored
from the original run (see “4.11 SAMPLE
SPECIFICATION FILES”). Up to five DB files
can be opened at one time (using USE_DB and
CREATE_DB commands). This DB file is opened
with Read_only access (the default), so changes in
this run will not be saved anywhere.

DEFINING A NEW EDIT STATEMENT AND TABLE HEADER

~DEFINE
TABLE_SET={ tabtop2=tabtop:

LOCAL_EDIT=: HORIZONTAL_PERCENT}

HEADER=:=THIS IS THE NEW TABLE HEADING }
}

tabtop2=tabtoptells Mentor that TABTOP2 is the same as TABTOP (see
“4.11 SAMPLE SPECIFICATION FILES”) except
for the elements replaced. (see “4.4 TABLE

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-372 MENTOR

BUILDING (The INPUT and EXECUTE
statements)” for more on TABLE_SET).

LOCAL_EDIT= is the ~EXECUTE keyword that appends to a previous edit
statement, i.e., the options specified on the edit
statement defined for TABTOP remain in effect.

HORIZONTAL_PERCENTwill add horizontal percentaging (based by default on
the Total column) to the reprinted tables.

HEADER= replaces the HEADER= variable defined in TABTOP with the text
specified here.

REPRINTING THE TABLES

~EXECUTE

TABLE_SET=tabtop_eis the keyword to execute the new TABLE_SET
definition.

&rrunr^LPRreads in the LPR file (generated when TABS.SPX was run, see
“4.11 SAMPLE SPECIFICATION FILES”),
edited for the tables we want to reprint.

THIS IS THE NEW TABLE HEADING

TABLE 001

Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.

 <-------AGE-------> <-----INCOME------>

 Under Over Under $15- Over

 TOTAL 35 35-54 54 $15k $35k $35k

 ----- ----- ----- ---- ----- ----- ----

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -373

Total 500 141 140 143 74 148 215

 100% 28% 28% 29% 15% 30% 43%

 100% 100% 100% 100% 100% 100% 100%

(5) Completely agree 88 21 29 23 10 30 36

 100% 24% 33% 26% 11% 34% 41%

 18% 15% 21% 16% 14% 20% 17%

(4) Somewhat agree 92 26 27 27 14 30 35

 100% 28% 29% 29% 15% 33% 38%

 18% 18% 19% 19% 19% 20% 16%

(3) Neither agree nor disagree 86 23 26 24 13 22 45

 100% 27% 30% 28% 15% 26% 52%

 17% 16% 19% 17% 18% 15% 21%

(2) Somewhat disagree 73 13 23 21 13 21 33

 100% 18% 32% 29% 18% 29% 45%

 15% 9% 16% 15% 18% 14% 15%

(1) Completely disagree 86 29 17 26 8 27 37

 100% 34% 20% 30% 9% 31% 43%

 17% 21% 12% 18% 11% 18% 17%

Don't Know/Refused to answer 75 29 18 22 16 18 29

 100% 39% 24% 29% 21% 24% 39%

 15% 21% 13% 15% 22% 12% 13%

Tables prepared by Computers for Marketing Corp.

Page 1

NOTE: The last two banner points were omitted from this table due to page size
limitations.

ADDING STATISTICS ROWS TO FINISHED TABLES

In “5.2 Axis Commands/Cross-Case Operations”, you saw how to compute
statistical calculations on the data by defining axis commands, e.g., $[MEAN], as
part of the row variable. The statistics are calculated from the data as the table is
built. Printer statistics rows can be computed when the table is printed, but they will
be calculated off of the existing frequencies in the cells for that table and not the
data itself.

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-374 MENTOR

>PURGE_SAME

>USE_DB rrunr1

>PRINT_FILE retabs2

~DEFINE

TABLE_SET={ tabtop_s=tabtop:

LOCAL_EDIT=: COLUMN_MEAN,
COLUMN_STATISTICS_VALUES=VALUES(5,4,3,2,1,,),

COLUMN_STD, COLUMN_SE }

}

~EXECUTE

 TABLE_SET= tabtop_s

&rrunr^LPR

~END

Explanation:

~DEFINE
TABLE_SET={ tabtop_s=tabtop:
LOCAL_EDIT=: COLUMN_MEAN, COLUMN_STATISTICS_VALUES=VAL-

UES(5,4,3,2,1,,),
 COLUMN_STD, COLUMN_SE }
}

As explained in the previous example, only the elements defined in the new
TABLE_SET, TABTOP_S, will replace or append to the elements already defined
for the old TABLE_SET, TABTOP.

This LOCAL_EDIT defines additional EDIT options that will calculate statistics
using the existing numbers in the tables. Corresponding row labels are generated
automatically.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -375

COLUMN_MEAN calculates a printer mean and must be specified before
COLUMN_STD.

COLUMN_STATISTICS_VALUES=VALUES(5,4,3,2,1,,) assigns numeric values
corresponding to the data categories for the row variable. These values are used to
compute the mean. Comma delimiters indicate categories that will be excluded
from any calculation. This has the same affect as the variable modifier
*RANGES=1-5, used to exclude categories from statistical calculations in a data
variable definition (see the example in “5.2 Axis Commands/Cross-Case
Operations”). In this example the last two commas exclude the Don't
Know/Refused to answer category in the row variable (ROW=: [1/6^5//1/10]).

COLUMN_STD COLUMN_SE calculates a printer standard deviation and
standard error using the values specified for COLUMN_STATISTICS_VALUES.

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-376 MENTOR

Road Runner Fast Food Sample Tables

Prepared on 12 AUG 1994

TABLE 001

Q1. How much do you agree with the following statement:

The fast food at Road Runners is worth what I pay for it.

 <-------AGE-------> <-----INCOME------>

 Under Over Under $15- Over

 Total 35 35-54 54 $15k $35k $35k

 ----- ----- ----- ---- ----- ----- ----

Total 500 141 140 143 74 148 215

 100% 28% 28% 29% 15% 30% 43%

(5) Completely agree 88 21 29 23 10 30 36

 100% 24% 33% 26% 11% 34% 41%

(4) Somewhat agree 92 26 27 27 14 30 35

 100% 28% 29% 29% 15% 33% 38%

(3) Neither agree nor disagree 86 23 26 24 13 22 45

 100% 27% 30% 28% 15% 26% 52%

(2) Somewhat disagree 73 13 23 21 13 21 33

 100% 18% 32% 29% 18% 29% 45%

(1) Completely disagree 86 29 17 26 8 27 37

 100% 34% 20% 30% 9% 31% 43%

Don't Know/Refused to answer 75 29 18 22 16 18 29

 100% 39% 24% 29% 21% 24% 39%

Mean 3.05 2.97 3.23 3.00 3.09 3.12 3.00

Standard deviation 1.42 1.47 1.37 1.43 1.32 1.47 1.40

Standard error 0.07 0.14 0.12 0.13 0.17 0.13 0.10

Tables prepared by Computers for Marketing Corp.

Page 1

NOTE: The last two banner points were omitted from this table due to page size
limitations.

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -377

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-378 MENTOR

. .
 .

. .I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

MENTOR v 8.1 -379

I N T E R M E D I A T E TA B L E S
5.6 Reprinting Tables

-380 MENTOR

Version 8.1 MENTOR -381

.

. .
A D V A N C E D T A B L E S 6

. .I N T R O D U C T I O N
his chapter explains how to produce tables other than straightforward
simple cross-tabulations. When producing more complex tables, the
biggest problem is usually understanding how the table is constructed

rather than using the proper syntax to construct the table. This chapter is designed
to help you understand both.

This chapter is broken into major sections by the type of table you are trying to
produce. Each section has a set of sequentially numbered tables starting from n01,
where n is the sub-section number. The beginning of each section contains a
description of when it is usually appropriate to use such a table construction. Each
section is then broken down further into a particular type of table design. In each
sub-section there is a description of the different ways to produce that table, and an
example of how to produce it.

This chapter assumes a basic understanding of simple table building and of CfMC
terminology. There are many references to things such as the EDIT statement and
joiners like WITH; if you do not know what they are you may have difficulty
following along. A review of Chapters 1 through 5 may be necessary.

6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

A Top Box table is one in which the highest rating for one of a series of brands or
attributes is compared against the highest ratings of the others. The Top Box
usually contains those respondents who have given the highest rating to that
particular brand, but sometimes also contains those who have given the second
and/or third highest rating as well. These tables may have a percentage base of
either the total sample, or of the number of respondents that were asked about each
brand if this might be different for each. To percentage each brand off the number
responding to that brand you will need to define the percentage base along with the
Top Box for each brand. In addition you will need to make sure that you use the

T

A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

-382 MENTOR

stub options [VERTICAL_PERCENT=*,SUPPRESS] on each base row so that it
does not print (SUPPRESS) and the next row is percentaged off of it
(VERTICAL_PERCENT=*).

You may also need to produce a Bottom Box table which is similar in design to the
Top Box except it contains those respondents who have given the lowest rating to
each brand.

6.1.1 Top Box Tables with Constant Percentage Base

We'll start with a Top Box table with a constant percentage base such as total or
some sub-base which is applied to the entire table. For purposes of the example
below, the respondent's gender is stored in column 5 while columns 7 through 11
hold the rating for five different brands (A-E), where the rating scale is from 1 to 4,
4 being the highest possible rating.

There are usually several ways to write any variable definition. In the examples
below the shortest and most computer efficient usage is included in the tabset,
while other perfectly reasonable definitions are also noted after the tabset. Note
that any of these definitions (and many others also) will produce the same table
and although we recommend the one inside the tabset, you can use any that is easy
for you to understand.

NOTE: The following set of commands define a standard front end for the all the
examples in this section, except where noted.

>PRINT_FILE TOPBX

~INPUT TOPBX

>CREATEDB TOPBX,DUPLICATE=WARN

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,

DROP_BASE,BEGIN_TABLE_NAME=T101

~DEFINE

. .
 .

. .A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

MENTOR v 8.1 -383

TABLE_SET= {BAN1:

EDIT=: COLUMN_WIDTH=8, STUB_WIDTH=20, -COLUMN_TNA }

STUB_PREFACE=:

TOTAL

[SUPPRESS] NO ANSWER }

BANNER=:

| GENDER

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5#1/2]

}

~EXECUTE

TABLE_SET= BAN1

These commands are specific to this example:

~DEFINE

TABLE_SET= {TAB101:

HEADER=: TOP BOX TABLE EXAMPLE}

TITLE=: TOP BOX SUMMARY TABLE FOR OVERALL RATING}

STUB=:

 BRAND A-TOP BOX

 BRAND B-TOP BOX

 BRAND C-TOP BOX

 BRAND D-TOP BOX

 BRAND E-TOP BOX }

ROW=: [07,...,11#4]

}

A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

-384 MENTOR

Here are some alternate ways to write the row variable:

ROW101A: [7#4] WITH [8#4] WITH [9#4] WITH [10^4]
WITH [11#4]

ROW101B: &

>REPEAT $A=07,...,11;STRIP="WITH &"

[$A#4] WITH &

>END_REPEAT

~EXECUTE

TABLE_SET= TAB101

. .
 .

. .A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

MENTOR v 8.1 -385

Here is the table Mentor prints:

TOP BOX TABLE EXAMPLE

TABLE 101

TOP BOX SUMMARY TABLE FOR OVERALL RATING

 GENDER

 <----------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 52 48

 100.0% 100.0% 100.0%

BRAND A-TOP BOX 21 9 12

 21.0% 17.3% 25.0%

BRAND B-TOP BOX 27 14 13

 27.0% 26.9% 27.1%

BRAND C-TOP BOX 30 15 15

 30.0% 28.8% 31.3%

BRAND D-TOP BOX 19 11 8

 19.0% 21.2% 16.7%

BRAND E-TOP BOX 25 13 12

 25.0% 25.0% 25.0%

A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

-386 MENTOR

6.1.2 Top Box Tables with a Changing Percentage Base

When producing a Top Box table you may want to percentage each row off a
different base. Suppose each rating scale was only asked of those who have used
that brand; this base value will probably be different for each brand. Further
suppose that the original rating scale tables were percentaged back to this base and
for purposes of this summary table you want to maintain those same percentages.
To do this, you will need to not only define each Top Box, but also its percentage
base.

The syntax to produce this table is very similar to producing the Top Box table
with constant percentage (See “6.1.1 Top Box Tables with Constant Percentage
Base”), so make sure you understand that before proceeding. One very important
difference is that you will need to create a new label set which controls the printing
and percentage base in the table. Each base row label will want to have the
[SUPPRESS] option to suppress its printing and the [VERTICAL_PERCENT=*]
option to cause the next row to be percentaged off of it.

The following example assumes the same scenario as the previous example. The
only valid response to one of the rating scale questions is 1,2,3,4 or 9. If you
compare the frequencies in Table 102 with Table 101 you will see that they are the
same, but the percentages are generally much higher in Table 102.

~DEFINE

TABLE_SET= {TAB102:

HEADER=: TOP BOX TABLE WITH DIFFERENT PERCENTAGE BASE
ON EACH ROW}

TITLE=: TOP BOX SUMMARY TABLE FOR OVERALL RATING}

TITLE_4=: BASE= RESPONDENTS WHO USED THE BRAND}

STUB=:

[VERTICAL_PERCENT=*,SUPPRESS] BRAND A BASE-WON'T PRINT

BRAND A TOP BOX

. .
 .

. .A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

MENTOR v 8.1 -387

[VERTICAL_PERCENT=*,SUPPRESS] BRAND B BASE-WON'T PRINT

BRAND B TOP BOX

[VERTICAL_PERCENT=*,SUPPRESS] BRAND C BASE-WON'T PRINT

BRAND C TOP BOX

[VERTICAL_PERCENT=*,SUPPRESS] BRAND D BASE-WON'T PRINT

BRAND D TOP BOX

[VERTICAL_PERCENT=*,SUPPRESS] BRAND E BASE-WON'T PRINT

BRAND E TOP BOX }

ROW=: [07,...,11#1-4,X/4]

}

Here is an alternate way to write the row variable:

ROW102A: [7#1-4,X/4] WITH [8#1-4,X/4] WITH [9#1-4,X/4]
WITH &

 [10#1-4,X/4] WITH [11#1-4,X/4]

~EXECUTE

TABLE_SET= TAB102

A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

-388 MENTOR

Here is the table that Mentor prints:

TOP BOX TABLE WITH DIFFERENT PERCENTAGE BASE ON EACH
ROW

TABLE 102

TOP BOX SUMMARY TABLE FOR OVERALL RATING

BASE= RESPONDENTS WHO USED THE BRAND

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 52 48

 100.0% 100.0% 100.0%

BRAND A TOP BOX 21 9 12

 22.3% 18.0% 27.3%

BRAND B TOP BOX 27 14 13

 40.3% 35.9% 46.4%

BRAND C TOP BOX 30 15 15

 34.5% 34.9% 34.1%

BRAND D TOP BOX 19 11 8

 43.2% 42.3% 44.4%

BRAND E TOP BOX 25 13 12

 28.4% 29.5% 27.3%

NOTE: When the percentage base is changing, you may want to suppress the
Total row, since it is not the percentage base for the rows under it and this

. .
 .

. .A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

MENTOR v 8.1 -389

might be confusing for anyone reading the table. To suppress the Total row
you can use a different STUB_PREFACE that looks like the one below.

 STUB_PREFACE=:

 [SUPPRESS] TOTAL

 [SUPPRESS] NO ANSWER }

If you wish to do significance testing on a top box table with a changing percentage
base, you need to create a $[base] row for every tox box in the table. See section
8.2.4 for an example of how to do this.

6.1.3 Ranking of Top Box Tables

Top box tables which are percentaged off a constant base, can be ranked by just
using the RANK option on a LOCAL_EDIT statement. It is much more difficult to
rank a Top Box with a changing percentage base. Since you most likely want to
rank this table off of the percentages, that percentage row must be created in the
table.

As with the Top Box table with a changing percentage base (See “6.1.2 Top Box
Tables with a Changing Percentage Base”), extra rows and stubs must be created in
order to produce the desired result. In this instance, three rows will be created for
each row printed in the table. The percentage needs to be created first, followed by
the percentage base, followed by the frequency.

To create the percentage you must realize that a percentage is the same as a mean
with a value of 100 assigned to those who are in the topbox and a value of 0
assigned to those who are in the base, but not in the topbox. This first row is set to
rank level 1 while the 2 subsequent rows are set to rank level 2 so that however the
percentage row is ranked the 2 other rows will remain below it. See “6.7.2 Ranking
With Nets And Sub-Nets” for more information about setting rank levels.

A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

-390 MENTOR

~DEFINE

TABLE_SET= {TAB103:

LOCAL_EDIT=: RANK_LEVEL=1, STUB_RANK_INDENT=0, RANK_COLUMN_BASE=1
}

HEAD=: RANKED TOP BOX TABLE WITH DIFFERENT PERCENTAGE BASE ON EACH
ROW}

TITLE=: TOP BOX SUMMARY TABLE FOR OVERALL RATING}

TITLE_4=: BASE= RESPONDENTS WHO USED THE BRAND}

STUB=:

[SUPPRESS,RANK=1] BRAND A TOP BOX PERCENTAGE (WON'T PRINT)

[VERTICAL_PERCENT=*,SUPPRESS,RANK=2] BRAND A BASE (WON'T PRINT)

[RANK=2] BRAND A TOP BOX

[SUPPRESS,RANK=1] BRAND B TOP BOX PERCENTAGE (WON'T PRINT)

[VERTICAL_PERCENT=*,SUPPRESS,RANK=2] BRAND B BASE (WON'T PRINT)

[RANK=2] BRAND B TOP BOX

[SUPPRESS,RANK=1] BRAND C TOP BOX PERCENTAGE (WON'T PRINT)

[VERTICAL_PERCENT=*,SUPPRESS,RANK=2] BRAND C BASE (WON'T PRINT)

[RANK=2] BRAND C TOP BOX

[SUPPRESS,RANK=1] BRAND D TOP BOX PERCENTAGE (WON'T PRINT)

[VERTICAL_PERCENT=*,SUPPRESS,RANK=2] BRAND D BASE (WON'T PRINT)

[RANK=2] BRAND D TOP BOX

[SUPPRESS,RANK=1] BRAND E TOP BOX PERCENTAGE (WON'T PRINT)

[VERTICAL_PERCENT=*,SUPPRESS,RANK=2] BRAND E BASE (WON'T PRINT)

[RANK=2] BRAND E TOP BOX

}
ROW=: &
>REPEAT $A=07,...,11; STRIP="&"
$[MEAN] SELECT_VALUE([$A#4/1-3,9],VALUES(100,0)) $[] [$A#1-4,X/4] &
>END_REPEAT
}

~EXECUTE

TABLE_SET= TAB103

. .
 .

. .A D V A N C E D TA B L E S
6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES

MENTOR v 8.1 -391

Here is the table that Mentor prints:
RANKED TOP BOX TABLE WITH DIFFERENT PERCENTAGE BASE ON EACH
ROW

TABLE 103

TOP BOX SUMMARY TABLE FOR OVERALL RATING

BASE= RESPONDENTS WHO USED THE BRAND

 GENDER

 <----------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 52 48

 100.0% 100.0% 100.0%

BRAND D TOP BOX 19 11 8

 43.2% 42.3% 44.4%

BRAND B TOP BOX 27 14 13

 40.3% 35.9% 46.4%

BRAND C TOP BOX 30 15 15

 34.5% 34.9% 34.1%

BRAND E TOP BOX 25 13 12

 28.4% 29.5% 27.3%

BRAND A TOP BOX 21 9 12

 22.3% 18.0% 27.3%

Notice in the above table, that BRAND D prints highest on the table because it has
the highest percentage, even though it has the lowest frequency. The only
difference between Table 103 and Table 102 is the order in which the stubs are
printed.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-392 MENTOR

6.2 SUMMARY STATISTICS (MEANS)

This section shows how to produce summary statistics such as the mean, the
standard deviation, the standard error, and the median on a table. It shows how
you can efficiently and effectively produce these statistics no matter how the data
was originally coded. In this section whenever the creation of a mean is discussed,
you can replace the mean with any similar summary statistic (except where noted).
For a complete list of all the summary statistics that can be produced see Appendix
B: TILDE COMMANDS, ~DEFINE AXIS=.

If you wish to do significance testing on a top box table with a changing
percentage base, you need to create a $[base] row for every tox box in the table.
See section 8.2.4 for an example of how to do this.

Means are usually produced on one of the following types of questions:

• Rating Scales

• A scale such as age where a number has been coded into a range and you want
to use the midpoint of the range in order to calculate the mean.

• An actual value is stored in the data.

There are two different ways to produce means. You can either produce the mean
directly on the variable definition or you can use the EDIT statement options. The
variable definition method will allow you to produce an appropriate mean in all
circumstances while the EDIT statement options are only appropriate on means of
type 1 or 2 above if you are doing neither weighting nor dependent significance
testing. See “6.2.5 Means And Medians Using The EDIT Options” for an
explanation on how to produce summary statistics using the EDIT options. That
section also discusses the differences in the two methods and the pros and cons of
each. See “5.3 Changing Table Specifications” for a description of the syntax for
creating a summary statistic as part of the variable definition.

It is very important to make sure that you create your own summary columns
(total, no answer, etc.) when you are producing summary statistics. The values that

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -393

will be in the system-generated columns will reflect the number of respondents who
were used in that statistic and not the true value of the statistic.

The number of decimal places that the statistic will print may be changed by using
the STATISTICS_DECIMALS=# option on the EDIT, STUB, or COLUMN_INFO
statements. The default decimal significance is 1 and valid settings are 0-7.

NOTE: The program prints a question mark (?) when the statistic is missing; i.e., it
cannot be calculated because there is no respondent in that cell who has a
valid number in the calculation. See Table 263 in “6.2.8 Summary
Statistics with Arithmetic” for an example.

6.2.1 Means on Rating Scales Using the Variable Def ini t ion

Typically, creating a mean on a rating scale will follow one of these scenarios:

• No recode needed (values for mean = punch and DK coded as X or Y punch)

• Exclude values (values for mean = punch and DK coded as a number)

• Reverse the scale (values are in inverted order and DK coded as X or Y punch)

• Reverse the scale and exclude values (values are inverted and DK coded as a
number)

• Scale is 1 to 10 with 10 coded as a 0, or scale is 0 to 10 with X or Y coded as 10.

WITH NO RECODING NEEDED

If the value of the rating has been coded with the corresponding punch and the
Don't Know has been coded as a non-numeric code (X or Y punch), then there is no
need to do any recoding on the mean. When no recoding is required you only need
to define the row variable and specify the data location after the keyword
$[MEAN].

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-394 MENTOR

NOTE: In the stub you will need to include a label for the mean and you will want
to make sure you mark it as a statistics row, so that it will be printed with
the appropriate number of decimals and without any percentage.

In the example below, the gender question is stored in column 5 while column 7 is
a 4 point rating scale with 4 equal to Excellent and Don't Know coded as an X
punch. STATISTICS_DECIMALS=2 is specified on the EDIT statement so that
the statistics will print with two decimal places of significance.

NOTE: The following set of commands define a standard front end for the next
set of examples.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -395

>PRINT_FILE MEAN

~INPUT MEAN

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,DROP_BASE,

BEGIN_TABLE_NAME=T201

~DEFINE

TABLE_SET= {BAN1:

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,STATISTICS_DEC
IMALS=2 }

STUB_PREFACE=:

TOTAL

[SUPPRESS] NO ANSWER }

BANNER=:

| GENDER

| <----------------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN1

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-396 MENTOR

These commands are exclusive to this example.

~DEFINE

TABLE_SET= {TAB201:

HEADER=: MEAN AND OTHER SUMMARY STATISTICS ON A RATING
SCALE WITH NO RECODING}

TITLE=: OVERALL RATING OF PRODUCT A}

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [STATISTICS_ROW] MEAN

 [STATISTICS_ROW] STD DEV

 [STATISTICS_ROW] STD ERROR

 [STATISTICS_ROW, STATISTICS_DECIMALS=0] MEDIAN }

ROW=: [7^4//1/X] $[MEAN STD SE MEDIAN] [7]

}

~EXECUTE

TABLE_SET= TAB201

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -397

Here is the table Mentor prints:

MEAN AND OTHER SUMMARY STATISTICS ON A RATING SCALE WITH
NO RECODING

TABLE 201

OVERALL RATING OF PRODUCT A

 GENDER

 <------------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

EXCELLENT (4) 15 11 4

 15.0% 19.0% 9.5%

GOOD (3) 15 10 5

 15.0% 17.2% 11.9%

FAIR (2) 23 12 11

 23.0% 20.7% 26.2%

POOR (1) 24 15 9

 24.0% 25.9% 21.4%

DON'T KNOW 23 10 13

 23.0% 17.2% 31.0%

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-398 MENTOR

MEAN 2.27 2.35 2.14

STD DEV 1.11 1.16 1.03

STD ERROR 0.13 0.17 0.19

MEDIAN 2 2 2

WITH A NUMERIC DON'T KNOW EXCLUDED

If the value of the rating has been coded with the corresponding punch but the
Don't Know has been coded as a numeric code (like 5), then if you do not put a
qualifier on the mean, the program will use that value (5) in calculating the mean
rather than excluding respondents who said Don't Know. In order to ensure proper
calculation of the mean you need to use either the *RANGES= modifier or the
WHEN joiner to only include appropriate items in the calculation. The
*RANGES= modifier allows you to specify which numbers will be included in the
statistic calculation. You can use either a dash to signify a range or a comma to
separate individual items. See “5.1.2 Vector Joiners” for an explanation of the
WHEN joiner.

The assumptions in the example below are the same as the previous example,
except that the rating scale is now stored in column 8 and the Don't Know was
coded as a 5 punch.

~DEFINE

TABLE_SET= {TAB202:

HEADER=: MEAN EXCLUDING A DON'T KNOW CODED AS A NUMBER}

TITLE=: OVERALL RATING OF PRODUCT B}

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -399

STUB=:

EXCELLENT (4)

GOOD (3)

FAIR (2)

POOR (1)

DON'T KNOW

[STATISTICS_ROW] MEAN }

ROW=: [8^4//1/5] $[MEAN] [8*RANGES=1-4]

}

Here is an alternate way to write the row variable:

ROW202A: [8^4//1/5] $[MEAN] [8] WHEN [8^1-4]

~EXECUTE

TABLE_SET= TAB202

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-400 MENTOR

Here is the table Mentor prints:

MEAN EXCLUDING A DON'T KNOW CODED AS A NUMBER

TABLE 202

OVERALL RATING OF PRODUCT B

 GENDER

 <------------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

EXCELLENT (4) 25 13 12

 25.0% 22.4% 28.6%

GOOD (3) 21 10 11

 21.0% 17.2% 26.2%

FAIR (2) 24 17 7

 24.0% 29.3% 16.7%

POOR (1) 18 12 6

 18.0% 20.7% 14.3%

DON'T KNOW 12 6 6

 12.0% 10.3% 14.3%

MEAN 2.60 2.46 2.81

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -401

WITH THE SCALE REVERSED

Sometimes rating scales are coded such that a 1 signifies the highest possible rating
and the highest number in the scale signifies the lowest rating. If you produce a
mean on this variable without doing any recoding, then the lower the value of the
mean, the higher the overall rating. In order to make a higher mean reflect a higher
rating, you need to reverse the scale so that a 1 punch now has the highest value and
the highest punch now has a value of 1. There are basically two different
approaches, the subtraction method and the function method.

Using the subtraction method, you reverse the scale by taking one more than the
highest value in the scale and subtracting the variable or column location from it.
Suppose you have a 7 point scale coded in column 20, but you want the 1 punch to
have a value of 7 on down to the 7 punch having a value of 1. So you would define
the mean as $[MEAN] 8 - [20]. This is how Mentor reverses a scale:

If there is a 1 in column 20, it becomes (8 - 1) = 7

2 (8 - 2) = 6

3 (8 - 3) = 5

4 (8 - 4) = 4

5 (8 - 5) = 3

6 (8 - 6) = 2

7 (8 - 7) = 1

See below for an example of the subtraction method inside of a table set.

A second way to reverse the scale is by using a function to reassign the values you
want to use for purposes of calculating the mean. You can use either the
SUBSCRIPT or the SELECT_VALUE function. The SUBSCRIPT function assigns
the values as the subscript position of each category. This means that the first
category in the variable is assigned a value of 1, the second a value or 2, and so on.
If the variable is multiple then no value is assigned. The SELECT_VALUE
function assigns the values based on the position of the category in the variable and

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-402 MENTOR

by what values are written in the VALUES portion of the function. See 8.3.2
FUNCTIONS for more information on these functions.

In the example below, the 4 point rating scale is stored in column 10 with Excellent
coded as a 1, Poor coded as a 4, and Don't Know coded as an X punch.

~DEFINE

TABLE_SET= {TAB203:

HEADER=: MEAN REVERSING THE SCALE AND DON'T KNOW CODED
AS AN X OR Y}

TITLE=: OVERALL RATING OF PRODUCT C}

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [STATISTICS_ROW] MEAN }

ROW=: [10^1//4/X] $[MEAN] 5 - [10]

}

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -403

Here are some alternate ways to write the row variable:

ROW203A: [10^1//4/X] $[MEAN] SUBSCRIPT([10^4//1])

ROW203B: [10^1//4/X] $[MEAN]
SELECT_VALUE([10^4//1],VALUES(1,2,3,4))

~EXECUTE

TABLE_SET= TAB203

The printed table will look fundamentally the same as Table 202 above.

WITH THE SCALE REVERSED AND DK/NA CODED AS NUMERIC

If the rating scale is coded in reverse as in table 203 and the Don't Know is a
numeric code as in Table 202, then you will need to use one of the following
methods to properly calculate the mean. Either you need to combine the subtraction
method of Table 203 with the exclusion method of Table 202 or you can just use
either the SUBSCRIPT or SELECT_VALUE functions as in Table 203.

In the example below the 4 point rating scale is coded in column 9 with a 1 punch
signifying Excellent, a 4 punch signifying Poor and a 5 punch standing for Don't
Know.

~DEFINE

TABLE_SET= {TAB204:

HEADER=: MEAN REVERSING THE SCALE AND EXCLUDING DON'T
KNOW}

TITLE=: OVERALL RATING OF PRODUCT D}

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-404 MENTOR

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [STATISTICS_ROW] MEAN }

ROW=: [11^1//5] $[MEAN] SUBSCRIPT([11^4//1])

}

Here are some alternate ways to write the row variable:

ROW204A: [11^1//5] $[MEAN] 5 - [11*RANGES=1-4]

ROW204B: [11^1//5] $[MEAN] (5 - [11]) WHEN [11^1-4]

ROW204C: [11^1//5] $[MEAN]
SELECT_VALUE([11^1//4],VALUES(4,3,2,1))

~EXECUTE

TABLE_SET= TAB204

The printed table will look fundamentally the same as Table 202 above.

WITH 10 CODED AS A ZERO, AN X, OR Y

If you have a 10 point rating scale that has been coded in one column to save
space, the 0 is probably used to stand for a rating of 10. If you do no recoding on
this variable, the mean will be low as all those who rated the item a 10 will be
assigned the value of 0 for purposes of calculating the mean. In order to properly
calculate this mean you will want to use the SUBSCRIPT function.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -405

In the example below a 10 point rating scale is coded in column 12, with Don't
Know coded as a Y punch. If the scale is reversed, all you need to do is reverse the
order of the categories within the SUBSCRIPT function.

~DEFINE

TABLE_SET= {TAB205:

HEADER=: MEAN USING THE SUBSCRIPT FUNCTION TO RECODE 0
AS 10}

TITLE=: 10 POINT OVERALL RATING OF PRODUCT E}

STUB=:

>REPEAT
$A=ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN,"DK
/NA"

 $A

>END_REPEAT

 [STATISTICS_ROW] MEAN }

ROW=: [12^1//0/Y] $[MEAN] SUBSCRIPT([12^1//0])

}

Here is an alternate way to write the row variable:

ROW205A: [12^1//0/Y] $[MEAN]
SELECT_VALUE([12^1//0],VALUES(1,2,...,10))

~EXECUTE

TABLE_SET= TAB205

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-406 MENTOR

Here is the table Mentor prints:

MEAN USING THE SUBSCRIPT FUNCTION TO RECODE 0 AS 10

TABLE 205

10 POINT OVERALL RATING OF PRODUCT E

 GENDER

 <------------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

ONE 9 4 5

 9.0% 6.9% 11.9%

TWO 13 8 5

 13.0% 13.8% 11.9%

THREE 5 4 1

 5.0% 6.9% 2.4%

FOUR 10 6 4

 10.0% 10.3% 9.5%

FIVE 9 4 5

 9.0% 6.9% 11.9%

SIX 9 4 5

 9.0% 6.9% 11.9%

SEVEN 7 2 5

 7.0% 3.4% 11.9%

(Table continued on next page)

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -407

EIGHT 8 6 2

 8.0% 10.3% 4.8%

NINE 10 5 5

 10.0% 8.6% 11.9%

TEN 11 9 2

 11.0% 15.5% 4.8%

DK/NA 9 6 3

 9.0% 10.3% 7.1%

MEAN 5.52 5.71 5.26

One other possible scenario very similar to this, is if the scale is from 0 to 10 with
the 0 (or 10) punch standing for 0, and either the X or Y punch standing for 10. This
row definition would look the same as above, except that you would probably
always want to use the SELECT_VALUE function. In the example below, assume
that the 0 stands for 0, the X for 10, and the Y punch for Don't Know. Only the row
variable definition is shown.

 ROW205X: [12^0/1//9/X/Y] $[MEAN] &

 SELECT_VALUE([12^0/1//9/X],VALUES(0,1,...,10))

6.2.2 Means For Range Type Variables

Sometimes you need to calculate a mean on data that has been coded as a range
type variable with a code standing for a range of numbers. For example, you might
have the age question coded so that a 1 punch means 18 to 30 and a 2 punch means
31 to 45 and so on. If you were to just do a straight mean on this table your result
would be some number like 3.5, so to ensure you get a mean reflecting the real
value you need to use the SELECT_VALUE function to assign the midpoint of
each range to the category. To determine the midpoint of the range, add the starting

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-408 MENTOR

point and the ending point of the range and divide by 2 (i.e., (18+30)/2 = 24).
Open-ended categories (Under 18 or Over 60) will need someone to decide what
the midpoint value should be. It is usually a good idea to include the value that was
used on each stub to reduce possible confusion about how the mean was derived.

NOTE: If you try to calculate a regular median with this method, it will just be the
midpoint value of where the middle respondent exists. Instead, you
would want to use an interpolated median, which produces a median
value that is the mid-point between the true median and next value
beyond it. TABLE 206 below includes both the meidan and interpolated
median for comparision.

INTERPOLATED MEDIANS

If you try to calculate a median with this method, it will just be the midpoint value
of where the middle respondent exists. You might want to use
INTERPOLATED_MEDIAN instead.

Mentor provides three different kinds of medians:

$[MEDIAN]
$[INTERPOLATED_MEDIAN] and
~EDIT COLUMN_MEDIAN.

$[MEDIAN] is best for numeric data. $[INTERPOLATED_MEDIAN] and
COLUMN_MEDIAN are two different types of interpolated medians, and they are
better for rating scales and range questions. It must be noted here that interpolated
medians are considered a "junk statistic" by many marketing people.

A true median is always the value of an existing data element. To find this median,
values must be sorted from low to high. If there are an even number of elements,
the median will be the value in the N/2 position, where N is the number of data
elements. If there are an odd number of elements, then the median will be the item
in the (N+1)/2 position. The unfortunate result of this is that most rating scales and

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -409

range questions will always have the midpoint of the middle category as their
median, because if the median falls anywhere in that category, the value is that is
assigned is the midpoint. Interpolated medians breaks the range of data into pieces
and can make the median higher or lower, depending on the number of people in
each category. If there is an odd number of values, then MEDIAN and
INTERPOLATED_MEDIAN will produce the same result. If there is an even
number of values, INTERPOLATED_MEDIAN will find and average the two
middle values. For example, if the values are 1, 3, 5, and 7, the
INTERPOLATED_MEDIAN is 4.

$INTERPOLATED_MEDIAN will work on unweighted data and data weighted
with integer weights. Due to rounding issues, INTERPOLATED_MEDIAN is not
recommended with fractional weights.

In the following example, both MEDIAN and INTERPOLATED_MEDIAN are
included to show the difference between them. For details about ~EDIT
COLUMN_MEDIAN, see 6.2.5 MEANS AND COLUMN_MEDIANS USING THE
EDIT OPTIONS.

In the example below, the age question was coded as range variable in column 13
with a 1 punch signifying age 18 to 30, a 2 punch the 31 to 45 age group, a 3 punch
the 46 to 60 group, a 4 punch the over 60 group, and a 5 punch for Don't Know.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-410 MENTOR

~DEFINE

TABLE_SET= {TAB206:
HEADER=: MEAN AND MEDIAN USING THE SELECT FUNCTION

TO ASSIGN
MIDPOINT VALUES TO CATEGORIES}
TITLE: AGE OF RESPONDENT}
STUB=:
18 - 30 (24)
31 - 45 (38)
46 - 60 (53)
OVER 60 (61)
DON'T KNOW
[STATISTICS_ROW] MEAN
[STATISTICS_ROW, STATISTICS_DECIMALS=0] MEDIAN
[STATISTICS_ROW, STATISTICS_DECIMALS=0] INTERPO-

LATED MEDIAN }
ROW=: [13^1//5] $[MEAN,MEDIAN,INTERPOLATED_MEDIAN]

&
SELECT_VALUE([13^1//4], VALUES(24,38,53,61)) }

~EXECUTE
TABLE_SET= TAB206

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -411

Here is the table Mentor prints:
MEAN AND MEDIAN USING THE SELECT FUNCTION TO ASSIGN MIDPOINT
VALUES TO CATEGORIES

TABLE 206

AGE OF RESPONDENT

GENDER
 GENDER

 <------------>

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 200 57 66

 100.0% 100.0% 100.0%

18 - 30 (24) 37 12 13

 18.5% 21.1% 19.7%

31 - 45 (38) 35 8 13

 17.5% 14.0% 19.7%

46 - 60 (53) 39 13 10

 19.5% 22.8% 15.2%

OVER 60 (61) 36 7 13

 18.0% 12.3% 19.7%

DON'T KNOW 30 10 8

 15.0% 17.5% 12.1%

MEAN 44.09 42.70 43.45

MEDIAN 53 38 38

INTERPOLATED_MEDIAN 53 46 38

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-412 MENTOR

6.2.3 Means For Numeric Data

Doing a mean on a numeric type variable usually falls into one of these three basic
scenarios:

• The valid range of numbers is from j to k (where j and k are any real numbers)
and DK is coded as some non-numeric value (i.e., DK or XX or --).

• The valid range of numbers is from j to k (j and k as above) and DK is coded as
a number (i.e., 99 or 98 or -1).

• The valid range of numbers is from j to k (j and k as above) and some
non-numeric code is used for some outer value (i.e., -- for 100 or && for .5).

WITH NO RECODING NECESSARY

If no recoding is necessary for the mean, then you can produce the mean by just
referencing the data location or variable name in brackets. In the example below,
suppose that the number of times the respondent has used product A in the last
year is stored in columns 14 and 15, where 99 or more is coded as 99, and Don't
Know is coded as DK. Since all items you wish to include in the mean are numeric
and all you wish to exclude are non-numeric, no recoding is needed and you can
just specify the location of the mean in brackets after the $[MEAN] keyword.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -413

~DEFINE

TABLE_SET= {TAB207:

HEADER=: MEAN AND MEDIAN ON NUMERIC TYPE VARIABLE,
DON'T KNOW CODED AS DK}

TITLE=: NUMBER OF TIMES USED PRODUCT A IN LAST YEAR}

STUB=:

 0 - 10

 11 - 20

 21 - 50

 OVER 50

 DON'T KNOW

 [STATISTICS_ROW] MEAN

 [STATISTICS_ROW, STATISTICS_DECIMALS=0] MEDIAN }

ROW=: [14.2#0-10/11-20/21-50/51-99/"DK"] $[MEAN MEDIAN]
[14.2]

}

~EXECUTE

TABLE_SET= TAB207

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-414 MENTOR

Here is the table Mentor prints:
MEAN AND MEDIAN ON NUMERIC TYPE VARIABLE, DON'T KNOW CODED AS
DK

TABLE 207

NUMBER OF TIMES USED PRODUCT A IN LAST YEAR

 GENDER

 <------------>

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

0 - 10 11 6 5

 11.0% 10.3% 11.9%

11 - 20 7 3 4

 7.0% 5.2% 9.5%

21 - 50 28 16 12

 28.0% 27.6% 28.6%

OVER 50 45 28 17

 45.0% 48.3% 40.5%

DON'T KNOW 9 5 4

 9.0% 8.6% 9.5%

MEAN 50.63 52.43 48.11

MEDIAN 50 56 45

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -415

WITH DON'T KNOW CODED AS A NUMBER

If the Don't Know response has been coded as a numeric value like 99, then if you
do not do any recoding the mean will be much too high as all the Don't Know
responses will be assigned a value of 99. You need to exclude these responses by
either using the *RANGES modifier or the WHEN joiner. See “6.2.1 Means on
Rating Scales Using the Variable Definition” for a more detailed explanation of
these.

In the example below the number of times the product was used in the past year has
been coded as a two digit number in columns 16 and 17 while the Don't Know
response was coded as 99.

~DEFINE

TABLE_SET= {TAB208:

HEADER=: MEAN AND MEDIAN ON NUMERIC TYPE VARIABLE WITH
DON'T KNOW CODED AS 99}

TITLE=: NUMBER OF TIMES USED PRODUCT B IN LAST YEAR}

STUB=:

 0 - 10

 11 - 20

 21 - 50

 OVER 50

 DON'T KNOW

 [STATISTICS_ROW] MEAN

 [STATISTICS_ROW, STATISTICS_DECIMALS=0] MEDIAN }

ROW=: [16.2#0-10/11-20/21-50/51-98/99] $[MEAN,MEDIAN]
[16.2*RANGES=0-98]

}

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-416 MENTOR

Here is an alternate way to write the row variable:

ROW208A: [16.2#0-10/11-20/21-50/51-98/99]
$[MEAN,MEDIAN] [16.2] WHEN &

 [16.2#0-98]

~EXECUTE

TABLE_SET= TAB208

The printed table will look fundamentally the same as Table 207 above.

WITH A NUMERIC VALUE CODED AS A NON-NUMERIC

If the data has been coded so that a non-numeric code like XX has been used to
code a numeric value like 100, then you will need to use either the OTHERWISE
joiner or the SUM function in combination with the SELECT_VALUE function in
order to properly recode the data. The SELECT_VALUE function is used to assign
the values to the non-numeric codes and the OTHERWISE joiner or the SUM
function is used to combine these values with the good numeric values that exist in
the data. See 5.1.2 VECTOR JOINERS for more information on the OTHERWISE
joiner and 8.3.2 FUNCTIONS for details on the SUM function.

In the example below the data was coded in columns 18 and 19. 100 or more was
coded as "--" and Don't Know was coded as DK. The [18.2] after the [$MEAN]
variable will assign the numeric value to all valid numeric codes, the
SELECT_VALUE function will assign a value of 100 to the "--" code, and the
OTHERWISE joiner will cause the program to combine the two values using the
SELECT_VALUE function only if there is no valid numeric.

NOTE: The X punch is referenced as a "-" when you are inside a # type variable.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -417

~DEFINE

TABLE_SET= {TAB209:

HEADER=: MEAN ON A NUMERIC TYPE VARIABLE WITH 100 CODED
AS -- (XX in punch mode)}

TITLE=: NUMBER OF TIMES USED PRODUCT C IN LAST YEAR}

STUB=:

 0 - 10

 11 - 20

 21 - 50

 51 - 99

 100

 DON'T KNOW

 [STATISTICS_ROW] MEAN }

ROW=: [18.2#0-10/11-20/21-50/51-99/"--"/DK] $[MEAN] &

 [18.2] OTHERWISE
SELECT_VALUE([18.2#"--"],VALUES(100))

}

Here is an alternate way to write the row variable:

 ROW209A: [18.2#0-10/11-20/21-50/51-99/"--"/DK]
$[MEAN] &

SUM([18.2],SELECT_VALUE([18.2#"--"],VALUES(100)))

~EXECUTE

TABLE_SET= TAB209

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-418 MENTOR

Here is the table Mentor prints:

MEAN ON A NUMERIC TYPE VARIABLE WITH 100 CODED AS -- (XX in
punch mode)

TABLE 209

NUMBER OF TIMES USED PRODUCT C IN LAST YEAR

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

0 - 10 7 4 3

 7.0% 6.9% 7.1%

11 - 20 7 4 3

 7.0% 6.9% 7.1%

21 - 50 24 14 10

 24.0% 24.1% 23.8%

51 - 99 44 25 19

 44.0% 43.1% 45.2%

100 OR MORE 10 8 2

 10.0% 13.8% 4.8%

DON'T KNOW 8 3 5

 8.0% 5.2% 11.9%

MEAN 56.95 57.96 55.43

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -419

6.2.4 Summary Statist ics in the Column Variable

All the summary statistics that can be produced for a row variable can also be
produced for a column variable. The syntax for the definition of the column
variable is exactly the same as for the row definition and any recoding would be
specified the same way.

The one major difference of producing a mean in the column is that you will need
to use the COLUMN_INFO option on the EDIT statement to make sure the data is
formatted correctly. The COLUMN_INFO option allows you to set different print
options for each banner point of the table just as the STUB options allow you to
control how each row prints. See “5.3 Changing Table Specifications” for a
description of the syntax for the COLUMN_INFO statement.

You will also need to make sure that you create your own summary rows (total, no
answer, etc.) in the variable and suppress the system-generated ones, because the
system-generated summary rows will print the number of valid respondents in the
statistic and not the value of the statistic.In the example below suppose you want to
produce a table similar to Table 207 in section 6.2.3, but wanted the number of
times used the product in the column and the gender of the respondent as the row
variable. Notice that there is a new STUB_PREFACE used to suppress the
system-generated total and that both the STUB and the ROW have a user-generated
total. Also note how the COLUMN_INFO option causes the 7th banner point to
print as a statistic with 2 decimals and the 8th one as a statistic with 0 decimals.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-420 MENTOR

~DEFINE

TABLE_SET= {TAB210:

EDIT=:
COLUMN_WIDTH=6,STUB_WIDTH=10,-COLUMN_TNA,STATISTICS_DECIMALS=
2,

 PERCENT_DECIMALS=0,VERTICAL_PERCENT=1,

 COLUMN_INFO=(COLUMN=7,WIDTH=8,STATISTICS_COLUMN

WIDTH=7,STATISTICS_COLUMN,STATISTICS_DECIMALS=0)}

STUB_PREFACE=:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

BANNER=:

| NUMBER OF TIMES USED PRODUCT A IN PAST YEAR

| <===>

| TOTAL 0-10 11-20 21-50 51-99 DK MEAN MEDIAN

| ----- ---- ----- ----- ----- -- ---- ------}

COLUMN=: TOTAL WITH [14.2#0-10/11-20/21-50/51-99/"DK"] $[MEAN
MEDIAN] [14.2]

HEADER=: SUMMARY STATISTICS IN THE BANNER}

TITLE=: GENDER OF RESPONDENT}

STUB=:

 TOTAL

 MALE

 FEMALE }

ROW=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= TAB210

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -421

Here is the table Mentor prints:

SUMMARY STATISTICS IN THE BANNER

TABLE 210

GENDER OF RESPONDENT

NUMBER OF TIMES USED PRODUCT A IN PAST YEAR

 <===>

 TOTAL 0-10 11-20 21-50 51-99 DK MEAN MEDIAN

 ----- ---- ----- ----- ----- -- ---- ------

TOTAL 100 11 7 28 45 9 50.63 50

 100% 100% 100% 100% 100% 100%

MALE 58 6 3 16 28 5 52.43 56

 58% 55% 43% 57% 62% 56%

FEMALE 42 5 4 12 17 4 48.11 45

 42% 45% 57% 43% 38% 44%

SUMMARY STATISTICS IN BOTH THE COLUMN AND THE ROW

You can have both the column and row variables have summary statistics in them,
but the cross of the two statistics will always be missing and will print as a "?".

You can change the "?" to some other character by using the
EDIT=PUT_CHARACTERS option.

The example below crosses the number of times product A was used last year with
the number of times product B was used last year. This will use the column and
banner variables from the previous Table 210 and a similar definition to the row

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-422 MENTOR

and stub that were used for Table 208. The difference between this row and stub
and those for Table 208 is that these must have a user-generated Total row.

~DEFINE

TABLE_SET= {TAB211:

HEADER=: MEAN AND MEDIAN IN BOTH THE COLUMN AND THE ROW
VARIABLE}

TITLE=: NUMBER OF TIMES USED PRODUCT B IN LAST YEAR}

STUB=:

 TOTAL

 0 - 10

 11 - 20

 21 - 50

 OVER 50

 DON'T KNOW

 [STATISTICS_ROW] MEAN

 [STATISTICS_ROW, STATISTICS_DECIMALS=0] MEDIAN }

ROW=: TOTAL WITH [16.2#0-10/11-20/21-50/51-98/99] &

 $[MEAN,MEDIAN] [16.2*RANGES=0-98]

}

~EXECUTE

TABLE_SET= TAB211

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -423

Here is the table Mentor prints:
MEAN AND MEDIAN IN BOTH THE COLUMN AND THE ROW VARIABLE

TABLE 211

NUMBER OF TIMES USED PRODUCT B IN LAST YEAR

NUMBER OF TIMES USED PRODUCT A IN PAST YEAR
 <===>

TOTAL 0-10 11-20 21-50 51-99 DK MEAN MEDIAN

----- ---- ----- ----- ----- -- ---- ------

TOTAL 100 11 7 28 45 9 50.63 50

 100% 100% 100% 100% 100% 100%

0 - 10 13 1 2 5 5 - 44.54 37

 13% 9% 29% 18% 11%

11 - 20 12 1 1 2 5 3 47.33 54

 12% 9% 14% 7% 11% 33%

21 - 50 22 2 1 7 10 2 51.05 44

 22% 18% 14% 25% 22% 22%

OVER 50 40 4 3 12 19 2 52.87 48

 40% 36% 43% 43% 42% 22%

DON'T KNOW 13 3 - 2 6 2 52.00 68

 13% 27% 7% 13% 22%

MEAN 45.61 50.88 38.29 44.27 47.77 39.86 ? ?

MEDIAN 43 34 27 40 48 28 ? ?

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-424 MENTOR

6.2.5 Means And Medians Using The EDIT Options

The summary statistics mean, standard deviation, standard error, variance, and
median can be produced by using either the variable definition as explained in the
previous sections or by using the EDIT options,
COLUMN_STATISTICS_VALUES, COLUMN_MEAN, COLUMN_STD,
COLUMN_SE, COLUMN_VARIANCE, and COLUMN_MEDIAN to produce
column statistics (extra rows will be generated at the bottom of the table) or
ROW_STATISTICS_VALUES, ROW_MEAN, ROW_STD, ROW_SE,
ROW_VARIANCE, and ROW_MEDIAN to produce row statistics (extra columns
will be generated on the right hand side of the table).

The advantages to creating the summary statistics by using the EDIT options are:

• The processing time of the computer is significantly less

• There is no change in the syntax regardless of how the Don't Know was coded

• The labels are automatically generated

• The system-generated summary columns/rows will have the correct values.

Limitations of creating summary statistics this way are:

• Values are only correct if every distinct number in the range is a category that is
printed on the table (this will most likely not work for standard numeric type
variables).

• Standard deviations, standard errors, and variances cannot be properly
calculated on weighted data.

• Dependent statistical testing cannot be performed on the mean.

• Only one mean can be generated per table (No mean summaries).

The amount of processing time saved by doing summary statistics using the EDIT
options is dependent on the number of respondents in the data file and the number
of rows in the table. The greater the number of respondents causes the savings to
be greater. For example, if you had 1000 respondents who answered a 5 point
rating scale, then the EDIT options method would process the mean up to 100

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -425

times faster. This is not to imply that the entire table will process 100 times faster,
but it might be as much as twice as fast. This could be a very significant difference
if you increase the number of respondents to 100,000.

When you use the EDIT options to produce summary statistics you must tell the
program what value you want to assign to each row in the table. Use the
COLUMN_STATISTICS_VALUES=VALUES() option to set the values for a
mean, standard deviation, or standard error. The COLUMN_MEDIAN=VALUES()
option is used to set the values for a median. In either case separate each row value
with a comma; use a double comma to exclude a row from the calculation, and use
the ellipses to generate a string of values.

NOTE: If you have more rows than values, all the extra rows will be excluded
from any calculation.

MEANS ON A RATING SCALE

Since it makes no difference how the Don't Know was coded, this example can
replace all the rating scale examples in 6.2.1 MEANS ON RATING SCALES USING
THE VARIABLE DEFINITION. In this example the rating for brand A is stored in
column 7. The COLUMN_STATISTICS_VALUES option is set to
"VALUES(4,3,2,1)" which will cause the first row in the table to have a value of 4,
the second row 3, the third row 2, and the fourth row 1. The fifth and any additional
rows will not be included in the calculation.

NOTE: The statistical values for this table are exactly the same as Table 201.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-426 MENTOR

~DEFINE

TABLE_SET= {TAB212:

HEADER=:

MEAN AND OTHER SUMMARY STATISTICS ON A RATING SCALE
USING THE EDIT OPTIONS}

TITLE=: OVERALL RATING OF PRODUCT A}

LOCAL_EDIT=: COLUMN_STATISTICS_VALUES=VALUES(4,3,2,1),
COLUMN_MEAN,

 COLUMN_STD, COLUMN_SE }

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW }

ROW=: [7^4//1/X]

}

~EXECUTE

TABLE_SET= BAN1

TABLE_SET= TAB212

The printed table will look fundamentally the same as Table 201.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -427

MEANS ON A RATING SCALE WITH ROWS IN THE MIDDLE THAT
NEED TO BE EXCLUDED

If you have additional rows in the middle of the table that need to be excluded from
the calculation such as a top 2 box or a bottom 2 box, then you need to make sure
that the COLUMN_STATISTICS_VALUES command has the appropriate number
of commas.

This example is the same as Table 212 except it has both a top 2 box and bottom 2
box. Notice the COLUMN_STATISTICS_VALUES command now looks like
"VALUES(,4,3,,2,1)" which will cause the first and fourth rows in the table to be
excluded from the statistics.

~DEFINE

TABLE_SET= {TAB213:

HEADER=:

MEAN USING THE EDIT OPTION AND EXCLUDING INTERNAL ROWS FROM
THE CALCULATION }

TITLE=: OVERALL RATING OF PRODUCT A}

LOCAL_EDIT=: COLUMN_STATISTICS_VALUES=VALUES(,4,3,,2,1),
COLUMN_MEAN }

STUB=:

 |TOP BOX

 | EXCELLENT (4)

 | GOOD (3)

 |BOTTOM BOX

 | FAIR (2)

 | POOR (1)

 |DON'T KNOW }

ROW=: [7^4,3/4/3/2,1/2/1/X]

}

~EXECUTE

TABLE_SET= TAB213

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-428 MENTOR

Here is the table Mentor prints:
MEAN USING THE EDIT OPTION AND EXCLUDING INTERNAL ROWS FROM
THE CALCULATION

TABLE 213

OVERALL RATING OF PRODUCT A

 GENDER

 <------------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

TOP BOX 30 21 9

 30.0% 36.2% 21.4%

 EXCELLENT (4) 15 11 4

 15.0% 19.0% 9.5%

 GOOD (3) 15 10 5

 15.0% 17.2% 11.9%

BOTTOM BOX 47 27 20

 47.0% 46.6% 47.6%

 FAIR (2) 23 12 11

 23.0% 20.7% 26.2%

 POOR (1) 24 15 9

 24.0% 25.9% 21.4%

DON'T KNOW 23 10 13

 23.0% 17.2% 31.0%

Mean 2.27 2.35 2.14

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -429

MEANS ON A RANGE VARIABLE

If you have a range variable you can produce the summary statistics by assigning
the value of the midpoint of each range to each row. See “6.2.2 Means For Range
Type Variables” for more information on how and why to use the midpoint.

NOTE: This will produce the same mean values as Table 206 in section 6.2.2.

~DEFINE

TABLE_SET= {TAB214:

HEADER=: MEAN ON A RANGE TYPE VARIABLE USING THE EDIT
OPTION }

TITLE=: AGE OF RESPONDENT}

LOCAL_EDIT=:
COLUMN_STATISTICS_VALUES=VALUES(24,38,53,61),
COLUMN_MEAN }

STUB=:

 18 - 30 (24)

 31 - 45 (38)

 46 - 60 (53)

 OVER 60 (61)

 DON'T KNOW }

ROW=: [13^1//5]

}

~EXECUTE

TABLE_SET= TAB214

The printed table will look fundamentally the same as Table 206.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-430 MENTOR

CHANGING THE DEFAULT PRINT OPTIONS

If you do not like the default labelling or default printing format for the
system-generated summary statistics, you can use the PRINT_ROW option on the
stub label to change them. The PRINT_ROW option allows you to print any
system-generated row anywhere in the table, and when used in conjunction with
all the other STUB options it allows you to format these lines any way in which
you choose. The following example shows how to change the default labelling for
the mean, standard deviation, and standard error.

NOTE: The numbers for this table are exactly the same as Table 212.

~DEFINE

TABLE_SET= {TAB215:

HEADER=:

SUMMARY STATISTICS USING THE EDIT OPTION AND CHANGING THE WAY
IT PRINTS }

TITLE=: OVERALL RATING OF PRODUCT A}

LOCAL_EDIT=: COLUMN_STATISTICS_VALUES=VALUES(4,3,2,1),

 COLUMN_MEAN,COLUMN_STD,COLUMN_SE }

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [PRINT_ROW=MEAN] AVERAGE

 [PRINT_ROW=STD] STD DEV

 [PRINT_ROW=SE] STD ERR }

ROW=: [7^4//1/X]

}

~EXECUTE

TABLE_SET= TAB215

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -431

Here is the table Mentor prints:
SUMMARY STATISTICS USING THE EDIT OPTION AND CHANGING THE WAY
IT PRINTS

TABLE 215

OVERALL RATING OF PRODUCT A

 GENDER

 <------------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

EXCELLENT (4) 15 11 4

 15.0% 19.0% 9.5%

GOOD (3) 15 10 5

 15.0% 17.2% 11.9%

FAIR (2) 23 12 11

 23.0% 20.7% 26.2%

POOR (1) 24 15 9

 24.0% 25.9% 21.4%

DON'T KNOW 23 10 13

 23.0% 17.2% 31.0%

AVERAGE 2.27 2.35 2.14

STD DEV 1.11 1.16 1.03

STD ERR 0.13 0.17 0.19

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-432 MENTOR

To rename the system-generated statistics for an entire run you can build a stub
that formats the statistics the way you want and then use the STUB_SUFFIX table
element on any table that you are producing this type of statistic on. The example
below produces the exact same table as Table 215.

~DEFINE

STUB= STUBBOT1:

 [PRINT_ROW=MEAN] AVERAGE

 [PRINT_ROW=STD] STD DEV

 [PRINT_ROW=SE] STD ERR }

TABLE_SET= {TAB216:

HEADER=:

SUMMARY STATISTICS USING THE EDIT OPTION AND CHANGING
THE WAY IT PRINTS }

TITLE=: OVERALL RATING OF PRODUCT A}

STUB_SUFFIX= STUBBOT1

LOCAL_EDIT=: COLUMN_STATISTICS_VALUES=VALUES(4,3,2,1),
COLUMN_MEAN,

 COLUMN_STD, COLUMN_SE }

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW }

ROW=: [7^4//1/X]

}

~EXECUTE

TABLE_SET= TAB216

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -433

The printed table will look fundamentally the same as Table 215.

COLUMN MEDIANS

COLUMN_MEDIAN is type of interpolated median, which you can use instead of
MEDIAN or INTERPOLATED_MEDIAN. Because of the way it is calculated, a
true median on rating scales and range questions is usually the midpoint of the
middle category. The COLUMN_MEDIAN does not use the midpoint of the
median category. It breaks that category into ranges for each data element and,
therefore, can make the median higher or lower, depending on the number of
people in each category. (See “6.2.2 Means For Range Type Variables” for more
information on interpolated medians).

COLUMN_MEDIAN is best used with grouped data. The values for
COLUMN_MEDIANS are not the midpoints, but rather the starting point of each
range. Each category then goes from its starting point to the starting point of the
next category. You will need one extra value at the end to act as the ending point
for the last category. If you have a Don't Know category, exclude it with an extra
comma. Examples for setting up a COLUMN_MEDIAN on rating scales and
ranges follows. If you get a question mark instead of a median, see the section
entitled Lost Medians.

Column Medians on Rating Scales

When doing an column median on a rating scale with an ascending scale you will
want to assign the starting value for each range as .5 less than its actual value. This
will cause that value to have a range from .5 less than its value to .5 greater than its
value. In the example below, the first row in the table has a range from .5 to 1.5,
which is exactly what you want for the value of 1. You will also need to make sure
the Don't Know is excluded and that there is an upper boundary for the last
category. Notice that there is one more value in the COLUMN_MEDIAN option
than there are rows in the table. If you have a descending scale then you will want
to assign the starting value as .5 higher than its actual value. The example below
produces a column median on data column 7. Compare this with the median that

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-434 MENTOR

was printed in Table 003 in “6.2.1 Means on Rating Scales Using the Variable
Definition”.

~DEFINE

TABLE_SET= {TAB216:

HEADER=: COLUMN MEDIAN ON A RATING SCALE}
TITLE=: OVERALL RATING OF PRODUCT A}

LOCAL_EDIT=: COLUMN_MEDIAN=VALUES(4.5,3.5,2.5,1.5,,.5)
}

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW }

ROW=: [7^4//1/X]

}

~EXECUTE

TABLE_SET= TAB216

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -435

Here is the table Mentor prints:

COLUMN MEDIAN ON A RATING SCALE
TABLE 216

OVERALL RATING OF PRODUCT A

 GENDER

 <----------->

 TOTAL MALE FEMALE

 ----- ---- -------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

EXCELLENT (4) 15 11 4

 15.0% 19.0% 9.5%

GOOD (3) 15 10 5

 15.0% 17.2% 11.9%

FAIR (2) 23 12 11

 23.0% 20.7% 26.2%

POOR (1) 24 15 9

 24.0% 25.9% 21.4%

DON'T KNOW 23 10 13

 23.0% 17.2% 31.0%

Median 2.13 2.25 2.00

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-436 MENTOR

Column Medians On Range Type Variables

The approach for defining the values for a median on a range type variable is
similar to that for a rating scale, except the value you assign to each row is the
starting point for that row. Again, you will need to exclude any Don't Know
category and make sure you assign an upper boundary to the last category.

If you do not define an upper boundary for the last category and the median should
fall into that category, then a question mark (?) will print on the table denoting a
missing median. When assigning the upper boundary, someone will have to decide
which value to use. But, unlike the value assigned for a mean, the value of the
upper boundary will only matter if the median falls into the last category.
Otherwise, it will have no effect on the median at all.

~DEFINE

TABLE_SET= {TAB217:

 HEADER=: COLUMN MEDIAN ON A RANGE TYPE VARIABLE }
TITLE=: AGE OF RESPONDENT}

LOCAL_EDIT=: COLUMN_MEDIAN=VALUES(18,31,46,61,,75) }

STUB=:

 18 - 30

 31 - 45

 46 - 60

 OVER 60

 DON'T KNOW }

ROW=: [13^1//5]

}

~EXECUTE

TABLE_SET= TAB217

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -437

Here is the table Mentor prints:

 COLUMN MEDIAN ON A RANGE TYPE VARIABLE
TABLE 217

AGE OF RESPONDENT

 GENDER

 <----------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

18 - 30 30 16 14

 30.0% 27.6% 33.3%

31 - 45 17 7 10

 17.0% 12.1% 23.8%

46 - 60 13 11 2

 13.0% 19.0% 4.8%

OVER 60 20 10 10

 20.0% 17.2% 23.8%

DON'T KNOW 20 14 6

 20.0% 24.1% 14.3%

Median 39.82 43.86 37.00

Formula For Column Medians

This is the procedure the program uses to determine what the column median is.
You can use it if you want to verify that the median that is printing on the table is
the one you expect (i.e., you have properly assigned the values for the median
calculation).

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-438 MENTOR

The formula for the interpolated median is:

S + ((D * (E - S)) / F)

where:

S is the starting point of the range of the row where the median exists

E is the ending point of the range of the row where the median exists

D is the difference that is left when you subtract out all the categories before
the row where the median exists.

F is the frequency of the row where the median exists

S, E, and F can all be determined once you know in which row the median exists.
D can be determined in the process of finding out in which row the median exists.

To determine the row in which the median exists you must first sum up all the
frequencies on the valid responses and divide that by 2. You then want to subtract
the first valid frequency from the above total, and then subtract the second valid
number from that, and so on until that subtraction would result in a number less
than or equal to 0. The row that would cause this is the row where the median
resides. The value you had before subtracting out this row is the value D above. So
now you can calculate the median.

Here is an example to better explain this. Let us try to reproduce the median that
the program produced in the total column for Table 217.

The pertinent numbers from that table are:
VALUES FROM

AGE FREQUENCY COLUMN_MEDIAN

------- --------- -------------

18 - 30 30 18

31 - 45 17 31

46 - 60 13 46

OVER 60 20 60

75

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -439

The sum of the valid responses is 80 (30+17+13+20) and the midpoint is (80/2)=
40. Now you take 40 and subtract 30 from it and get 10. Now if you try to subtract
17 from 10 you will get -7 which is <=0 so the second row is the one where the
median exists and 10 was the difference prior to the subtraction. So S=31, E=46,
F=17, and D=10. Now substituting into the formula above:

S + (((D* (E - S)) / F)=

31 + (((10 * (46 - 31)) /17)=

31 + ((10* 15) /17)=

31 + (150 /17)=

31 + 8.82 = 39.82

NOTE: If you have an odd number of valid responses then N/2 will be a number
with .5 in it and so will D.

Lost Medians

Calculating a median is a more complicated statistic for the computer to do because
it must maintain the entire collection of values in an array. (Arrays are sometimes
described as "the number of buckets to hold values.") The default array size is 50,
which is sometimes too low for Mentor to calculate a median. If the array size is too
small and the median cannot be calculated, it is called a "lost median" and Mentor
will print a question mark (?) where the median should be.

The three main causes of lost medians are as follows:

• There are too many values for Mentor to calculate the median. (For example,
you are trying to get the median from a seven column field with hundreds of
different values.)

• Over half of the values exist in either the highest or lowest value. (For example,
over half of the values are zero.)

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-440 MENTOR

• The data is sorted by the variable you are trying to produce the median on. (This
is NOT recommended! Try sorting the file on another variable.)

In each of these situations, you can increase your chances of recovering the lost
medians by increase the array size when defining the median. (For example,
$[MEAN, MEDIAN(100)]). Setting the array size too high slows processing and
may cause memory problems. (Conversely, if you know you have less than 50
values, you may set the array below 50 to speed processing.)

An example of a table with a lost median follows. Notice the ? in the median row
in the columns where the median was lost. Also included is an example of the
warning that will appear in your list file when the median is lost. The same table is
run again with larger array size to allow Mentor to calculate the median.

TABLE_SET= {TAB219:

HEADER=: LOST MEDIANS }

TITLE=: NUMBER OF PRODUCTS USED }

STUB=:

 1 - 1000

 1001 - 10000

 10001 - 20000

 OVER 20000

 DON'T KNOW

 [STATISTICS_ROW] MEAN

 [STATISTICS_ROW,STATISTICS_DECIMALS=0] MEDIAN }

ROW=:
[22.5#1-1000/1001-10000/10001-20000/20001-99999/DK] &

 $[MEAN,MEDIAN] [22.5]

}

~EXECUTE

TABLE_SET= TAB219

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -441

Here is the table Mentor prints:
LOST MEDIANS

TABLE 219

NUMBER OF PRODUCTS USED

 GENDER

 <-------------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

1 - 1000 28 21 7

 28.0% 36.2% 16.7%

1001 - 10000 11 6 5

 11.0% 10.3% 11.9%

10001 - 20000 5 2 3

 5.0% 3.4% 7.1%

OVER 20000 51 26 25

 51.0% 44.8% 59.5%

DON'T KNOW 5 3 2

 5.0% 5.2% 4.8%

MEAN 32913.46 28634.76 38796.68

MEDIAN ? ? 32232

Notice the question marks (?) that print in the median row for both the total column
and the MALE column. This means that the program was unable to determine those
medians.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-442 MENTOR

Also the following message will print once in the list file for every median that is
lost:

(ERROR #5070) for T219 number buckets is 50, try $[median(501) or [ptile.xx(501}]
error Randomizing the input file so that values are not consecutive may help.
error ~set median_cells= can be used to change the number of
error buckets for the entire run. If this is a common problem then
error this set option may be added to your mentinit file. Be aware
error however that increasing the number of buckets will cause runs
error with medians or ptfiles to take a bit longer.

The number 50 above is the current number of buckets that were used. The number
501 is just a guess by the program (1 plus 10 times the current setting). You can
guarantee the median will be calculated if you set the number of buckets to the
number of different categories that have values in the range. You can run a
frequency count to determine this number.

And here is the example to recover the lost medians. Notice the medians are now
correct for the total column and the MALE column.

~DEFINE

TABLE_SET= {TAB220:

HEADER=:CHANGING THE DEFAULT NUMBER OF BUCKETS TO RECOVER
LOST MEDIANS }

ROW=: [22.5#1-1000/1001-10000/10001-20000/20001-99999/DK] &

$[MEAN,MEDIAN(200)] [22.5]

}

~EXECUTE

TABLE_SET= TAB220

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -443

Here is the printed table. Only the median row is printed for this table as the rest of
the table would appear the same as Table 219.

CHANGING THE DEFAULT NUMBER OF BUCKETS TO RECOVER LOST
MEDIANS

TABLE 220

NUMBER OF PRODUCTS USED

 GENDER

 <-------------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

MEDIAN 23849 12035 32232

PERCENTILES

Percentiles are values that exist in the data such that a certain percentage of data is
below that value. A median is equivalent to the 50th percentile, since 50 percent of
the values in the range are below it. Other percentiles that are often used are the
25th, 75th, and 90th percentiles. You define a percentile as follows:
$[PERCENTILE=.NN], where NN is the percentile (percentage) you are looking
for. Following is a sample table showing how to produce multiple percentiles on a
single table.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-444 MENTOR

~DEFINE

TABLE_SET= {TAB221:

HEADER=: PRODUCING PERCENTILES }

TITLE=: NUMBER OF PRODUCTS USED IN THE LAST MONTH }

STUB=:

 1 - 25

 26 - 50

 51 - 75

 OVER 75

 DON'T KNOW

[[STATISTICS_ROW,STATISTICS_DECIMALS=0] MINIMUM

[[STATISTICS_ROW,STATISTICS_DECIMALS=0] 25TH PERCENTILE

[STATISTICS_ROW,STATISTICS_DECIMALS=0] 50TH PERCENTILE/MEDIAN

[STATISTICS_ROW,STATISTICS_DECIMALS=0] 75TH PERCENTILE

[STATISTICS_ROW,STATISTICS_DECIMALS=0] MAXIMUM }

ROW=: [25.2#1-25/26-50/51-75/76-99/" "] &

$[MINIMUM,PERCENTILE=.25,MEDIAN,PERCENTILE=.75,gMAXIMUM]
[25.2]

}

~EXECUTE

TABLE_SET= TAB221

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -445

Here is the printed table.
PRODUCING PERCENTILES

TABLE 221

NUMBER OF PRODUCTS USED IN THE LAST MONTH

 GENDER

 <-------------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 58 42

 100.0% 100.0% 100.0%

1 - 25 18 11 7

 18.0% 19.0% 16.7%

26 - 50 31 16 15

 31.0% 27.6% 35.7%

51 - 75 30 20 10

 30.0% 34.5% 23.8%

OVER 75 16 8 8

 16.0% 13.8% 19.0%

DON'T KNOW 5 3 2

 5.0% 5.2% 4.8%

MINIMUM 1 1 3

25TH PERCENTILE 29 28 29

50TH PERCENTILE/

MEDIAN 49 51 45

75TH PERCENTILE 66 66 65

MAXIMUM 99 97 99

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-446 MENTOR

NOTE: Percentiles may be “lost” just as medians are and you can increase the
array size in the same way as medians to recover those that are “lost”.

6.2.6 Mean Summary Tables

Mean summary tables are usually produced when you have a series of rating scales
or a series of numeric type responses and you want to compare the means. Creating
a mean summary table with no recoding is quite simple and can be done either by
using the WITH joiner between each data location or by putting multiple data
locations in the same set of brackets. If recoding of the mean is required then you
will need to combine the recoding with either of the above approaches.

The first and most important thing to understand when doing a mean summary
table is that once you have specified $[MEAN] all the categories after that will
produce a mean until there is another $[] command (See “5.2 Axis
Commands/Cross-Case Operations” and Appendix B: TILDE COMMANDS,
~DEFINE AXIS= for more explanation of $[]).

RATING SCALES WITH NO RECODING

A typical example of when a mean summary table would be used is when you have
a series of rating scales. There are a number of different ways to construct the row
variable definition for this type of table, but the easiest is to tell the program you
are now creating means by using $[MEAN] and then following that with each
location you wish to do the mean on in a single set of brackets. You can also
simplify this if the locations are consecutive by using the ellipses.

In the following example the gender of the respondent has been stored in column 5
and the rating of 5 different brands has been stored in columns 6 through 10.

NOTE: The following set of commands define a standard front end for the next
set of examples.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -447

>PRINT_FILE MNSUM

~INPUT MNSUM

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,

DROP_BASE,BEGIN_TABLE_NAME=T251

~DEFINE

STUB= STUBTOP1:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {BAN1:

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,STATISTICS_DEC
IMALS=2 }

STUB_PREFACE= STUBTOP1

BANNER=:

| GENDER

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN1

These commands are specific to this example:

~DEFINE

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-448 MENTOR

TABLE_SET= {TAB251:

HEADER=: STRAIGHT MEAN SUMMARY TABLE WITH NO RECODING}

TITLE=: MEAN OVERALL RATING FOR BRANDS}

LOCAL_EDIT=: STUB_EXTRA=[STATISTICS_ROW]}

STUB=:

 BRAND A

 BRAND B

 BRAND C

 BRAND D

 BRAND E}

ROW=: $[MEAN] [06,...,10]

}

Here are some alternate ways to write the row variable:

ROW251A: $[MEAN] [6] $[MEAN] [7] $[MEAN] [8] $[MEAN] [9] $[MEAN] [10]
ROW251B: $[MEAN] [6] WITH [7] WITH [8] WITH [9] WITH [10]
ROW251C: $[MEAN] [6,7,8,9,10]

~EXECUTE

TABLE_SET= TAB251

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -449

Here is the table Mentor prints:
STRAIGHT MEAN SUMMARY TABLE WITH NO RECODING

TABLE 251

MEAN OVERALL RATING FOR BRANDS

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

BRAND A 2.87 2.67 3.11

BRAND B 2.93 3.07 2.76

BRAND C 3.04 3.00 3.09

BRAND D 2.94 3.09 2.76

BRAND E 2.73 2.93 2.49

RATING SCALES WITH RECODING NEEDED

If the rating scales were coded so that some recoding is needed for the mean to be
calculated you can combine the recoding process discussed in “6.2.1 Means on
Rating Scales Using the Variable Definition” with the processes discussed above.
There are also some shortcuts you can use here to keep from having to explicitly
define each mean. The four types of possible recoding as previously discussed are
(A) Exclude a numeric Don't Know code, (B) Reverse the scale, (C) Both A and B,
and (D) Recode the zero punch as 10.

RATING SCALES WITH THE DON'T KNOW CODED AS A NUMERIC

If the Don't Know response was coded as a numeric value you will need to exclude
it from the calculation. If the same code was used for all the rating scales then you

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-450 MENTOR

can just use the *RANGES modifier to exclude it from each mean. If different
codes were used for different scales then you will have to exclude them
individually (See ROW252A below). The example below assumes the same things
as the example for TAB251, except that now the Don't Know response was coded
as a 5 for each rating scale. The TITLE, STUB, and LOCAL_EDIT are omitted
here since they would be exactly the same as TAB251.

~DEFINE

TABLE_SET= {TAB252:

HEADER=: MEAN SUMMARY TABLE WITH DON'T KNOW CODED AS A
NUMERIC}

ROW=: $[MEAN] [6,...,10*RANGES=1-4]

}

Here are some alternate ways to write the row variable:

ROW252A: $[MEAN] [6*RANGES=1-4] WITH [7*RANGES=1-4]
WITH &

 [8*RANGES=1-4] WITH [9*RANGES=1-4] WITH
[10*RANGES=1-4]

ROW252B: $[MEAN] ([6] WHEN [6^1-4]) WITH ([7] WHEN
[7^1-4]) WITH &

 ([8] WHEN [8^1-4]) WITH ([9] WHEN [9^1-4]) WITH
([10] WHEN [10^1-4])

ROW252C: $[MEAN] [6,...,10] INTERSECT [6,...,10^1-4]

~EXECUTE

TABLE_SET= TAB252

The printed table will look fundamentally the same as Table 251 above.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -451

RATING SCALES WITH THE SCALE REVERSED

If the scale needs to be reversed you can use the subtraction method or the
SUBSCRIPT function method (see “6.2.1 Means on Rating Scales Using the
Variable Definition” for more information about these methods). If you use the
subtraction method you can use scaler/vector arithmetic to significantly reduce the
specification writing needed.

Scaler/vector arithmetic works in the following manner. A scaler is a single
numeric value (number, data location, etc.). If you join a scaler to a vector with any
of the arithmetic joiners (+,-,*,/), then that arithmetic operation will be performed
on every category in the vector. This allows you to multiply a series of fields by the
same number or to reverse the scale on a series of fields. The example below
assumes the same things as TAB251 except that the 5 point scale needs to be
reversed. The TITLE, STUB, and LOCAL_EDIT have been omitted since they are
exactly the same as TAB251.

~DEFINE

TABLE_SET= {TAB253:

HEADER=: MEAN SUMMARY TABLE WITH THE SCALE REVERSED}

ROW=: $[MEAN] 5 - [6,...,10]

}

Here are some alternate ways to write the row variable:

ROW253A: $[MEAN] (5 - [6]) WITH (5 - [7]) WITH (5 - [8])
WITH &

 (5 - [9]) WITH (5 - [10])

ROW253B: $[MEAN] &

>REPEAT $A=06,...,10; STRIP="WITH &"

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-452 MENTOR

 SUBSCRIPT([$A^4//1]) WITH &

>ENDREPEAT

~EXECUTE

TABLE_SET= TAB253

The printed table will look fundamentally the same as Table 251 above.

RATING SCALES WITH THE SCALE REVERSED AND DON’T
KNOW CODED AS A NUMERIC

If the scale needs to be reversed and there is a numeric Don’t Know code you can
either combine methods from above or use the SUBSCRIPT function. In all cases
where you use the SUBSCRIPT function on a mean summary table you need to
individually define each mean and join them using the WITH joiner. This example
assumes the same things as TAB251, except that the Don’t Know was coded as a 5,
and the 4 point scale needs to be reversed. The TITLE, STUB, and LOCAL_EDIT
have been omitted since they are exactly the same as TAB251.

~DEFINE

TABLE_SET= {TAB254:

HEADER=:

MEAN SUMMARY TABLE WITH THE SCALE REVERSED AND DON’T
KNOW CODED AS NUMERIC}

ROW=: $[MEAN] 5 - [06,...,10*RANGES=1-4]

}

Here are some alternate ways to write the row variable:

 ROW254B: $[MEAN} &

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -453

 >REPEAT $A=06,...,10; STRIP=“WITH &”

 SUBSCRIPT([$A^4//1]) WITH &

 >ENDREPEAT

~EXECUTE

TABLE_SET=TAB254

The printed table will look fundamentally the same as table 251 above.

RATING SCALES WITH 10 CODED AS A ZERO (0)

If you want to do a mean summary table on a series of ratings where the scale goes
from 1 to 10 and 10 was coded as a 0, then you will want to use the SUBSCRIPT
function to recode them and use the WITH joiner to combine all the different
ratings. The TITLE, STUB, and LOCAL_EDIT have been omitted since they are
exactly the same as TAB251. The TITLE, STUB, and LOCAL_EDIT have been
omitted since they are exactly the same as TAB251.

~DEFINE

TABLE_SET= {TAB255:

HEADER=: MEAN SUMMARY TABLE WITH 10 CODED AS 0}

ROW=: $[MEAN] &

>REPEAT $A=06,...,10; STRIP="WITH &"

 SUBSCRIPT([$A^1//0]) WITH &

>END_REPEAT

}

~EXECUTE

TABLE_SET= TAB255

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-454 MENTOR

The printed table will look fundamentally the same as Table 251 above.

RANGE VARIABLES

To produce a mean summary table on range type variables you need to define each
mean using the SELECT_VALUE function and connect them using the WITH
joiner (See “6.2.2 Means For Range Type Variables” for an explanation of how to
use the SELECT_VALUE function to define each mean). The values chosen for
the SELECT_VALUE should be the midpoint of each range in the variable. The
example below assumes the ranges are 1 to 10, 11 to 20, 21 to 30, and 31 to 50.
The TITLE, STUB, and LOCAL_EDIT have been omitted since they are exactly
the same as TAB251.

~DEFINE

TABLE_SET= {TAB256:

HEADER=: MEAN SUMMARY TABLES OR RANGE VARIABLES}

ROW=: $[MEAN] &

>REPEAT $A=06,...,10; STRIP="WITH &"

SELECT_VALUE([$A^1//4],VALUES(5.5,15.5,25.5,40.5)) WITH
&

>ENDREPEAT

}

~EXECUTE

TABLE_SET= TAB256

The printed table will look fundamentally the same as Table 251 above.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -455

NUMERIC DATA WITH THE DON'T KNOW CODED AS A
NON-NUMERIC

Producing a mean summary table on numeric data consists of combining the
production of a mean from numeric data (See “6.2.3 Means For Numeric Data”)
with the methods that were discussed for mean summary tables on rating scales. A
mean summary table for a mean where the Don't Know was coded as non-numeric
and all the numeric values were coded as their existing values requires no recoding
and looks very similar to the mean summary on a rating scale without any recoding.

In the example below, assume there are 6 brands and each respondent is asked how
many times they have used the brand in the past year. The answers for Brand A
through F are stored in consecutive 2 column fields starting with Brand A in
columns 11 and 12. The Don't Know was coded as DK.

~DEFINE

TABLE_SET= {TAB257:

HEADER=:

MEAN SUMMARY TABLE OF NUMERIC FIELDS WITH DON'T KNOW
CODED AS NON-NUMERIC}

TITLE=: AVERAGE NUMBER OF TIMES USED PRODUCT IN LAST
YEAR}

LOCAL_EDIT=: STUB_EXTRA=[STATISTICS_ROW]}

STUB=:

 BRAND A

 BRAND B

 BRAND C

 BRAND D

 BRAND E

 BRAND F}

ROW=: $[MEAN] [11.2,...,21]

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-456 MENTOR

}

~EXECUTE

TABLE_SET= TAB257

Here is the table Mentor prints:

MEAN SUMMARY TABLE OF NUMERIC FIELDS WITH DON'T KNOW CODED AS
NON-NUMERIC

TABLE 257

AVERAGE NUMBER OF TIMES USED PRODUCT IN LAST YEAR

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

BRAND A 46.08 46.80 45.18

BRAND B 56.81 62.08 50.39

BRAND C 53.56 56.36 49.97

BRAND D 54.97 53.90 56.24

BRAND E 53.90 54.81 52.83

BRAND F 59.38 60.78 57.68

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -457

NUMERIC DATA WITH THE DON'T KNOW CODED AS NUMERIC

If the Don't Know response is coded as a numeric value such as 99, then you must
exclude this from the calculation. The easiest way to do this is to use the
*RANGES modifier. The example below assumes the same things as TAB257,
except here the Don't Know was coded as 99 for all the questions. The TITLE,
STUB, and LOCAL_EDIT have been omitted since they are exactly the same as
TAB257.

~DEFINE

TABLE_SET= {TAB258:

HEADER=:

MEAN SUMMARY TABLE OF NUMERIC FIELDS WITH DON'T KNOW
CODED AS NUMERIC}

ROW=: $[MEAN] [11.2,...,21*RANGES=0-98]

}

~EXECUTE

TABLE_SET= TAB258

The printed table will look fundamentally the same as Table 257 above.

NUMERIC DATA WITH A NUMERIC VALUE CODED AS A
NON-NUMERIC CODE

When producing a mean summary table on a set of numeric questions where a
non-numeric code like "XX", was used to mean a numeric value like 100, you must
use one of the methods discussed in “6.2.2 Means For Range Type Variables” to
recode the mean and then use the WITH joiner to combine them all. The TITLE,
STUB, and LOCAL_EDIT have been omitted since they are exactly the same as
TAB257.

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-458 MENTOR

~DEFINE

TABLE_SET= {TAB259:

HEADER=: MEAN SUMMARY TABLE OF NUMERIC FIELDS WITH "XX"
CODED AS 100}

ROW=: $[MEAN] &

>REPEAT $A=11,13,...,21; STRIP="WITH &"

 ([$A.2] OTHERWISE
SELECT_VALUE([$A.2#"--"],VALUES(100))) WITH &

>ENDREPEAT

}

Here is an alternate way to write the row variable:

ROW258A: $[MEAN] &

>REPEAT $A=11,13,...,21; STRIP="WITH &"

SUM([$A.2],SELECT_VALUE([$A.2#"--"],VALUES(100))) WITH
&

>ENDREPEAT

~EXECUTE

TABLE_SET= TAB259

The printed table will look fundamentally the same as Table 257 above.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -459

USING THE “BY” JOINER

A mean summary table using BY is one in which both the banner and the stub are
normal demographic type variables, but the entire table is reporting the mean of
some other variable. For instance, you are crossing AGE by SEX, but the entire
table is reporting the mean on the overall rating of a product. A given cell tells you
the mean for the age group of that sex. To produce this table you need to define the
mean for the rating as you normally would and then use the BY joiner to break that
mean out by all the age categories. See the example below for the exact syntax.

In the example below, the age question is stored in columns 11 and 12, and the
overall rating of product A is in column 6 (no recoding needed). If recoding was
needed you would just use whatever recoding method was needed before applying
the BY joiner.

~DEFINE

TABLE_SET= {TAB260:

HEAD=: USING BY TO CREATE MEAN SUMMARY TABLE}

TITLE=: AGE BY MEAN FOR OVERALL RATING OF PRODUCT A}

LOCAL_EDIT=: STUB_EXTRA=[STATISTICS_ROW]}

STUB=:

 UNDER 18

 18 - 30

 31 - 45

 46 - 60

 OVER 60

 REFUSED

 NO ANSWER}

ROW=: $[MEAN] [6] BY
[11.2#0-17/18-30/31-45/46-60/61-99/"RF"/"--"]

}

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-460 MENTOR

~EXECUTE

TABLE_SET= TAB260

Here is the printed table.

USING BY TO CREATE MEAN SUMMARY TABLE

TABLE 260

AGE BY MEAN FOR OVERALL RATING OF PRODUCT A

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

UNDER 18 2.96 2.92 3.00

18 - 30 3.17 2.60 3.57

31 - 45 2.33 2.57 2.00

46 - 60 3.00 2.86 3.25

OVER 60 2.77 2.50 3.15

REFUSED 3.50 3.50 3.50

NO ANSWER 2.83 2.00 3.67

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -461

6.2.7 Means Scattered Throughout The Table

You may want to produce summary statistics (means) interspersed in the table with
other frequency type numbers. In order to do this you must specify any time you
want to switch from producing frequencies to means and vice-versa. As we have
seen throughout this section, to switch from frequencies to means you need to use
the keyword $[MEAN], but to switch from means to frequencies you will need to
use the keyword $[]. The empty set of brackets tells the program that you want to
go back to the default mode of producing whatever that category returns (usually a
frequency, but sometimes a number). A good example of when you need to
intersperse means and frequencies in a single table is a summary table where you
are printing both the top box and the mean for each of several brands. In order to
produce this table you will need to alternate between producing a frequency (top
box) and a summary statistic (mean).

The example below is a combination of Table 102 and Table 251 in this chapter.

The following set of commands define a standard front end for the next set of
examples.

>PRINT_FILE MENIN

~INPUT MENIN

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,

DROP_BASE,BEGIN_TABLE_NAME=T261

~DEFINE

STUB= STUBTOP1:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {BAN2:

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-462 MENTOR

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,STATISTICS_DEC
IMALS=2 }

STUB_PREFACE= STUBTOP1

BANNER=:

| SEX

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN2

These commands are exclusive to this example.

~DEFINE

TABLE_SET= {TAB261:

HEADER=: EXAMPLE OF A TABLE WITH MEANS AND FREQUENCIES
INTERMIXED}

TITLE=: TOPBOX AND MEAN SUMMARY TABLE}

TITLE_4=: BASE= RESPONDENTS WHO USED THE BRAND}

STUB=:

>REPEAT $A=A,B,C,D,E

 [COMMENT,UNDERLINE] BRAND $A

 [VERTICAL_PERCENT=*,SUPPRESS] PERCENT BASE FOR
BRAND $A (DOESN'T PRINT)

 [STUB_INDENT=2,-FREQUENCY] TOPBOX PERCENTAGE

 [STUB_INDENT=2,STATISTICS_ROW] MEAN

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -463

>END_REPEAT

}

ROW=: &

>REPEAT $A=07,...,11; STRIP="$[] &"

 [$A^1-4/4] $[MEAN] [$A] $[] &

>END_REPEAT

}

ROW261: [7^1-4/4] $[MEAN] [7] $[] [8^1-4/4] $[MEAN] [8]
&

 $[] [9^1-4/4] $[MEAN] [9] $[] [10^1-4/4] $[MEAN]
[10] &

 $[] [11^1-4/4] $[MEAN] [11]

~EXECUTE

TABLE_SET= TAB261

Here is the printed table.

EXAMPLE OF A TABLE WITH MEANS AND FREQUENCIES INTERMIXED

TABLE 261
TOPBOX AND MEAN SUMMARY TABLE
BASE= RESPONDENTS WHO USED THE BRAND

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-464 MENTOR

 SEX
 <---------->
 TOTAL MALE FEMALE
 ----- ---- ------

BRAND A

 TOPBOX PERCENTAGE 28.4% 27.5% 29.3%

 MEAN 2.70 2.70 2.71

BRAND B

 TOPBOX PERCENTAGE 30.8% 29.3% 32.4%

 MEAN 2.62 2.68 2.54

BRAND C

 TOPBOX PERCENTAGE 26.3% 14.6% 38.5%

 MEAN 2.66 2.49 2.85

BRAND D

 TOPBOX PERCENTAGE 22.2% 20.5% 24.3%

 MEAN 2.35 2.30 2.41

BRAND E

 TOPBOX PERCENTAGE 15.8% 16.3% 15.2%

 MEAN 2.29 2.28 2.30

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -465

MEAN/FREQUENCY SUMMARY TABLE

Another common type of mean summary table prints the number of respondents
who make up each mean value, along with the mean value. This is sometimes
referred to as a mean/frequency summary table. If you use the syntax in the next
example the number generated in the frequency row will be the number of
respondents who have a valid number in that data location. You can combine this
with any of the recoding discussed above.

~DEFINE

TABLE_SET= TAB262:

HEADER=: EXAMPLE OF A SUMMARY TABLE OF MEANS AND EACH
MEANS FREQUENCY }

TITLE=: MEAN OVERALL RATING FOR BRANDS}

LOCAL_EDIT=: -VERTICAL_PERCENT }

STUB=:

 |BRAND A - FREQUENCY

[STATISTICS_ROW,SKIP_LINES=0] | MEAN

 |BRAND B - FREQUENCY

[STATISTICS_ROW,SKIP_LINES=0] | MEAN

 |BRAND C - FREQUENCY

[STATISTICS_ROW,SKIP_LINES=0] | MEAN

 |BRAND D - FREQUENCY

[STATISTICS_ROW,SKIP_LINES=0] | MEAN

 |BRAND E - FREQUENCY

[STATISTICS_ROW,SKIP_LINES=0] | MEAN }

ROW=: $[FREQUENCY,MEAN] [07,...,11]

}

~EXECUTE

TABLE_SET= TAB262

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-466 MENTOR

Here is the printed table:

EXAMPLE OF A SUMMARY TABLE OF MEANS AND EACH MEANS
FREQUENCY

TABLE 262

MEAN OVERALL RATING FOR BRANDS

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

BRAND A - FREQUENCY 81 40 41

 MEAN 2.70 2.70 2.71

BRAND B - FREQUENCY 78 41 37

 MEAN 2.62 2.68 2.54

BRAND C - FREQUENCY 80 41 39

 MEAN 2.66 2.49 2.85

BRAND D - FREQUENCY 81 44 37

 MEAN 2.35 2.30 2.41

BRAND E - FREQUENCY 76 43 33

 MEAN 2.29 2.28 2.30

NOTE: To print the Mean before the frequency, reverse the order of the keywords
MEAN and FREQUENCY inside the $[] and also flip the order of the
stub definitions so that the text for the Mean row is first.

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -467

6.2.8 Summary Statist ics with Arithmetic

You may sometimes need to perform some arithmetic operation on the mean before
displaying it. This usually entails moving the decimal point to the right or to the
left, or adding, subtracting, multiplying or dividing two or more fields. To move the
decimal point to the left you can either divide the mean by the appropriate amount
(10 or 100 or 1000) or you can use the *F modifier. When using a data location to
define a numeric field you can put the modifier *F<number> right before the close
bracket. The <number> says how many implied decimals to read that field with. In
other words if 1028 is stored in columns 11 through 14 and you reference that field
as [11.4*F2], the Mentor program will read that number as 10.28 (2 implied
decimal places). To move the decimal place to the right you need to multiply the
variable by the appropriate amount. If you wish to perform any arithmetic
operation, just use the appropriate symbol (+,-,*,/,**).

In the following example frequencies, sums, means, and standard deviations are
produced for a number of fields. First compare the statistics for the stubs [11.4] and
[11.4*F2] noting that the frequency is the same, but the other numbers are all 100
times smaller. Second, compare the stubs [15.4] and 3*[15.4] again noting that the
frequency is the same, but the other values are all 3 times higher. Then note that the
stub [19.4] has only one respondent with a valid answer, so that the standard
deviation is missing and the mean is even missing under the males column, because
there are no males who have a valid answer.

NOTE: In the example below the mean of the stub [11.4] + [15.4] is equal to the
mean of the stub [11.4] + the mean of the stub [15.4]. This will only occur
when everyone who has a valid answer in one of those fields has a valid
answer in both.

~DEFINE

A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

-468 MENTOR

TABLE_SET= {TAB263:

TITLE=:SUMMARY STATISTICS WITH ARITHMETIC }

LOCAL_EDIT=: -VERTICAL_PERCENT }

STUB=:

>REPEAT
$A="[11.4]","[11.4*F2]","[15.4]","3*[15.4]","[19.4]","[
11.4]+[15.4]"

 [COMMENT,UNDERLINE] STATS FOR $A

 [STUB_INDENT=2,SKIP_LINES=0] FREQUENCY

 [STUB_INDENT=2,SKIP_LINES=0] SUM

 [STATISTICS_ROW,STUB_INDENT=2,SKIP_LINES=0] MEAN

 [STATISTICS_ROW,STUB_INDENT=2,SKIP_LINES=0] STD
DEV

>END_REPEAT

}

ROW=: $[FREQUENCY,SUM,MEAN,STD] [11.4] WITH [11.4*F2]
WITH [15.4] WITH &

 (3*[15.4]) WITH [19.4] WITH ([11.4]+[15.4])

}

~EXECUTE

TABLE_SET= TAB263

. .
 .

. .A D V A N C E D TA B L E S
6.2 SUMMARY STATISTICS (MEANS)

MENTOR v 8.1 -469

Here is the printed table:
TABLE 263

SUMMARY STATISTICS WITH ARITHMETIC

GENDER
<-------------------->

TOTAL MALE FEMALE
--------- ------- ----------

STATS FOR [11.4]

FREQUENCY 110 65 45

SUM 307009 174141 132868

MEAN 2790.99 2679.09 2952.62

STD DEV 3210.92 3004.85 3516.00

STATS FOR [11.4*F2]

FREQUENCY 110 65 45

SUM 3070 1741 1329

MEAN 27.91 26.79 29.53

STD DEV 32.11 30.05 35.16

STATS FOR [15.4]

FREQUENCY 110 65 45

SUM 387726 263648 124078

MEAN 3524.78 4056.12 2757.29

STD DEV 3001.15 3236.99 2460.11

(Table continued on next page)

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-470 MENTOR

STATS FOR 3*[15.4]

FREQUENCY 110 65 45

SUM 1163178 790944 372234

MEAN 10574.35 12168.37 8271.87

STD DEV 9003.44 9710.97 7380.33

STATS FOR [19.4]

FREQUENCY 1 - 1

SUM 945 - 945

MEAN 945.00 ? 945.00

STD DEV ? ? ?

STATS FOR [11.4]+[15.4]

FREQUENCY 110 65 45

SUM 694735 437789 256946

MEAN 6315.77 6735.22 5709.91

STD DEV 4384.49 4531.66 4137.25

6.3 WEIGHTED TABLES

A weighted table is one in which each case is multiplied by some appropriate
factor so that it carries a higher or lower weight in the sample. This is usually done
when you want the distribution in the tables across some demographic group to
reflect the universal distribution rather than your sample distribution. A typical
example would be as follows: You're interviewing in some city and need to
contact 110 respondents, but in this city females are much easier to contact than
males, so you end up contacting 70 females and only 40 males. You know that in
this city half the people are male and half are female, so for purposes of the tables
you want to down weight the 70 females so it looks like there are only 55. To do
this you would assign a weight of .786 to each (.786 X 70 = 55.02). You also want
to up weight the 40 males to become 55. You would assign them a weight of 1.375
(40 X 1.375 = 55).

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -471

If the weighted total will be equal to the sample total, then you can calculate the
weight by doing the following: take the universe for the group (expressed as a
percentage or number) and divide it by the sample (percentage or number).

targeted # (or %)

Weight=________________________

actual # (or %)

In our example above, that would give us 55/40 (or 50/36 if using percentages) =
1.375 for the male group.

Sometimes when you weight responses you want to weight the numbers up so that
they actually reflect the numbers in the universe. In the example above, suppose the
city we were calling had 10,000 residents. Then you would want the 70 females in
the sample to look like 5000 (10000 * 50%) and you would want the 40 males to
look like 5000 also. The weights in this case would be 71.43 for females and 125
for males. In this case, use the same formula, but use numbers rather than percents.
The target value is now 5000, not 55, for males, and our weight is 5000/40=125.

In order to do weighting, you need to either store this weight value somewhere in
the data record or create an expression that holds the value. This is usually done
with the SELECT function, although it can be done several other ways also. You
can use the file GENWT.SPX located in the Mentor subdirectory to not only
calculate the weights for you based on the target percentages, but also store them in
each data record for future use.

You can either weight the entire table to affect every cell in the table, or you can
weight either the column or row variable to apply different weights (including
none) to different categories in the variable. Once you have determined the weights
for the table and how the table is to be weighted you can use any of the table
elements WEIGHT, COLUMN_WEIGHT, COLUMN_SHORT_WEIGHT,
ROW_WEIGHT, or ROW_SHORT_WEIGHT to apply the weight to the table.

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-472 MENTOR

The WEIGHT element weights the entire table, while the others allow you to
create cells with different weights. The WEIGHT element cannot be used in
conjunction with any of the others, but you can do both column weighting and row
weighting simultaneously.

NOTE:

• Weighted statistics are calculated properly, except for the EDIT options
COLUMN_STD, COLUMN_SE, COLUMN_VARIANCE, ROW_STD,
ROW_SE, and ROW_VARIANCE.

• When doing weighting, frequency counts may not add back to the total, and
percentages may not add up to 100% due to rounding

• If data cases are not assigned a weight because either the weight field has a
missing value of the SELECT function does not account for it, you will get the
following warning message in the compile:

(WARN #8873) tables with MISSING table weights.

If you get this warning it is likely there is an error in the weight definition and the
data cases with a missing weight will be dropped from the table.

6.3.1 Weighting with Weight Value already Stored in the Data

It is quite simple to weight an entire table if the weight has already been stored in
the data. All you need to do is use the table element WEIGHT= and equate it to the
location where the weight is stored. If the weight is stored with implied decimals
you will need to use the *F modifier. See “6.2.8 Summary Statistics with
Arithmetic” for more information on the *F modifier.

In the example below it is assumed that a weight value has previously been stored
in columns 7-10 of the data file. The pertinent part of this example is the
WEIGHT= line inside TABLE_SET TAB301. This weight value could have come
from a generation done in a previous Mentor run. See “6.3.4 Storing the Weight in
the Data” to see how to store the weight in the data.

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -473

NOTE: The following set of commands define a standard front end for the all the
examples in this section, except where noted.

>PRINT_FILE WGHT

~INPUT WGHT,ALLOW_UPDATE

~SET DROP_LOCAL_EDIT,DROP_BASE,BEGIN_TABLE_NAME=T301

~DEFINE

STUB= STUBTOP1:

WEIGHTED TOTAL

[SUPPRESS] WEIGHTED NO ANSWER }

TABLE_SET= {BAN1:

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,STATISTICS_DECIMALS=
2 }

STUB_PREFACE= STUBTOP1

BANNER=:

| GENDER

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

TABLE_SET= {TAB301:

TITLE=: OVERALL RATING OF PRODUCT A}

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [STATISTICS_ROW] MEAN }

ROW=: [6^4//1/5] $[MEAN] [6*RANGES=1-4]

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-474 MENTOR

}

~EXECUTE

TABLE_SET= BAN1

TABLE_SET= ROW1

And here is our example:

~DEFINE

TABLE_SET= {TAB301:

HEADER=: WEIGHTED TABLE USING PREVIOUSLY STORED
WEIGHT}

WEIGHT=: [7.4]

STORE_TABLES=*

}

~EXECUTE

TABLE_SET= TAB301

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -475

Here is the table that is printed.

WEIGHTED TABLE USING PREVIOUSLY STORED WEIGHT

TABLE 301

OVERALL RATING OF PRODUCT A

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

WEIGHTED TOTAL 100 55 45

 100.0% 100.0% 100.0%

EXCELLENT (4) 17 6 11

 17.0% 10.4% 25.2%

GOOD (3) 20 12 8

 20.1% 22.0% 17.8%

FAIR (2) 31 20 11

 31.3% 36.4% 25.0%

POOR (1) 14 9 5

 13.8% 16.1% 10.9%

DON'T KNOW 18 8 9

 17.8% 15.1% 21.1%

MEAN 2.49 2.31 2.73

Notice that ~SET AUTOMATIC_TABLES was not specified. This option looks for
a ROW= to trigger the making of a table. In this example, we wanted to specify the
ROW= separately, so we left off the AUTOMATIC_TABLES and put a
STORE_TABLES=* in the TABLE_SET.

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-476 MENTOR

Also, notice in the above table that the DON'T KNOW row has a value of 18 for
the Total column and values of 8 and 9 for the Male and Female columns. Since
the data is weighted the actual values in those cells are 17.8, 8.4, and 9.4
respectively. Each of these values round up to produce numbers that do not seem to
add up.

6.3.2 Weighting using the SELECT Function

If the weight has not been previously stored in the data you can directly create a
variable that contains the weights by using the SELECT_VALUE function. In the
following example the respondent's city is stored in column 11 which is the
variable being used to assign the weights. City 1 will have a weight factor of .86,
City 2 a weight of 0.66, City 3 a weight of 1.39, and City 4 a weight of 1.67 (See
“9.3.2 Functions”, Number Returning Functions for detailed information on the
SELECT_VALUE function). The only difference between this example and the
previous one is the WEIGHT= table element.

~DEFINE

TABLE_SET= {TAB302:

HEADER=: WEIGHTED TABLE USING THE SELECT FUNCTION}

WEIGHT=:
SELECT_VALUE([11^1//4],VALUES(.86,.66,1.39,1.67))

STORE_TABLES=*

}

The printed table will look fundamentally the same as Table 301 above.

6.3.3 Printing Both a Weighted and an Unweighted Total Row

You may want to print both a weighted and unweighted total row, so that you can
easily tell both what the percentage base was for a particular column and the actual

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -477

number of respondents in that column. The easiest way to do this is to use the SET
option UNWEIGHTED_TOP in conjunction with a special STUB_PREFACE. The
UNWEIGHTED_TOP option causes the program to create two additional summary
rows at the top of the table, the unweighted total and the unweighted no answer.

The example below is the same as that for Table 301, except for the SET option and
the different STUB_PREFACE. In the STUB_PREFACE notice that the vertical
percentage has been turned off on the unweighted total because it makes no sense
on this row.

~DEFINE

STUB= STUBTOP2:

[-VERTICAL_PERCENT] UNWEIGHTED TOTAL

[SUPPRESS] UNWEIGHTED NO ANSWER

WEIGHTED TOTAL

[SUPPRESS] WEIGHTED NO ANSWER }

TABLE_SET= {TAB303:

HEADER=: WEIGHTED TABLE WITH UNWEIGHTED TOTAL ROW }

SET UNWEIGHTED_TOP

STUB_PREFACE= STUBTOP2

STORE_TABLES=*

}

~EXECUTE

TABLE_SET= TAB303

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-478 MENTOR

Here is the table Mentor prints:
WEIGHTED TABLE WITH UNWEIGHTED TOTAL ROW

TABLE 303

OVERALL RATING OF PRODUCT A

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

UNWEIGHTED TOTAL 100 56 44

WEIGHTED TOTAL 100 55 45

 100.0% 100.0% 100.0%

EXCELLENT (4) 17 6 11

 17.0% 10.4% 25.2%

GOOD (3) 20 12 8

 20.1% 22.0% 17.8%

FAIR (2) 31 20 11

 31.3% 36.4% 25.0%

POOR (1) 14 9 5

 13.8% 16.1% 10.9%

DON'T KNOW 18 8 9

 17.8% 15.1% 21.1%

MEAN 2.49 2.31 2.73

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -479

If you wish to print the Unweighted Any Response row in addition to, or instead of
the Unweighted Total row, you need to use the keyword PRINT_ROW=UAR in
your STUB_PREFACE. If you only wanted to print the Unweighted and Weighted
Any Response Rows, the STUB_PREFACE would look like the following:

STUB_PREFACE=:

[SUPPRESS] UNWEIGHTED TOTAL

[SUPPRESS] UNWEIGHTED NO ANSWER

[PRINT_ROW=UAR, -VERTICAL_PERCENT] UNWEIGHTED ANY
RESPONSE

[SUPPRESS] WEIGHTED TOTAL

[SUPPRESS] WEIGHTED NO ANSWER

[PRINT_ROW=AR] WEIGHTED ANY RESPONSE }

6.3.4 Storing the Weight in the Data

If the weight variable is not already stored in the data, you may want to store it
there for ease of future reference. Once the weights are stored in the data it is a
very easy process to weight the tables. You may want to do this if you are going to
be running multiple runs all with the same weighting scheme and you don't want
the program to have to recalculate the weights each time.

To store the weights in the data you will need to define and execute a procedure.
Inside the procedure you will want to use the SELECT_VALUE function to store
the various weights in the data. You can either explicitly put the decimal point in
the data or you can store the weight as a whole number and then read the field as
having implied decimals using the *F modifier. In the example below the MODIFY
command is storing the values without a decimal point, while the PRINT_DATA
command is storing it with a decimal point. See TAB304 for how to reference the
data from the MODIFY command and see TAB305 for the data from the
PRINT_DATA command. On an actual table run you would use one or the other.

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-480 MENTOR

~DEFINE PROCEDURE= {GENWT1:

MODIFY [51.3] =
SELECT_VALUE([11^1//4],VALUES(86,66,139,167))

PRINT_DATA [61.4] "\4.2F"
SELECT_VALUE([11^1//4],VALUES(.86,.66,1.39,1.67))

}

~EXECUTE

PROCEDURE= GENWT1

The weight statement will look like this if you used the MODIFY command
above:

~DEFINE

TABLE_SET= {TAB304:

HEADER=: WEIGHTED TABLE USING A WEIGHT STORED WITH AN
IMPLIED DECIMAL POINT} WEIGHT=: [51.3*F2]

STORE_TABLES=* }

~EXECUTE

TABLE_SET= TAB304

The printed table will look basically the same as Table 301 above.

The weight statement will look like this if you used the PRINT_DATA command
above:

~DEFINE

TABLE_SET= {TAB305:

HEADER=: WEIGHTED TABLE USING A WEIGHT STORED WITH AN
EXPLICIT DECIMAL POINT} WEIGHT=: [61.4]

STORE_TABLES=* }

~EXECUTE

TABLE_SET= TAB305

The printed table will look fundamentally the same as Table 301 above.

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -481

6.3.5 Assigning Different Weights to Different Banner Points

Sometimes when producing weighted tables, you will need to apply different
weighting factors to different banner points. For example, you might want some of
the banner points weighted by the sex variable and others weighted by the city
variable. An even more common occurrence is that you want some of the banner
points weighted and others unweighted. An unweighted column is just a column
where the weight for everyone in that column is one.

To produce a table with different weights across the banner, you will need to use the
COLUMN_WEIGHT table element to set the weights. This element needs to have
the same number of categories as the number of categories in your banner
definition, if you do not, you will get an appropriate error message. Since most
banners have a fair amount of banner points, it is usually a good idea to predefine
any weight variables you need to use and then just reference them by name on the
COLUMN_WEIGHT statement.

In the example below the banner is broken into two parts for each of the original
banner points, one based on one weight variable, and the second on a different
weight variable. Since the column variable has six categories in it, then the
COLUMN_WEIGHT variable must also have six categories in it. Notice in Table
306 how the numbers and frequencies change between the two columns with the
different weights.

NOTE: All system-generated columns will be unweighted when
COLUMN_WEIGHT or COLUMN_SHORT_WEIGHT are specified.

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-482 MENTOR

~DEFINE

WGHT1: SELECT([11^1//4],VALUES(.86,.66,1.39,1.67))

WGHT2: SELECT([12^1//4],VALUES(.89,.59,1.92,1.47))

TABLE_SET= {BAN2:

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,STATISTICS_DEC
IMALS=2 }

STUB_PREFACE= STUBTOP1

BANNER=:

| GENDER

| <===========================>

| WGHT1 WGHT2 WGHT1 WGHT2 WHGT1 WGHT2

| TOTAL TOTAL MALE MALE FEMALE FEMALE

| ----- ------ ----- ----- ------ ------}

COLUMN_WEIGHT=: WGHT1 WITH WGHT2 WITH WGHT1 WITH WGHT2
WITH WGHT1 WITH WGHT2

COLUMN=: TOTAL WITH TOTAL WITH [5^1/1/2/2]

}

TABLE_SET= {TAB306:

HEADER=: WEIGHTED TABLE USING DIFFERENT WEIGHTS ON
DIFFERENT BANNER POINTS}

STORE_TABLES=*

}

~EXECUTE

TABLE_SET= BAN2

TABLE_SET= TAB306

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -483

Here is the table that is printed.
WEIGHTED TABLE USING DIFFERENT WEIGHTS ON DIFFERENT BANNER
POINTS

TABLE 306

OVERALL RATING OF PRODUCT A

GENDER

<=======================>

WGHT1 WGHT2 WGHT1 WGHT2 WHGT1 WGHT2

TOTAL TOTAL MALE MALE FEMALE FEMALE

----- ------ ----- ----- ------ ------

WEIGHTED TOTAL 100 100 55 58 45 41

 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

EXCELLENT (4) 17 23 6 9 11 15

 17.0% 23.5% 10.4% 14.7% 25.2% 35.9%

GOOD (3) 20 18 12 11 8 6

 20.1% 17.9% 22.0% 19.5% 17.8% 15.7%

FAIR (2) 31 28 20 20 11 8

 31.3% 28.4% 36.4% 34.3% 25.0% 20.3%

POOR (1) 14 14 9 9 5 4

 13.8% 13.8% 16.1% 16.0% 10.9% 10.7%

DON'T KNOW 18 16 8 9 9 7

 17.8% 16.3% 15.1% 15.5% 21.1% 17.5%

MEAN 2.49 2.61 2.31 2.39 2.73 2.93

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-484 MENTOR

6.3.6 Printing Both a Weighted and an Unweighted Total Column

If you need to print both a weighted and an unweighted total column you can
easily do this by using the COLUMN_SHORT_WEIGHT table element. This
option is very similar to the COLUMN_WEIGHT option in that it allows you to
assign different weights to different columns in the banner, but it also allows you
to define more categories in your column variable than in your weight variable and
it just uses the last weight variable for all the additional categories. This means if
your first banner point is an unweighted total followed by the rest of the banner
points weighted, you can just define a two category weight variable. In order to
create an unweighted category in a weight variable you need to assign it the
keyword TOTAL. So in general, your weight variable will look like TOTAL
WITH WEIGHTNAME. Notice that the column definition starts with TOTAL
WITH TOTAL to create both the unweighted and weighted total columns.

~DEFINE

TABLE_SET= {BAN3:

EDIT=: COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,

STATISTICS_DECIMALS=2 }

BANNER=:

| GENDER

| UNWGHT WGHT <---------->

| TOTAL TOTAL MALE FEMALE

| ------ ----- ---- ------}

COLUMN=: TOTAL WITH TOTAL WITH [5^1/2]

COLUMN_SHORT_WEIGHT=: TOTAL WITH WGHT1

}

TABLE_SET= {TAB307:

HEADER=: WEIGHTED TABLE WITH UNWEIGHTED AND WEIGHTED TOTAL
COLUMNS}

STORE_TABLES=*

}

(Continued on next page)

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -485

~EXECUTE

TABLE_SET= BAN3

TABLE_SET= TAB307

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-486 MENTOR

Here is the table that is printed.
WEIGHTED TABLE WITH UNWEIGHTED AND WEIGHTED TOTAL COLUMNS

TABLE 307

OVERALL RATING OF PRODUCT A

 GENDER

 UNWGHT WGHT <---------->

 TOTAL TOTAL MALE FEMALE

 ------ ----- ---- ------

WEIGHTED TOTAL 100 100 55 45

 100.0% 100.0% 100.0% 100.0%

EXCELLENT (4) 21 17 6 11

 21.0% 17.0% 10.4% 25.2%

GOOD (3) 19 20 12 8

 19.0% 20.1% 22.0% 17.8%

FAIR (2) 30 31 20 11

 30.0% 31.3% 36.4% 25.0%

POOR (1) 14 14 9 5

 14.0% 13.8% 16.1% 10.9%

DON'T KNOW 16 18 8 9

 16.0% 17.8% 15.1% 21.1%

MEAN 2.56 2.49 2.31 2.73

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -487

6.3.7 Assigning Different Weights To Different Rows

The process for weighting a table by the row variable is exactly the same as for
weighting by the column variable, except you will want to use the table elements
ROW_WEIGHT and ROW_SHORT_WEIGHT instead of COLUMN_WEIGHT and
COLUMN_SHORT_WEIGHT. See “6.3.5 Assigning Different Weights to Different
Banner Points” and “6.3.6 Printing Both a Weighted and an Unweighted Total
Column” for the process of weighting by the column variable.

If you want to create a row in the middle of the table that is unweighted, you can
also do this by using the $[RAW_COUNT] keyword. This will cause all categories
defined after it to be unweighted. In the following example, suppose you wanted to
created both a weighted and unweighted Don't Know row on a table. You would
want to define the weighted Don't Know row as you normally do and then define it
again, after you have specified the $[RAW_COUNT] keyword.

~DEFINE

TABLE_SET= {TAB308:

TITLE=: OVERALL RATING OF PRODUCT A}

STUB=:

 EXCELLENT (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DON'T KNOW

 [-VERTICAL_PERCENT] UNWEIGHTED DK

 [STATISTICS_ROW] MEAN }

ROW=: [6^4//1/5] $[RAW_COUNT] [6^5] $[MEAN] [6*RANGES=1-4]

}

TABLE_SET= {TAB308:

HEADER=: USING THE RAWCOUNT OPTION TO PRODUCE WEIGHTED
AND UNWEIGHTED ROWS }

(Continued on next page)

A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

-488 MENTOR

STORE_TABLES=* }

~EXECUTE

TABLE_SET= BAN1

TABLE_SET= TAB308

. .
 .

. .A D V A N C E D TA B L E S
6.3 WEIGHTED TABLES

MENTOR v 8.1 -489

Here is the table that is printed.

USING THE RAWCOUNT OPTION TO PRODUCE WEIGHTED AND UNWEIGHTED
ROWS

TABLE 308

OVERALL RATING OF PRODUCT A

 GENDER

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

WEIGHTED TOTAL 100 55 45

 100.0% 100.0% 100.0%

EXCELLENT (4) 21 6 11

 21.0% 10.4% 25.2%

GOOD (3) 19 12 8

 19.0% 22.0% 17.8%

FAIR (2) 30 20 11

 30.0% 36.4% 25.0%

POOR (1) 14 9 5

 14.0% 16.1% 10.9%

DON'T KNOW 16 8 9

 16.0% 15.1% 21.1%

UNWEIGHTED DK 16 8 8

MEAN 2.56 2.31 2.73

A D V A N C E D TA B L E S
6.3.8 WEIGHTING USING MULTIPLE FACTORS

-490 MENTOR

6.3.8 WEIGHTING USING MULTIPLE FACTORS

Sometimes, when tables are weighted, multiple factors are used. For instance, you
might want to weight the table by both GENDER and AGE variables. There are
three different approaches to accomplishing this.

The first and easiest approach is to just multiply the two weights together. The
problem with doing this is that it does not take into account how the different
weights will affect each other. The second approach is actually to assign weights to
each cross section of the two variables. For instance, in the above example, you
would have to assign a weight for Males under the age of 25, Females under the
age of 25, and so on. If you do not know the cross-sectional universe percentages,
you can estimate them by multiplying the two target percentages that make up the
cross-section. The last approach is to use a procedure called “sample balancing.”
You need to use this if you are weighting by enough factors such that a respondent
does not exist in each and every cross-section.

6.4 SUMMARY TABLES (MARKET SHARE)

A table of sums (sometimes called a market share table) is usually created when
you have a series of numeric type questions about how many purchases have been
made of particular brands in a specified time period. The table you create needs to
show what percentage a particular brand's purchases constitute of all purchases.

In order to create this table you must realize that if you just specify a data location
[col.wid] and nothing else, the program will calculate the sum of all the valid
numbers in that field. To create the overall sum though, you need to add all the
individual fields together making sure that you are doing any recoding if necessary
(9=DK or -- = 100). You may want to use the SUM function, the ++ joiner, or an
exclamation point (!) after each open bracket so that missing values are counted as
zero for purposes of the total sum. After you have created the sum you need to
access each of the appropriate fields and join them using the WITH joiner or use
multiple locations inside the same set of brackets. You will also want to make sure
that you suppress the printing of the system total row (usually with a
STUB_PREFACE) and that if you are printing the vertical percentage you change
the percentage base to the total sum row.

. .
 .

. .A D V A N C E D TA B L E S
6.4 SUMMARY TABLES (MARKET SHARE)

MENTOR v 8.1 -491

>PRINT_FILE SUMS

~INPUT SUMS

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,

DROP_BASE BEGIN_TABLE_NAME=T401

~DEFINE

STUB= STUBTOP1:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {BAN1:

EDIT=: COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,
STATISTICS_DECIMALS=2 }

STUB_PREFACE= STUBTOP1

BANNER=:

| GENDER

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN1

~DEFINE

TABLE_SET= {TAB401:

HEADER=: SUMS TABLE OR MARKET SHARE}

TITLE=: TOTAL GALLONS USED}

LOCAL_EDIT=: VERTICAL_PERCENT=1 }

STUB=:

 TOTAL GALLONS

A D V A N C E D TA B L E S
6.4 SUMMARY TABLES (MARKET SHARE)

-492 MENTOR

 BRAND A

 BRAND B

 BRAND C

 BRAND D

 BRAND E

 BRAND F

 BRAND G

 OTHER}

ROW=: SUM([11.4,15,...,39]) WITH [11.4,15,...,39]

}

Here are some alternate ways to write the row variable:

ROW401A: ([!11.4] + [!15.4] + [!19.4] + [!23.4] + [!27.4] + &

[!31.4] + [!35.4] + [!39.4]) WITH [11.4,15,...,39]

ROW401B: ([11.4] ++ [15.4] ++ [19.4] ++ [23.4] ++ [27.4] ++ &

[31.4] ++ [35.4] ++ [39.4]) WITH [11.4,15,...,39]

~EXECUTE

TABLE_SET= TAB401

Here is the table that is printed.

SUMS TABLE OR MARKET SHARE

TABLE 401

TOTAL GALLONS USED

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -493

TOTAL GALLONS 166066 71569 94497

 100.0% 100.0% 100.0%

BRAND A 26299 12674 13625

 15.8% 17.7% 14.4%

BRAND B 2989 1450 1539

 1.8% 2.0% 1.6%

BRAND C 30939 12787 18152

 18.6% 17.9% 19.2%

BRAND D 25885 12904 12981

 15.6% 18.0% 13.7%

BRAND E 21075 9347 11728

 12.7% 13.1% 12.4%

BRAND F 19183 8191 10992

 11.6% 11.4% 11.6%

BRAND G 16170 5817 10353

 9.7% 8.1% 11.0%

OTHER 23526 8399 15127

 14.2% 11.7% 16.0%

6.5 HOLECOUNT AND BREAK TABLES

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-494 MENTOR

A "holecount" table is CfMC's term for a table that cannot be built in a simple
cross-tab format. There are many table designs that you may want to see that
cannot be created by crossing one variable by another. Being able to recognize
when you need to create a holecount table is usually much more difficult than
creating the table itself. The idea behind the table is that you will define all the
categories as if the table was a long one column (or one row) table and use the
keyword $[BREAK] to break the definition at a certain category and force the next
set of categories to print as the table's next column (or row, depending on the table
orientation).

The easiest example of when you need to use a holecount table is when you have a
series of rating scales on different brands or attributes and you want to create a
summary table in which the brands are the stub or banner and the rating scale itself
is the other axis. Suppose for this example that the brands are being used for the
banner and the rating scale for the stub, then notice that there are no two variables
that you can create to describe each of these items since the data in each column of
the table is coming from a different data location.

"Break" tables are a variation of holecount tables. You have the same basic
situation, but under each banner heading you are showing data from a current and
previous wave, or two different products that are being compared. See “6.5.4
Break Table with a Multi-level Banner” for a quick preview of a break table. The
data for Brand A and Brand B is coming from two different data locations, and it is
also being "broken" by city. Again, you cannot write a true cross-tab but you can
create the table as though you were creating Brand B's mentions after Brand A's
and then use the $[BREAK] keyword to wrap the data so that it formats properly.

There are a number of things to be aware of when you try to create a $[BREAK]
table. One very important point is whether or not a total column and/or row will be
needed for the table, and if so what it should look like. This is very important
because you often need to create your own summary totals because the system
summary rows and columns will be the total base for the table, unless you have
used the $[BREAK_CONTROL] option (see “6.5.3 Holecount Table with a
Varying Percentage Base” for more information on the $[BREAK_CONTROL]).

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -495

NOTE: The number of categories in each piece of the BREAK variable must be
the same.

6.5.1 Holecount Table with Different Brands (Locations) in the Banner

Suppose you need to produce a table with a number of different brands in your
banner and a rating scale for each brand down the side. You cannot create a normal
cross-tab because each rating scale is located in a different location. The first thing
to determine is whether you want to define each column as you go and then break to
the next column or if you want to define each row as you go and then break to the
next row. Either way can give you the appropriate table, and the method of choice is
usually determined by which of those two variables is easier to write and
understand.

In the first example below, it is assumed that the rating scales for five different
brands of colas are stored in data columns 7 through 11. To create this table by
defining each column one at a time, you would define the column variable as
TOTAL, and then you define the row variable by defining the first column
(possibly the total), then use the $[BREAK] keyword, and then define the second
column and so on. This table could also be written by defining the row variable as
TOTAL and defining each row in the column variable.

NOTE: The following set of commands define a standard front end for the all the
examples in this section, except where noted.

>PRINT_FILE HOLE

~INPUT HOLE

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,DROP_BASE,
BEGIN_TABLE_NAME=T501

~DEFINE

STUB= STUBTOP1:

[SUPPRESS] TOTAL

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-496 MENTOR

[SUPPRESS] NO ANSWER }

These commands are exclusive to this example.

TABLE_SET= {TAB501:

HEADER=: HOLECOUNT TABLE WITH THE DIFFERENT BRANDS
(LOCATIONS) IN THE BANNER}

TITLE=: RATING OF COLAS}

TITLE_4=: BASE= TOTAL SAMPLE}

EDIT=: COLUMN_WIDTH=8,STUB_WIDTH=20 -COLUMN_TNA,
VERTICAL_PERCENT=1}

STUB_PREFACE= STUBTOP1

BANNER=:

| <---------------- COLAS ------------->

| TOTAL BRND A BRND B BRND C BRND D BRND E

| ----- ------ ------ ------ ------ ------}

COLUMN=: TOTAL

STUB=:

 TOTAL

 VERY GOOD

 GOOD

 FAIR

 POOR

 VERY POOR

 DON'T KNOW }

ROW=: [07,...,11*L^1-12,B/1//6] $[BREAK] TOTAL WITH
[07^1//6] &

 $[BREAK] TOTAL WITH [08^1//6] $[BREAK] TOTAL WITH
[09^1//6] &

 $[BREAK] TOTAL WITH [10^1//6] $[BREAK] TOTAL WITH
[11^1//6]

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -497

}

Here is an alternate way to write the table:

COL501A: [7,...,11*L^1-12,B] WITH [7,...,11^1-12,B]
$[BREAK] &

>REPEAT $A=1,...,6; STRIP="$[BREAK] &"

 [7,...,11*L^$A] WITH [7,...,11^$A] $[BREAK] &

>END_REPEAT

ROW501A: TOTAL

~EXECUTE

TABLE_SET= TAB501

Here is the table Mentor prints:

HOLECOUNT TABLE WITH THE DIFFERENT BRANDS (LOCATIONS) IN
THE BANNER

TABLE 501

RATING OF COLAS

BASE= TOTAL SAMPLE

<---------------- COLAS ------------->

TOTAL BRND A BRND B BRND C BRND D BRND E

----- ------ ------ ------ ------ ------

TOTAL 500 100 100 100 100 100

 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

VERY GOOD 83 25 15 17 13 13

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-498 MENTOR

 16.6% 25.0% 15.0% 17.0% 13.0% 13.0%

GOOD 85 15 22 12 16 20

 17.0% 15.0% 22.0% 12.0% 16.0% 20.0%

FAIR 81 14 19 18 10 20

 16.2% 14.0% 19.0% 18.0% 10.0% 20.0%

POOR 98 17 18 16 25 22

 19.6% 17.0% 18.0% 16.0% 25.0% 22.0%

VERY POOR 74 12 11 19 17 15

 14.8% 12.0% 11.0% 19.0% 17.0% 15.0%

DON'T KNOW 79 17 15 18 19 10

 15.8% 17.0% 15.0% 18.0% 19.0% 10.0%

6.5.2 Holecount Table with Rating Scales (Different Values) in Banner

Suppose you want to produce the same table as in the previous section except that
you want to rotate the table 90 degrees so that the rating scale is now in the banner
and the different brands are in the stub. You will want to use the same logic as the
preceding table, but you will want to flip the column and row variable definitions,
along with redefining your banner and stub labels to match. One other important
difference is that you will probably want to percentage horizontally instead of
vertically.

~DEFINE

TABLE_SET= {TAB502:

HEADER=:

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -499

HOLECOUNT TABLE WITH THE RATING SCALES (DIFFERENT
VALUES) IN THE BANNER}

EDIT=:
COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA,-VERTICAL_PERC
ENT,

 HORIZONTAL_PERCENT=1}

BANNER=:

| OVERALL RATING

|
<==>

| VERY VERY DON'T

| TOTAL GOOD GOOD FAIR POOR POOR KNOW

| ----- ---- ---- ---- ---- ---- -----}

COLUMN=: [07,...,11*L^1-12,B/1//6] $[BREAK] TOTAL WITH
[07^1//6] &

 $[BREAK] TOTAL WITH [08^1//6] $[BREAK] TOTAL WITH
[09^1//6] &

 $[BREAK] TOTAL WITH [10^1//6] $[BREAK] TOTAL WITH
[11^1//6]

STUB=:

 TOTAL

 BRAND A

 BRAND B

 BRAND C

 BRAND D

 BRAND E}

ROW=: TOTAL

}

~EXECUTE

TABLE_SET= TAB502

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-500 MENTOR

Here is the table Mentor prints:

HOLECOUNT TABLE WITH THE RATING SCALES (DIFFERENT
VALUES) IN THE BANNER

TABLE 502

RATING OF COLAS

 OVERALL
RATING

<==>

 VERY
VERY DON'T

 TOTAL GOOD GOOD FAIR
POOR POOR KNOW

 ----- ---- ---- ----
---- ---- -----

TOTAL 500 83 85 81
98 74 79

 100.0% 16.6% 17.0% 16.2%
19.6% 14.8% 15.8%

BRAND A 100 25 15 14
17 12 17

 100.0% 25.0% 15.0% 14.0%
17.0% 12.0% 17.0%

BRAND B 100 15 22 19
18 11 15

 100.0% 15.0% 22.0% 19.0%
18.0% 11.0% 15.0%

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -501

BRAND C 100 17 12 18
16 19 18

 100.0% 17.0% 12.0% 18.0%
16.0% 19.0% 18.0%

BRAND D 100 13 16 10
25 17 19

 100.0% 13.0% 16.0% 10.0%
25.0% 17.0% 19.0%

BRAND E 100 13 20 20
22 15 10

 100.0% 13.0% 20.0% 20.0%
22.0% 15.0% 10.0%

6.5.3 Holecount Table with a Varying Percentage Base

If you are trying to create a table similar to the one above, but each column wants to
be percentaged off a different number like those who purchased that brand, then
you want to create a $[BREAK_CONTROL] variable which allows you to define
an individual base for each piece of the $[BREAK] variables that will be created.
The $[BREAK_CONTROL] variable will immediately precede the beginning of
the $[BREAK] variable (see example following).

Suppose that you want to create a table similar to the one in “6.5.1 Holecount Table
with Different Brands (Locations) in the Banner”, except that now you want each
brand's column based on the fact that the respondent purchased that brand (I.E. You
want the percentage base to be any response). If brand purchase was stored in
column 6 with BRAND A stored as a 1, BRAND B as a 2, BRAND C as a 3,
BRAND D as a 4, and BRAND E as a 5, then you can write the
$[BREAK_CONTROL] variable as $[BREAK_CONTROL=[6^1//5]] or if you
have previously defined [6^1//5] with a name like BRAND_PUR, then you define
it as $[BREAK_CONTROL=BRAND_PUR]. This will put a base of column 6 a 1
punch on the first $[BREAK] item, a base of column 6 a 2 punch on the second,

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-502 MENTOR

and so forth. This will also put the base on the system summary rows so that you
will not have to create your own.

NOTE: If you do not have the variable pre-defined you will need to terminate the
$[BREAK_CONTROL] option with two right brackets, one to close the
variable and the second to close the $[BREAK_CONTROL]. Use of the
BREAK_CONTROL option can significantly reduce processing time, if
most respondents do not fall into most of the BREAK categories.

~DEFINE

STUB= STUBTOP2:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {TAB503:

HEADER=: HOLECOUNT TABLE WITH REDUCED BASE}

TITLE=: RATING OF COLAS }

TITLE_4=: BASE= THOSE WHO HAVE PURCHASED THE COLA}

EDIT=: COLUMN_WIDTH=8,STUB_WIDTH=20,-COLUMN_TNA }

STUB_PREFACE= STUBTOP2

BANNER=:

| <---------------- COLAS ------------->

| BRND A BRND B BRND C BRND D BRND E

| ------ ------ ------ ------ ------}

COLUMN=: TOTAL

STUB=:

 VERY GOOD

 GOOD

 FAIR

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -503

 POOR

 VERY POOR

 DON'T KNOW }

ROW=: $[BREAK_CONTROL=[06^1//5]] [07^1//6] $[BREAK]
[08^1//6] &

 $[BREAK] [09^1//6] $[BREAK] [10^1//6] $[BREAK]
[11^1//6]

}

~EXECUTE

TABLE_SET= TAB503

Here is the table Mentor prints:

HOLECOUNT TABLE WITH REDUCED BASE

TABLE 503

RATING OF COLAS

BASE= THOSE WHO HAVE PURCHASED THE COLA

<---------------- COLAS ------------->

BRND A BRND B BRND C BRND D BRND E

------ ------ ------ ------ ------

TOTAL 40 41 37 37 37

 100.0% 100.0% 100.0% 100.0% 100.0%

VERY GOOD 9 2 7 3 4

 22.5% 4.9% 18.9% 8.1% 10.8%

GOOD 9 11 4 9 7

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-504 MENTOR

 22.5% 26.8% 10.8% 24.3% 18.9%

FAIR 4 8 10 2 8

 10.0% 19.5% 27.0% 5.4% 21.6%

POOR 5 7 4 11 8

 12.5% 17.1% 10.8% 29.7% 21.6%

VERY POOR 5 6 7 5 5

 12.5% 14.6% 18.9% 13.5% 13.5%

DON'T KNOW 8 7 5 7 5

 20.0% 17.1% 13.5% 18.9% 13.5%

6.5.4 Break Table with a Mult i - level Banner

If your banner is split into multiple levels so that the higher level is a demographic
item such as area and the lower level is multiple products with the data for each
product in a different location, then you also need to use the $[BREAK] keyword
to produce this table. Instead of setting the column equal to the total as we have in
the above examples, for this situation you set the column equal to the upper level
variable. The row definition then is each of the variables for the two or more
products joined together with the $[BREAK] keyword. Notice that the number of
banner points in the finished table will be the number of categories in the column
definition times the number of different breaks in the row definition. The number
of rows in the table will be the number of categories in any one piece of the break
variable. In the example below the rating for two products (A and B) are stored in
locations 7 and 8 and the city designation is stored in location 5. The
$[BREAK_CONTROL] keyword is used so that the System Total row will show
correct values.

. .
 .

. .A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

MENTOR v 8.1 -505

~DEFINE

TABLE_SET= {TAB504:

HEADER=: $[BREAK] TABLE WITH A MULTI-LEVEL BANNER}

TITLE=: RATING OF BRAND A AND BRAND B BY CITY}

EDIT=: COLUMN_WIDTH=6,STUB_WIDTH=20,-COLUMN_TNA }

BANNER=:

| CITY

|

| <===>

| SAN

| TOTAL FRANCISCO LOS ANGELES NEW YORK BOSTON

| <---------> <---------> <---------> <---------> <--------->

| BRD A BRD B BRD A BRD B BRD A BRD B BRD A BRD B BRD A BRD B

| ----- ----- ----- ----- ----- ----- ----- ----- ----- -----}

COL=: TOTAL WITH [5^1//4]

STUB=:

 VERY GOOD

 GOOD

 FAIR

 POOR

 VERY POOR

 DON'T KNOW }

ROW=: $[BREAK_CONTROL=[7,8^1-6]] [7^1//6] $[BREAK] [8^1//6]

}

~EXECUTE

TABLE_SET= TAB504

A D V A N C E D TA B L E S
6.5 HOLECOUNT AND BREAK TABLES

-506 MENTOR

Here is the table Mentor prints:

$[BREAK] TABLE WITH A MULTI-LEVEL BANNER

TABLE 504

RATING OF BRAND A AND BRAND B BY CITY

 CITY

 <===>

SAN

 TOTAL FRANCISCO LOS ANGELES NEW YORK BOSTON

 <---------> <---------> <---------> <---------> <--------->

 BRD A BRD B BRD A BRD B BRD A BRD B BRD A BRD B BRD A BRD B

 ----- ----- ----- ----- ----- ----- ----- ----- ----- -----

TOTAL 100 100 28 28 30 30 20 20 22 22

 100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%

VERY GOOD 25 15 9 6 7 4 4 3 5 2

 25.0% 15.0% 32.1% 21.4% 23.3% 13.3% 20.0% 15.0% 22.7% 9.1%

GOOD 15 22 4 3 6 8 4 5 1 6

 15.0% 22.0% 14.3% 10.7% 20.0% 26.7% 20.0% 25.0% 4.5% 27.3%

FAIR 14 19 3 3 3 4 1 6 7 6

 14.0% 19.0% 10.7% 10.7% 10.0% 13.3% 5.0% 30.0% 31.8% 27.3%

POOR 17 18 3 4 7 9 3 4 4 1

 17.0% 18.0% 10.7% 14.3% 23.3% 30.0% 15.0% 20.0% 18.2% 4.5%

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -507

VERY POOR 12 11 5 5 3 2 2 - 2 4

 12.0% 11.0% 17.9% 17.9% 10.0% 6.7% 10.0% 9.1% 18.2%

DON'T KNOW 17 15 4 7 4 3 6 2 3 3

 17.0% 15.0% 14.3% 25.0% 13.3% 10.0% 30.0% 10.0% 13.6% 13.6%

6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

Whenever you create a table where multiple responses were collected from a given
respondent and each response was collected in a separate location, you can refer to
that as a "multiple location" table. Very often when you have this design you want
to report information across all the locations, rather than across respondents,
especially if a respondent can give the same answer in more than one location. A
typical example of this might be if you ask each respondent the make of each
automobile they own and now you want to produce a table that talks about
automobiles instead of respondents. For instance, you want to know what
percentage of all the automobiles owned are manufactured by Chevrolet, Ford,
Toyota etc.

NOTE: A given respondent can own more than one car of the same make.

This scenario can be further complicated if there are follow up questions asked
about each item originally mentioned. Suppose as above the respondent is asked the
make of each automobile they own, but then is asked other questions about each
automobile like what model year it is, how many miles it has on it, or if they like
the service they have received on it. This is sometimes refer to as a loop or a loop
structure because you will loop through a series of questions about each automobile
until you have talked about all the automobiles. The difficulty in these
constructions is that the information for a particular make may be in any of the data
positions allocated and each respondent may have gone through the loop a different
number of times.

There are three different basic approaches that can be used to create the above
tables and the one you will want to use is determined by the data layout and the

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-508 MENTOR

type of table you wish to produce. The three methods are: using a multiple location
variable, using a looped variable, and creating an overlay structure.

To create a multiple location table using a multi-location variable you need to have
the data collected in the same format in each of the different locations, only one
axis of the table has an item that has data coming from different locations, and no
statistical testing is being done. If so, then just specify each of the data locations in
a single set of brackets and use either the *F or *L modifier to either net or sum the
locations together. See 4.3 DEFINING DATA VARIABLES for more information on
the *F and *L modifiers.

To create a multiple location table using a loop variable you again need to have the
data collected in the same format in each of the different locations and the
locations must be the same distance from each other. Unlike using multi-location
variables you can have a loop variable in more than one axis of the table, but if two
or more of the axes are looped, they must contain the same number of iterations.

The third method to create a multiple location table is to use an overlay structure.
This method has no restrictions on the data layout and you can have more than one
axis overlayed, except that each axis that is overlayed must have the same number
of overlays.

Multi-location variable:

 MULTI_LOC: [11,12,13,14*L^1//6/9]

Loop variable:

 LOOPVAR: [(4,1)11^1//6/9]

Overlay Structure:

 OVERLAY: [11^1//6/9] $[OVERLAY] [12^1//6/9]
$[OVERLAY] &

 [13^1//6/9] & $[OVERLAY] [14^1//6/9]

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -509

The above three variables would all produce a similar table to each other depending
upon what the other axes look like. If both the column and the base were single
location variables then the tables would be exactly the same. If you are producing a
simple multiple location table, then approach one is preferred, but if the data is
stored in a loop structure and either the base or the column variable is also
dependent upon the loop then you must use either the second or third approach.

For loop or overlay variables, the program treats each iteration of the loop or
overlay piece as a distinct case. Suppose you have 100 respondents in your sample,
but you create a variable with five overlay pieces in it, then the program will act as
though there are 500 possible cases for that table. If one of the axes is not
overlayed, then that variable will be used for each piece of the overlay. The same
logic also applies to loop variables.

NOTE: You often want to create your own summary rows and columns because
the system-generated numbers may not be appropriate when using
overlayed or loop variables.

The maximum number of iterations in a loop variable is 99. See also ~SET
LOOP_KICKOUT.

6.6.1 Simple Mult iple Location Tables

If you create a table with a typical demographic banner and the row is a question
that is stored in multiple locations for each respondent with the same coding
scheme and this table will count all mentions together regardless of which location
the answer came from, then you create this table by creating a multi-location
variable.

For example, you ask respondents about the type of banking they do. You ask each
respondent about each of the different banks they use including what kinds of
accounts they have at each bank and their overall satisfaction with that account. In
the example below, the sex of the respondent has been stored in column 5 and we
are collecting information for up to six different banks. For each account mentioned
there is a 10 column field which holds information just about that bank. The first
two columns of each field are a two digit number which indicates which bank the

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-510 MENTOR

account is held at. The third column is a punch to note the type of account. The
fourth column is an overall rating of that bank's service for that account and the
fifth through the tenth columns are the total dollar amount held in that account.
The first mention is stored in columns 11-20, the second in 21-30, the third in
31-40, the fourth in 101-110, the fifth in 111-120, and the last in 121-130.

This first table that is produced is a simple multiple location table with the
percentage base for the table being the total number of banks which is much
greater than the total number of respondents, so you will need to generate your
own total.

NOTE: The following set of commands define a standard front end for the next
set of examples.

>PRINT_FILE OVERL

~INPUT OVERL

~SET AUTOMATIC_TABLES, DROP_LOCAL_EDIT, DROP_BASE,

BEGIN_TABLE_NAME=T601

~DEFINE

STUB= STUBTOP1:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {BAN2:

EDIT=: COLUMN_WIDTH=8, STUB_WIDTH=25,-COLUMN_TNA,

STATISTICS_DECIMALS=2, VERTICAL_PERCENT=1}

STUB_PREFACE= STUBTOP1

BANNER=:

| GENDER

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -511

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN2

Here are the commands exclusive to this example.

~DEFINE

TABLE_SET= {TAB601:

HEADER=: TABLE WITH MENTIONS FROM MULTIPLE LOCATIONS
ADDED TOGETHER}

TITLE=: ACCOUNTS HAVE AT ANY BANK}

TITLE_4=: BASE: TOTAL ACCOUNTS OF BANKS}

STUB=:

 TOTAL

 CHECKING ACCOUNT

 SAVINGS ACCOUNT

 VISA/MASTERCARD

 MORTGAGE/HOME LOAN

 CAR/PERSONAL LOAN

 ATM CARD

 DK/NA/REF}

ROW=: [13,23,33,103,113,123*L^1-6,9/1//6/9]

}

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-512 MENTOR

Here is an alternate way to write the row variable:

ROW601A: [13^1-6,9/1//6/9] $[OVERLAY] [23^1-6,9/1//6/9]
$[OVERLAY] &

 [33^1-6,9/1//6/9] $[OVERLAY] [103^1-6,9/1//6/9]
$[OVERLAY] &

 [113^1-6,9/1//6/9] $[OVERLAY]
[123^1-6,9/1//6/9]

~EXECUTE

TABLE_SET= TAB601

Here is the table Mentor prints:

TABLE WITH MENTIONS FROM MULTIPLE LOCATIONS ADDED
TOGETHER

TABLE 601

ACCOUNTS HAVE AT ANY BANK

BASE: TOTAL ACCOUNTS OF BANKS

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 285 126 159

 100.0% 100.0% 100.0%

CHECKING ACCOUNT 37 16 21

 13.0% 12.7% 13.2%

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -513

SAVINGS ACCOUNT 45 16 29

 15.8% 12.7% 18.2%

VISA/MASTERCARD 36 18 18

 12.6% 14.3% 11.3%

MORTGAGE/HOME LOAN 37 17 20

 13.0% 13.5% 12.6%

CAR/PERSONAL LOAN 48 22 26

 16.8% 17.5% 16.4%

ATM CARD 38 17 21

 13.3% 13.5% 13.2%

DK/NA/REF 44 20 24

 15.4% 15.9% 15.1%

A second table could be produced using this construction, but instead of counting
each account as many times as it appears you only want to count it once no matter
how many times it appears. The syntax only changes slightly for the multi-location
approach, as the *L now becomes *F. In the overlay approach the keyword
OVERLAY is now replaced with the keyword NET_OVERLAY. The loop variable
approach cannot produce this table.

The previous table tells you how many of each account there are, while this next
table tells you how many respondents have that type of account. Notice that the
percentage base for this table is the true total number of respondents.

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-514 MENTOR

~DEFINE

STUB= STUBTOP2:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {TAB602:

HEADER=: TABLE WITH MENTIONS FROM MULTIPLE LOCATIONS
NETTED TOGETHER}

LOCAL_EDIT=: VERTICAL_PERCENT=T}

STUB_PREFACE= STUBTOP2

STUB=:

 CHECKING ACCOUNT

 SAVINGS ACCOUNT

 VISA/MASTERCARD

 MORTGAGE/HOME LOAN

 CAR/PERSONAL LOAN

 ATM CARD

 DK/NA/REF}

ROW=: [13,23,33,103,113,123*F^1//6/9]

}

Here is an alternate way to write the row variable:

 ROW602B: [13^1//6/9] $[NET_OVERLAY] [23^1//6/9]
$[NET_OVERLAY] [33^1//6/9] &

 $[NET_OVERLAY] [103^1//6/9] $[NET_OVERLAY]
[113^1//6/9] &

 $[NET_OVERLAY] [123^1//6/9]

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -515

~EXECUTE

TABLE_SET= TAB602

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-516 MENTOR

Here is the table Mentor prints:

TABLE WITH MENTIONS FROM MULTIPLE LOCATIONS NETTED
TOGETHER

TABLE 602

ACCOUNTS HAVE AT ANY BANK

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 100 42 58

 100.0% 100.0% 100.0%

CHECKING ACCOUNT 32 14 18

 32.0% 33.3% 31.0%

SAVINGS ACCOUNT 33 12 21

 33.0% 28.6% 36.2%

VISA/MASTERCARD 32 17 15

 32.0% 40.5% 25.9%

MORTGAGE/HOME LOAN 31 14 17

 31.0% 33.3% 29.3%

CAR/PERSONAL LOAN 35 17 18

 35.0% 40.5% 31.0%

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -517

ATM CARD 28 13 15

 28.0% 31.0% 25.9%

DK/NA/REF 30 16 14

 30.0% 38.1% 24.1%

6.6.2 Tables With Both the Row and the Base Overlayed

By far the most useful example of an overlay table or a loop variable is when you
have a loop structure as described above and the table you want to produce has only
information about a particular product in it. You want the program to look in each
of the data locations, but only report information from those locations when it is
referring to the particular product you are interested in. In this example suppose
you want to produce a table similar to the ones above, but now you only want to
report on accounts at a particular bank. In order to create this table you must define
an overlay variable for the base. Similar syntax is used for defining the row
definition and you must have the same number of overlay pieces in the base
definition as the row definition. The resultant table will be a compilation of the six
separate rows and bases with the banner. Again, you will want to produce your
summary rows and columns to ensure you get the numbers you are expecting.

TIP: When creating overlay tables it is often helpful to think of each separate loop
location as a separate table. Usually each of these individual tables is simple to
create, and then all you need to do is combine these tables by making each of them
a separate piece in the overlay. For instance, in the example below if the data was
only stored in columns 11-13, then you would write the table with a BASE of
[11.2#01] and the ROW of [13^1- 6,9/1//6/9]. This then becomes the first overlay
piece in each of the base and the row definitions. Now looking only at the second
iteration, the data was stored in columns 21-23 and therefore it would have a BASE
of [21.2#01] and a ROW of [23^1-6,9/1//6/9]. This continues for the rest of the
iterations.

NOTE: The same row spec would be used regardless of which bank you were
reporting on as only the base definition would change.

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-518 MENTOR

~DEFINE

TABLE_SET= {TAB603:

HEADER=: MULTIPLE MENTION TABLE BASED ON A SINGLE ITEM
FROM THE LOOP STRUCTURE}

TITLE=: ACCOUNTS HAVE AT BANK A}

TITLE_4=: BASE: THOSE WHO USE BANK A}

BASE=: [11.2#01] $[OVERLAY] [21.2#01] $[OVERLAY]
[31.2#01] $[OVERLAY] &

 [101.2#01] $[OVERLAY] [111.2#01] $[OVERLAY]
[121.2#01]

STUB_PREFACE= STUBTOP1

STUB=:

 TOTAL

 CHECKING ACCOUNT

 SAVINGS ACCOUNT

 VISA/MASTERCARD

 MORTGAGE/HOME LOAN

 CAR/PERSONAL LOAN

 ATM CARD

 DK/NA/REF}

ROW=: [13^1-6,9/1//6/9] $[OVERLAY] [23^1-6,9/1//6/9]
$[OVERLAY] &

 [33^1-6,9/1//6/9] $[OVERLAY] [103^1-6,9/1//6/9]
$[OVERLAY] &

 [113^1-6,9/1//6/9] $[OVERLAY] [123^1-6,9/1//6/9]

}

~EXECUTE

TABLE_SET= TAB603

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -519

Here is the table Mentor prints:

MULTIPLE MENTION TABLE BASED ON A SINGLE ITEM FROM THE
LOOP STRUCTURE

TABLE 603

ACCOUNTS HAVE AT BANK A

BASE: THOSE WHO USE BANK A

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 44 17 27

 100.0% 100.0% 100.0%

CHECKING ACCOUNT 7 3 4

 15.9% 17.6% 14.8%

SAVINGS ACCOUNT 6 2 4

 13.6% 11.8% 14.8%

VISA/MASTERCARD 5 2 3

 11.4% 11.8% 11.1%

MORTGAGE/HOME LOAN 5 1 4

 11.4% 5.9% 14.8%

CAR/PERSONAL LOAN 7 2 5

 15.9% 11.8% 18.5%

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-520 MENTOR

ATM CARD 5 4 1

 11.4% 23.5% 3.7%

DK/NA/REF 9 3 6

 20.5% 17.6% 22.2%

6.6.3 Overlay Tables With Summary Statist ics (Means)

If the loop structure contains variables that you would like to produce statistics on,
then you can follow the procedures as above, but you also must now overlay the
definition of the statistic (MEAN). Suppose a rating scale for each bank was
located in columns 14, 24, 34, 104, 114, and 124 and you want to produce the
mean of that rating. You will need to specify the mean for each piece of the overlay
separately and the program will combine them to give you an overall mean.

NOTE: Any needed recoding of the mean would follow the normal procedures
and would have to be done for each piece of the overlay. As in the table
before you will need to overlay the base definition if you want to produce
the table on a particular bank.

~DEFINE

TABLE_SET= {TAB604:

HEADER=: OVERLAY TABLE WITH SUMMARY STATISTICS LIKE A
MEAN}

TITLE=: OVERALL RATING OF BANK A}

TITLE_4=: BASE: THOSE WHO USE BANK A}

BASE=: [11.2#01] $[OVERLAY] [21.2#01] $[OVERLAY]
[31.2#01] $[OVERLAY] &

 [101.2#01] $[OVERLAY] [111.2#01] $[OVERLAY]
[121.2#01]

STUB=:

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -521

 TOTAL

 EXCELLENT (5)

 VERY GOOD (4)

 GOOD (3)

 FAIR (2)

 POOR (1)

 DK/NA

 [STATISTICS] MEAN

 [STATISTICS] STANDARD DEVIATION }

ROW=: [14^1-5,9/5//1/9] $[MEAN,STD] [14*R=1-5]
$[OVERLAY] [24^1-5,9/5//1/9] &

 $[MEAN,STD] [24*R=1-5] $[OVERLAY]
[34^1-5,9/5//1/9] $[MEAN,STD] &

 [34*R=1-5] $[OVERLAY] [104^1-5,9/5//1/9]
$[MEAN,STD] [104*R=1-5] &

 $[OVERLAY] [114^1-5,9/5//1/9] $[MEAN,STD]
[114*R=1-5] $[OVERLAY] &

 [124^1-5,9/5//1/9] $[MEAN,STD] [124*R=1-5]

}

~EXECUTE

TABLE_SET= TAB604

Here is the table Mentor prints:

OVERLAY TABLE WITH SUMMARY STATISTICS LIKE A MEAN

TABLE 604

OVERALL RATING OF BANK A

BASE: THOSE WHO USE BANK A

 SEX

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-522 MENTOR

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 42 16 26

 100.0% 100.0% 100.0%

EXCELLENT (5) 7 3 4

 16.7% 18.8% 15.4%

VERY GOOD (4) 11 4 7

 26.2% 25.0% 26.9%

GOOD (3) 7 1 6

 16.7% 6.3% 23.1%

FAIR (2) 7 4 3

 16.7% 25.0% 11.5%

POOR (1) 5 1 4

 11.9% 6.3% 15.4%

DK/NA 5 3 2

 11.9% 18.8% 7.7%

MEAN 3.22 3.31 3.17

STANDARD DEVIATION 1.34 1.38 1.34

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -523

6.6.4 Tables with the Banner and the Row Overlayed

If you have a scenario where the banner also contains a category that was collected
in the loop structure you then will have to create the column variable with an
overlay also. A typical example of this is that the banner might consist of all the
banks and the stub consists of the services used at each bank. In order to create this
table you will need to overlay all three parts of the table, row, banner, and base,
because a given cell in the table is dependent upon both the row and column
variable coming from the same iteration of the loop. Again, the easiest way to write
this table is to pretend that you are writing six different tables each only coming
from one location and then use the OVERLAY keyword to combine them all.

This type of table would also be required if you were creating a table that crosses
the amount of money in the bank by type of accounts have, since both variables are
inside the loop structure.

~DEFINE

TABLE_SET= {TAB605:

HEADER=: TABLE WITH BANNER, ROW, AND BASE ALL WITH
OVERLAY STRUCTURES}

TITLE=: OVERALL RATING OF EACH BANK}

TITLE_4=: BASE: THOSE WHO USED THAT BANK}

BASE=: [11.2#1-10] $[OVERLAY] [21.2#1-10] $[OVERLAY]
[31.2#1-10] $[OVERLAY] &

 [101.2#1-10] $[OVERLAY] [111.2#1-10] $[OVERLAY]
[121.2#1-10]

BANNER=:

| <------------------- USED --------->

| BANK BANK BANK BANK BANK

| TOTAL A B C D E

| ----- ---- ---- ---- ---- ----}

A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

-524 MENTOR

COLUMN=: [11.2#1-10/1//5] $[OVERLAY] [21.2#1-10/1//5]
$[OVERLAY] &

 [31.2#1-10/1//5] $[OVERLAY] [101.2#1-10/1//5]
$[OVERLAY] &

 [111.2#1-10/1//5] $[OVERLAY] [121.2#1-10/1//5]

STORE_TABLES=*

}

~EXECUTE

TABLE_SET= TAB605

Here is the table Mentor prints:

TABLE WITH BANNER, ROW, AND BASE ALL WITH OVERLAY
STRUCTURES

TABLE 605

OVERALL RATING OF EACH BANK

BASE: THOSE WHO USED THAT BANK

 <-------------------
USED --------->

 BANK BANK BANK
BANK BANK

 TOTAL A B C
D E

 ----- ---- ---- ----
---- ----

TOTAL 285 42 37 43
46 34

 100.0% 100.0% 100.0% 100.0%
100.0% 100.0%

. .
 .

. .A D V A N C E D TA B L E S
6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)

MENTOR v 8.1 -525

EXCELLENT (5) 33 7 7 3
3 3

 11.6% 16.7% 18.9% 7.0%
6.5% 8.8%

VERY GOOD (4) 57 11 10 5
12 4

 20.0% 26.2% 27.0% 11.6%
26.1% 11.8%

GOOD (3) 49 7 6 8
5 8

 17.2% 16.7% 16.2% 18.6%
10.9% 23.5%

FAIR (2) 62 7 10 8
11 9

 21.8% 16.7% 27.0% 18.6%
23.9% 26.5%

POOR (1) 43 5 2 10
10 3

 15.1% 11.9% 5.4% 23.3%
21.7% 8.8%

DK/NA 41 5 2 9
5 7

 14.4% 11.9% 5.4% 20.9%
10.9% 20.6%

MEAN 2.90 3.22 3.29 2.50
2.68 2.81

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-526 MENTOR

STANDARD DEVIATION 1.32 1.34 1.25 1.31
1.33 1.18

6.7 LONG BRAND LISTS

Very often when you produce a table from a long list of brands, attributes, or other
similar type mentions, you can make the table easier to read by doing any of the
following:

1 Producing nets of categories that are similar.

2 Ranking the table with those categories mentioned most printing first.

3 Suppressing rows that have no mentions.

4 Collapsing rows with few mentions into an All Other category.

6.7.1 Producing Net Categories

You may want to produce an additional category which is a net of other mentions.
There are a number of different ways to do this, most of which are also discussed
in other parts of the manual. They are gathered here to show the difference
between them. The way you choose to do the net depends on how the data is coded
and personal preference.

The easiest way to create a net is inside an existing punch or numeric variable. If
you use the dash it will net from the code before the dash to the code after the dash.
[11^1-4] will produce one category which is the net of punches 1 through 4 and
[12.2#1-10] will produce one category which is the net of numbers 1 through 10.
See “4.6.1 Summary of Rules for Defining Data” for more information on this.
Examples in this sub-section just show the stub and the row definition for a table.

TABLE_SET= {NET_DASH:

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -527

STUB=:

11^1-4

12.2#1-10 }

ROW=: [11^1-4] WITH [12.2#1-10]

}

All the other forms of netting depend on how the data is coded. If you need to form
a net of a punch category with a numeric category, two different punches from two
different columns, or two different numbers from two different fields, then you will
need to use the OR joiner. See “5.1.1 Logical Joiners” for more information on the
OR joiner.

TABLE_SET= {NET_OR:

STUB=:

11^1 OR 53^3

11^2 OR 12.2#45

12.2#45 OR 14.2#28 }

ROW=: ([11^1] OR [53^3]) WITH &

 ([11^2] OR [12.2#45]) WITH &

 ([12.2#45] OR [14.2#28])

}

If you wish to form nets as above, but want the net category to appear in front of all
the inside categories, then you will want to use the NET function. The NET
function allows you to define an expression and add one additional category to the
front of it which is the net of anyone who is in any of the categories in the
expression.

TABLE_SET= {NET_FUNC:

STUB=:

11^1-4 OR 12.2#1-20

11^1

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-528 MENTOR

11^2

11^3

11^4

12.2#1-10

12.2#11-20 }

ROW=: NET([11^1//4] WITH [12.2#1-10/11-20])

}

This is the way the variable would look if you used the OR joiner instead of the
NET function.

NO_NET_FUNC: ([11^1-4] OR [12.2#1-20]) WITH &

 [11^1//4] WITH [12.2#1-10/11-20]

If you are netting the same code from a number of different locations, then you can
use the *F modifier to net the locations. This is most useful if you have a set of
answers in two different fields where the codes are the same for the two fields and
you want to net all the answers together.

TABLE_SET= {NET_STAR_F:

STUB=:

11^1 OR 12^1

11^2 OR 12^2

11^3 OR 12^3

11^4 OR 12^4 }

ROW=: [11,12*F^1//4]

}

This is the way the variable would look if you used the OR joiner instead of the
NET function.

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -529

NO_NET_STAR_F: ([11^1] OR [12^1]) WITH ([11^2] OR
[12^2]) WITH &

 ([11^3] OR [12^3]) WITH ([11^4] OR
[12^4])

If you need to net two variables together, such that the first category of each is
netted, and then the second, and so on, then you will want to use the NET joiner.
This is most useful for grids where the unaided awareness was coded as a long list
and the aided awareness was coded as yes/no (1 / 2).

TABLE_SET= {NET_JOINER:

STUB=:

11^1 OR 15^1

11^2 OR 16^1

11^3 OR 17^1

11^4 OR 18^1 }

ROW=: [11^1//4] NET [15,16,17,18^1]

}

This is the way the variable would look if you used the OR joiner instead of the
NET joiner.

NO_NET_JOINER: ([11^1] OR [15^1]) WITH ([11^2] OR
[16^1]) WITH &

 ([11^3] OR [17^1]) WITH ([11^4] OR [18^1])

6.7.2 Ranking With Nets And Sub-Nets

When you rank a table with nets and sub-nets you need to assign rank levels to the
different stubs, so that like items stay together under their appropriate nets and
sub-nets. This is done by setting RANK_LEVEL=# on each stub item, where the #
is the rank level. Highest order nets, stubs that are not under any other net, and
stubs like ALL OTHER, DON'T KNOW, REFUSED, and NONE should all be set

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-530 MENTOR

to level 1. All items directly under a net are then assigned level 2 including any
sub-nets. Any items directly under a sub-net are then assigned the next level (3),
including any sub-sub-nets. Continue with this process till every item has been
assigned a rank level. Also be sure to force any items low or high in their level as
needed by putting an L or H after the number (i.e., any Other type response should
be kept low in its rank level). The default rank level is 1 unless it is specified on the
EDIT statement or you have used the KEEP_RANK option which says keep this
rank level in effect until you see another rank level command.

After you have assigned the rank level to each stub item, you then can invoke
ranking either by using RANK_LEVEL=1 or RANK_IF_INDICATED on the
EDIT statement.

When the program then ranks such an annotated stub, it first ranks all the level 1
items from high to low, forcing any high or low as indicated. It then takes all the
level 2 items that were under the level 1 item that has come to the top and ranks
them. It then ranks any level 3 items under the first level 2 items. It continues with
this until it has no higher level to rank, and then goes to the next lower level item
in the rank.

NOTE: Any given item always will stay under the first item above it with a lower
number.

In the following example is the list of stubs that will be printed:

DOMESTIC (NET)

CHRYSLER

FORD

GENERAL MOTORS

OTHER DOMESTIC

EUROPEAN (NET)

BRITISH (SUB-NET)

ALFA ROMEO

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -531

JAGUAR

RANGE ROVER

ROLLS-ROYCE

STERLING

OTHER BRITISH

GERMAN (SUB-NET)

BMW

MERCEDES

VOLKSWAGEN/PORSCHE/AUDI

OTHER GERMAN

OTHER EUROPEAN (SUB-NET)

FIAT

PEUGEOT

SAAB

VOLVO

YUGO

OTHER EUROPEAN

ASIAN (NET)

JAPANESE (SUB-NET)

HONDA

MAZDA

NISSAN

SUBARU

TOYOTA

OTHER JAPANESE

OTHER ASIAN (SUB-NET)

HYUNDAI

OTHER ASIAN

NONE

DON'T KNOW

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-532 MENTOR

To assign the rank levels for this stub, you must first find all the major net
categories and any items not in a net and assign them level 1. In this case they are
the nets DOMESTIC, EUROPEAN, and ASIAN, along with NONE and DON'T
KNOW. In addition, NONE and DON'T KNOW should be forced low. Next you
need to look at all the items between DOMESTIC and EUROPEAN. CHRYSLER,
FORD, GENERAL MOTORS, and OTHER DOMESTIC are all the same level
and should be assigned level 2 with OTHER DOMESTIC being forced low. Next,
look at all the items between EUROPEAN and ASIAN. Notice these items are not
all at the same level so you must find all the sub-nets and items which do not
belong to any sub-net and assign them level 2. OTHER EUROPEAN should be
forced low. Continue on with this for the rest of the stub. See the stub below to see
the rank level that was assigned for each stub item.

Often in conjunction with nets and sub-nets you want to underline the label of the
nets and sub-nets. You can do this by using the UNDERLINE keyword on those
stubs. You also will probably want to use the LINES_LEFT option which says skip
to a new page if you do not have this many lines left on the page. This will keep a
net line from printing at the bottom of the page and having all the items under it
print at the top of the next page. However, setting this too high will cause a lot of
blank space at the bottom of some pages.

Indenting is done automatically for levels 2 and higher. Use the EDIT option
STUB_RANK_INDENT= to change the default of two characters of indention per
rank level greater than 1.

NOTE: The following set of commands define a standard front end for the next
set of examples.

>PRINT_FILE LISTS

~INPUT LISTS

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT,DROP_BASE,

BEGIN_TABLE_NAME=T701

~DEFINE

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -533

STUB= STUBTOP1:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= {BAN2:

EDIT=: COLUMN_WIDTH=8,STUB_WIDTH=30,-COLUMN_TNA }

STUB_PREFACE= STUBTOP1

BANNER=:

| SEX

| <---------->

| TOTAL MALE FEMALE

| ----- ---- ------}

COLUMN=: TOTAL WITH [5^1/2]

}

~EXECUTE

TABLE_SET= BAN2

These commands are exclusive to this example.

~DEFINE

TABLE_SET= {TAB701:

HEADER=: RANKING LARGE BRAND LIST WITH NETS AND
SUB-NETS}

TITLE=: AUTOMOBILE MANUFACTURERS}

LOCAL_EDIT=: RANK_LEVEL=1 }

STUB=:

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-534 MENTOR

 [RANK_LEVEL=1,UNDERLINE,LINES_LEFT=17] DOMESTIC
(NET)

 [KEEP_RANK=2] CHRYSLER

 FORD

 GENERAL MOTORS

 [RANK_LEVEL=2L] OTHER DOMESTIC

 [RANK_LEVEL=1,UNDERLINE,LINES_LEFT=26] EUROPEAN
(NET)

 [RANK_LEVEL=2,UNDERLINE,LINES_LEFT=23] BRITISH
(SUB-NET)

 [KEEP_RANK=3] ALFA ROMEO

 JAGUAR

 RANGE ROVER

 ROLLS-ROYCE

 STERLING

 [RANK_LEVEL=3L] OTHER BRITISH

 [RANK_LEVEL=2,UNDERLINE,LINES_LEFT=17] GERMAN
(SUB-NET)

 [KEEP_RANK=3] BMW

 MERCEDES

 VOLKSWAGEN/PORSCHE/AUDI

 [RANK_LEVEL=3L] OTHER GERMAN

 [RANK_LEVEL=2L,UNDERLINE,LINES_LEFT=23] OTHER
EUROPEAN (SUB-NET)

 [KEEP_RANK=3] FIAT

 PEUGEOT

 SAAB

 VOLVO

 YUGO

 [RANK_LEVEL=3L] OTHER EUROPEAN

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -535

 [RANK_LEVEL=1,UNDERLINE,LINES_LEFT=26] ASIAN (NET)

 [RANK_LEVEL=2,UNDERLINE,LINES_LEFT=23] JAPANESE
(SUB-NET)

 [KEEP_RANK=3] HONDA

 MAZDA

 NISSAN

 SUBARU

 TOYOTA

 [RANK_LEVEL=3L] OTHER JAPANESE

 [RANK_LEVEL=2L,UNDERLINE,LINES_LEFT=11] OTHER
ASIAN (SUB-NET)

 [RANK_LEVEL=3] HYUNDAI

 [RANK_LEVEL=3L] OTHER ASIAN

 [RANK_LEVEL=1L,LINES_LEFT=8] NONE

 [RANK_LEVEL=1L] DON'T KNOW }

ROW=: [11.3^1-4/1//4/5.20/5-10/5//10/11.14/11//14/15-
20/15//20/21-28/21-26/&

 21//26/27,28/27/28/29/30]

}

~EXECUTE

TABLE_SET= TAB701

Only the first and last part of the table are printed here.

RANKING LARGE BRAND LIST WITH NETS AND SUB-NETS

TABLE 701

AUTOMOBILE MANUFACTURERS

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-536 MENTOR

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 200 109 91

 100.0% 100.0% 100.0%

ASIAN (NET) 88 42 46

----------- 44.0% 38.5% 50.5%

 JAPANESE (SUB-NET) 86 42 44

 ------------------ 43.0% 38.5% 48.4%

 NISSAN 23 11 12

 11.5% 10.1% 13.2%

 HONDA 21 11 10

 10.5% 10.1% 11.0%

 TOYOTA 13 7 6

 6.5% 6.4% 6.6%

 SUBARU 9 4 5

 4.5% 3.7% 5.5%

 MAZDA 8 5 3

 4.0% 4.6% 3.3%

 OTHER JAPANESE 23 9 14

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -537

 11.5% 8.3% 15.4%

 OTHER ASIAN (SUB-NET) 5 2 3

 --------------------- 2.5% 1.8% 3.3%

 HYUNDAI 5 2 3

 2.5% 1.8% 3.3%

 OTHER ASIAN - - -

-

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-538 MENTOR

DOMESTIC (NET) 46 25 21

-------------- 23.0% 22.9% 23.1%

 CHRYSLER 20 13 7

 10.0% 11.9% 7.7%

 GENERAL MOTORS 20 10 10

 10.0% 9.2% 11.0%

 FORD 12 5 7

 6.0% 4.6% 7.7%

 OTHER DOMESTIC - - -

NONE 37 20 17

 18.5% 18.3% 18.7%

DON'T KNOW 22 15 7

 11.0% 13.8% 7.7%

6.7.3 Suppressing Blank Rows in a Large List

To suppress a row with no mentions in it, you need only to do is use the option
MINIMUM_FREQUENCY=1 on the EDIT or LOCAL_EDIT statement to then
suppress all rows which do not have at least one respondent in them. If you have
rows that you want to print even though the frequency is zero, like an OTHER
category or DON'T KNOW category (that you always want to show was
calculated on the table), then you will want to use the option
-MINIMUM_FREQUENCY on all those stubs. Also be aware that if you have
weighted data, then you may not want to set MINIMUM_FREQUENCY=1, but
rather to some other value like either 0.5 or 0.01 depending upon what you want to

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -539

do with a row that has less than 0.5 as the frequency. This frequency would round to
zero, but there is at least one valid respondent in that category. A value of 0.5 would
suppress this row, while 0.01 would print it with a dash.

This example uses comment labels and stub indention to mark the different
groupings although no net categories have been defined.

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-540 MENTOR

~DEFINE

TABLE_SET= TAB702:

HEADER=: SUPPRESSING ZERO ROWS IN A LARGE BRAND LIST
WITH COMMENTS }

LOCAL_EDIT=: MINIMUM_FREQUENCY=1 }

STUB=:

 [COMMENT,UNDERLINE] DOMESTIC

 [STUB_INDENT=2] CHRYSLER

 [STUB_INDENT=2] FORD

 [STUB_INDENT=2] GENERAL MOTORS

 [STUB_INDENT=2,-MINIMUM_FREQUENCY] OTHER DOMESTIC

 [COMMENT,UNDERLINE] EUROPEAN

 [COMMENT,STUB_INDENT=2,UNDERLINE] BRITISH

 [STUB_INDENT=4] ALFA ROMEO

 [STUB_INDENT=4] JAGUAR

 [STUB_INDENT=4] RANGE ROVER

 [STUB_INDENT=4] ROLLS-ROYCE

 [STUB_INDENT=4] STERLING

 [STUB_INDENT=4,-MINIMUM_FREQUENCY] OTHER BRITISH

 [COMMENT,STUB_INDENT=2,UNDERLINE,LINES_LEFT=16]
GERMAN

 [STUB_INDENT=4] BMW

 [STUB_INDENT=4] MERCEDES

 [STUB_INDENT=4] VOLKSWAGEN/PORSCHE/AUDI

 [STUB_INDENT=4,-MINIMUM_FREQUENCY] OTHER GERMAN

 [COMMENT,STUB_INDENT=2,UNDERLINE,LINES_LEFT=22]
OTHER EUROPEAN

 [STUB_INDENT=4] FIAT

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -541

 [STUB_INDENT=4] PEUGEOT

 [STUB_INDENT=4] SAAB

 [STUB_INDENT=4] VOLVO

 [STUB_INDENT=4] YUGO

 [STUB_INDENT=4,-MINIMUM_FREQUENCY] OTHER EUROPEAN

 [COMMENT,UNDERLINE,LINES_LEFT=25] ASIAN

 [COMMENT,STUB_INDENT=2,UNDERLINE,LINES_LEFT=22]
JAPANESE

 [STUB_INDENT=4] HONDA

 [STUB_INDENT=4] MAZDA

 [STUB_INDENT=4] NISSAN

 [STUB_INDENT=4] SUBARU

 [STUB_INDENT=4] TOYOTA

 [STUB_INDENT=4,-MINIMUM_FREQUENCY] OTHER JAPANESE

 [COMMENT,STUB_INDENT=2,UNDERLINE,LINES_LEFT=10]
OTHER ASIAN

 [STUB_INDENT=4] HYUNDAI

 [STUB_INDENT=4,-MINIMUM_FREQUENCY] OTHER ASIAN

 [-MINIMUM_FREQUENCY,LINES_LEFT=8] NONE

 [-MINIMUM_FREQUENCY] DON'T KNOW }

ROW=: [11.3^1//30]

}

~EXECUTE

TABLE_SET= TAB702

Only the first and last part of the table are printed here.

SUPPRESSING ZERO ROWS IN A LARGE BRAND LIST WITH
COMMENTS

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-542 MENTOR

TABLE 702

AUTOMOBILE MANUFACTURERS

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 200 109 91

 100.0% 100.0% 100.0%

DOMESTIC

 CHRYSLER 20 13 7

 10.0% 11.9% 7.7%

 FORD 12 5 7

 6.0% 4.6% 7.7%

 GENERAL MOTORS 20 10 10

 10.0% 9.2% 11.0%

 OTHER DOMESTIC - - -

EUROPEAN

 BRITISH

 JAGUAR 1 1 -

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -543

 0.5% 0.9%

 RANGE ROVER 4 2 2

 2.0% 1.8% 2.2%

 STERLING 5 3 2

 2.5% 2.8% 2.2%

 OTHER BRITISH 4 2 2

 2.0% 1.8% 2.2%

 GERMAN

 BMW 9 5 4

 4.5% 4.6% 4.4%

 MERCEDES 11 6 5

 5.5% 5.5% 5.5%

 VOLKSWAGEN/PORSCHE/AUDI 13 9 4

 6.5% 8.3% 4.4%

 OTHER GERMAN 2 1 1

 1.0% 0.9% 1.1%

- - - - - - - - - - -

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-544 MENTOR

SUPPRESSING ZERO ROWS IN A LARGE BRAND LIST WITH
COMMENTS

TABLE 702 (continued)

AUTOMOBILE MANUFACTURERS

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

NONE 37 20 17

 18.5% 18.3% 18.7%

DON'T KNOW 22 15 7

 11.0% 13.8% 7.7%

6.7.4 Collapsing Low Mentions into another Category

Sometimes when you have a long list you not only want to suppress blank rows,
but you may want to suppress rows that contain less than a certain frequency or
percentage value. If you suppress these rows however, you are actually removing
numbers from the table and will probably want to print them in what is called a
collapsed category at the bottom of the table. This allows you to take long lists and
shorten them so that they are easier to read because they only have the top
mentions and are not cluttered up with lots of rows with only a couple of mentions
in each.

Whenever a row is suppressed due to the MINIMUM_FREQUENCY or
MINIMUM_PERCENT option, the system sums all the numbers from that row in
a system row called SUPPRESSED. You can then use the PRINT_ROW option to
print that row at the bottom of the table.

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -545

In the example below all rows with less than 5 percent of the total are being
suppressed along with all the Other categories to produce one global Other
category. MINIMUM_PERCENT=5 is set on the EDIT and then it is set to 100 on
the Other categories to make sure they are suppressed. It is also set to
-MINIMUM_PERCENT on the DON'T KNOW and REFUSED to make sure they
do print even if they do not have many mentions.

NOTE: This table is also ranked to highlight the fact that no row with under 5
percent mentions is printed.

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-546 MENTOR

~DEFINE

TABLE_SET= TAB703:

HEADER=:

COLLAPSING LOW MENTIONS INTO AN ALL OTHER CATEGORY ON A
LARGE BRAND LIST}

LOCAL_EDIT=: MINIMUM_PERCENT=5,RANK_LEVEL=1}

STUB=:

 CHRYSLER

 FORD

 GENERAL MOTORS

 [MINIMUM_PERCENT=100] OTHER DOMESTIC

 ALFA ROMEO

 JAGUAR

 RANGE ROVER

 ROLLS-ROYCE

 STERLING

 [MINIMUM_PERCENT=100] OTHER BRITISH

 BMW

 MERCEDES

 VOLKSWAGEN/PORSCHE/AUDI

 [MINIMUM_PERCENT=100] OTHER GERMAN

 FIAT

 PEUGEOT

 SAAB

 VOLVO

 YUGO

 [MINIMUM_PERCENT=100] OTHER EUROPEAN

 HONDA

 MAZDA

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -547

 NISSAN

 SUBARU

 TOYOTA

 [MINIMUM_PERCENT=100] OTHER JAPANESE

 HYUNDAI

 [MINIMUM_PERCENT=100] OTHER ASIAN

 [PRINT_ROW=SUPPRESS,RANK_LEVEL=1L
-MINIMUM_PERCENT] ALL OTHER COMPANIES

 [RANK_LEVEL=1L,-MINIMUM_PERCENT] NONE

 [RANK_LEVEL=1L,-MINIMUM_PERCENT] DON'T KNOW }

ROW=: [11.3^1//30]

}

~EXECUTE

TABLE_SET= TAB703

Here is the table that is printed.

COLLAPSING LOW MENTIONS INTO AN ALL OTHER CATEGORY ON A
LARGE BRAND LIST

TABLE 703

AUTOMOBILE MANUFACTURERS

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 200 109 91

 100.0% 100.0% 100.0%

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-548 MENTOR

NISSAN 23 11 12

 11.5% 10.1% 13.2%

HONDA 21 11 10

 10.5% 10.1% 11.0%

CHRYSLER 20 13 7

 10.0% 11.9% 7.7%

GENERAL MOTORS 20 10 10

 10.0% 9.2% 11.0%

VOLVO 16 8 8

 8.0% 7.3% 8.8%

VOLKSWAGEN/PORSCHE/AUDI 13 9 4

 6.5% 8.3% 4.4%

TOYOTA 13 7 6

 6.5% 6.4% 6.6%

FORD 12 5 7

 6.0% 4.6% 7.7%

MERCEDES 11 6 5

 5.5% 5.5% 5.5%

ALL OTHER COMPANIES 95 49 46

 47.5% 45.0% 50.5%

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -549

NONE 37 20 17

 18.5% 18.3% 18.7%

DON'T KNOW 22 15 7

 11.0% 13.8% 7.7%

6.7.5 Printing Subtotal Rows

Five subtotal rows are maintained by the system, which can help you create
summary rows, or other types of rows on the printed table. You can store the
information of any row into a given subtotal by using either the stub option
SUBTOTAL# or KEEP_SUBTOTAL#. The # can be a number 1 to 5 or blank (the
default) which will use subtotal 1. SUBTOTAL# will only add this row into the
SUBTOTAL, while KEEP_SUBTOTAL will continue to add rows into the subtotal
until another subtotal stub option is used. A given row can be added into multiple
subtotal rows. To print a subtotal you need to use the PRINT_ROW option and set
it equal to either SUBTOTAL#_CLEAR or SUBTOTAL#_NO_CLEAR. If you set
PRINT_ROW equal to SUBTOTAL#_CLEAR it prints and clears the subtotal
value while SUBTOTAL#_NO_CLEAR will print it and not clear it. The default is
to clear any subtotal when you print it.

The following is an example of using two different subtotal options to create
summary rows at the bottom of the table.

~DEFINE

TABLE_SET= TAB704:

HEADER=: USING SUBTOTALING OPTIONS TO PRODUCE NET
CATEGORIES }

TITLE=: RATING OF BRAND X }

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-550 MENTOR

STUB=:

[SUBTOTAL1] VERY GOOD

[SUBTOTAL1] GOOD

FAIR

[SUBTOTAL2] POOR

[SUBTOTAL2] VERY POOR

DON'T KNOW

[PRINT_ROW=SUBTOTAL1] SUBTOTAL GOOD

[PRINT_ROW=SUBTOTAL2] SUBTOTAL POOR }

ROW=: [21^5//1/X] }

~EXECUTE

TABLE_SET= TAB704

Here is the table that is printed.

USING SUBTOTALING OPTIONS TO PRODUCE NET CATEGORIES

TABLE 704

RATING OF BRAND X

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 200 109 91

 100.0% 100.0% 100.0%

VERY GOOD 33 21 12

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -551

 16.5% 19.3% 13.2%

GOOD 57 27 30

 28.5% 24.8% 33.0%

FAIR 53 36 17

 26.5% 33.0% 18.7%

POOR 32 14 18

 16.0% 12.8% 19.8%

VERY POOR 11 5 6

 5.5% 4.6% 6.6%

DON'T KNOW 14 6 8

 7.0% 5.5% 8.8%

SUBTOTAL GOOD 90 48 42

 45.0% 44.0% 46.2%

SUBTOTAL POOR 43 19 24

 21.5% 17.4% 26.4%

Another possible use of the subtotalling feature is to use it to print a row twice on a
given table. This can be useful for printing multiple vertical percentages for each
row in the table. The example below demonstrates printing a vertical percentage
both of the total row and those who rated the brand.

A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

-552 MENTOR

~DEFINE

TABSET= TAB705:

HEADER=: USING SUBTOTALING OPTIONS TO PRINT MULTIPLE
VERTICAL PERCENTAGES }

TITLE=: RATING OF BRAND X }

STUB=:

[SUBTOTAL1, VERTICAL_PERCENT=T] THOSE WHO RATED BRAND X

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] VERY GOOD

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] GOOD

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] FAIR

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] POOR

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] VERY POOR

[PRINT_ROW=SUBTOTAL1, SKIP_LINES=0, -FREQUENCY,
VERTICAL_PERCENT=1]

[SUBTOTAL1, VERTICAL_PERCENT=T] DON'T KNOW }

T5=:\N

FIRST PERCENTAGE IS OFF OF TOTAL RESPONDENTS

SECOND PERCENTAGE IS OFF THOSE WHO RATED THE BRAND }

ROW=: [21^1-5/5//1/X]

}

. .
 .

. .A D V A N C E D TA B L E S
6.7 LONG BRAND LISTS

MENTOR v 8.1 -553

~EXECUTE

TABSET= TAB705

Here is the table that is printed.

USING SUBTOTALING OPTIONS TO PRINT MULTIPLE VERTICAL
PERCENTAGES

TABLE 705

RATING OF BRAND X

 SEX

 <---------->

 TOTAL MALE FEMALE

 ----- ---- ------

TOTAL 200 109 91

 100.0% 100.0% 100.0%

THOSE WHO RATED BRAND X 186 103 83

 93.0% 94.5% 91.2%

 100.0% 100.0% 100.0%

VERY GOOD 33 21 12

 16.5% 19.3% 13.2%

 17.7% 20.4% 14.5%

GOOD 57 27 30

 28.5% 24.8% 33.0%

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-554 MENTOR

 30.6% 26.2% 36.1%

FAIR 53 36 17

 26.5% 33.0% 18.7%

 28.5% 35.0% 20.5%

POOR 32 14 18

 16.0% 12.8% 19.8%

 17.2% 13.6% 21.7%

VERY POOR 11 5 6

 5.5% 4.6% 6.6%

 5.9% 4.9% 7.2%

DON'T KNOW 14 6 8

 7.0% 5.5% 8.8%

FIRST PERCENTAGE IS OFF OF TOTAL RESPONDENTS

SECOND PERCENTAGE IS OFF THOSE WHO RATED THE BRAND

6.8 MASTER-TRAILER PROCESSING

When you collect general information in a master questionnaire, collect additional
information in trailer questionnaires, and then generate tables from those related
questionnaires, it is called Master-Trailer processing. In the following example,
household information has been collected in the master questionnaire, and then
information about each person and the trips they take out of the house has been
collected in the trailer questionnaire. Using Master-Trailer processing, you can
generate tables based on households, individuals, or a combination of information
from both groups.

. .
 .

. .A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

MENTOR v 8.1 -555

This example uses two data files: one for household information and one for
individual trip destinations during a test week. Household information includes the
home address, which is the origin of all trips. The destinations of up to four
persons in the household, a maximum of three trip destinations per person has been
recorded in the trailer questionnaire. The number weekday and weekend trips to
each destination has also been recorded.

This example uses the spec file trips3.spx that creates three tables. Information
about the household can be reported and combined with destination data using both
data files as both files have a Household ID# as part of the Case ID#. The data files
are simple and concise and contain information about only those destinations
actually visited.

The data files for the trips example are organized as follows:

The hhdata.tr (household data file) is 80 columns long.

Item Location

Household ID# 1.5

Origin of Trip 50.4

The indata.tr (individual destination data file) is 240 columns long.

Item Location

Household ID# 1.5

Person # 6

Trip # 7

Destination 130.4

Number of Weekday Trips 231.2

Number of Weekend Trips 233.2

Important keywords in this example include:

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-556 MENTOR

• ~INPUT $ studyname=<name>

The phantom ~INPUT statement uses a "studyname" so that the phantom file
can assume the CASE_WIDTH, WORK_LENGTH, TOTAL_LENGTH,
TEXT_WIDTH, TEXT_START, and CASE_START from the input file with
that "studyname".

• STUDYNAME![data description]

This refers to a location or variable in a specific input file associated with the
studyname. There is also STUDYNAME^[data description] for
identifying locations or variables in a specific dbfile.

• READ_PROCEDURE=<name> ON studyname

This executes the specified procedure on the input file associated with the
studyname.

• WHILE MATCHING "indata" indata![1.5$]

This command lets you do hierarchical jobs (such as master-trailer processing)
on sets of files where the secondary files are sorted in order by the relevant
match fields. Here is how WHILE MATCHING is used in the following
example:

1 Start with the primary file (hhdata).

2 Do a choosefile on the secondary file (indata), which is the file associated with the
studyname "indata".

3 Starting with the first case look for the matching field indata![1.5$] to match
hhdata!case_id. The matching field can be any expressions resulting in a
string (for example, studyname![1.5$] JOIN studyname![8$]).

4 If the matching field is less, then read forward in the secondary file. If it is greater,
then quit the loop. This only works if the file given by studyname is sorted by the
matching field.

. .
 .

. .A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

MENTOR v 8.1 -557

5 Now execute the interior of the WHILE ENDWHILE for every case that passes
any SELECT= on the ~INPUT statement and also has a matching field with the
same CASE_ID in the primary file.

6 Do a choosefile back to the primary file and go on.

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-558 MENTOR

~COMMENT trips3.spx

~DEFINE

PROC={proc1:

 WHILE MATCHING "indata" indata![1.5$]

 COPY inwork![130.4] = indata![130.4] ''destinations

 COPY inwork![231.2] = indata![231.2] ''total weekday trips

 COPY inwork![233.2] = indata![233.2] ''total weekend trips

 DO_TABLES

 ENDWHILE

}

trips: CFUNC(-34,&

inwork![130.4#707/708/726/727/728/729/730/746/747/748/780/783/784])

TABSET=&

{global:

 FOOTER={:

 =Page #page_number#

 }

 HEADER={:

 =1995 County Transit Survey

 December 1995\n

 }

 GLOBAL_EDIT={:

 -COLTNA

 CALL_TABLE=""

 -TCON

 PDEC=0

 PUTCHAR=-z--

. .
 .

. .A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

MENTOR v 8.1 -559

 SUPPRESS_ROWS_BASE=1

 }

}

TABSET=&

{ban1:

 EDIT={:

 CWIDTH=5

 SWIDTH=24

 }

 BANNER={:

 | Origins

 | ===

 |Total 707 708 725 726 727 729 730 746 780 783

 |----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

 }

 COL=: NET([50.4#707/708/725/726/727/729/730/746/780/783])

}

TABSET=&

{qwkday:

 LOCAL_EDIT={:

 MINFREQ=1

 -ROWTNA

 -VPER

 SKIP=0

 }

 TITLE={:

 Trips (one-way) from Glenview Estates Area\n

 }

 TITLE_4={:

 Total weekday trips

 }

 STUB={:

 Total trips

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-560 MENTOR

 [comment,underline,skiplines=1] Destinations within Glenview
Estates

 [stub_indent=4] 707

 [stub_indent=4] 708

 [stub_indent=4] 726

 [stub_indent=4] 727

 [stub_indent=4] 728

 [stub_indent=4] 729

 [stub_indent=4] 730

 [stub_indent=4] 746

 [stub_indent=4] 747

 [stub_indent=4] 748

 [stub_indent=4] 780

 [stub_indent=4] 783

 [stub_indent=4] 784

 Outside Glenview Estates

 }

 ROW=: trips * inwork![231.2]

}

TABSET=&

{qwkend=qwkday:

 TITLE_4={:

 Total weekend trips

 }

 ROW=: trips * inwork![233.2]

}

TABSET=&

{qtotal=qwkday:

 TITLE_4={:

 Total trips

 }

 ROW=: trips * (inwork![231.2] ++ inwork![233.2])

}

. .
 .

. .A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

MENTOR v 8.1 -561

~INPUT hhdata STUDY_NAME=hhdata NUMBER_INPUT_BUFFERS=3

~INPUT indata STUDY_NAME=indata NEW_BUFFER

~INPUT $ STUDY_NAME=inwork NEW_BUFFER

>PRINTFILE trips3 PAGE_WIDTH=80

~EXC

TABSET=global

READ_PROC=proc1 on hhdata

TABSET=ban1

 TABSET=qwkday TAB=*

 TABSET=qwkend TAB=*

 TABSET=qtotal TAB=*

~END

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-562 MENTOR

1995 County Transit Survey

 December 1995

Trips (one-way) from Glenview Estates Area

Total weekday trips

 Origins

 ===

 Total 707 708 725 726 727 729 730 746 780 783

 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Total trips 561 47 92 18 16 28 33 133 30 159 5

Destinations within

Glenview Estates

 707 17 - - - - - - - - 17 -

 708 3 - - - - - - 3 - - -

 726 5 - - - - - - - - 5 -

 727 7 - 7 - - - - - - - -

 729 15 - 10 - - - - 3 - 2 -

 746 5 - - - - - - 5 - - -

 747 12 - 8 - - - - - - 4 -

Outside Glenview Estates 497 47 67 18 16 28 33 122 30 131 5

 Page 1

. .
 .

. .A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

MENTOR v 8.1 -563

 1995 County Transit Survey

 December 1995

Trips (one-way) from Glenview Estates Area

Total weekend trips

 Origins

 ===

 Total 707 708 725 726 727 729 730 746 780 783

 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Total trips 70 9 20 2 2 4 2 10 5 16 -

Destinations within

Glenview Estates

 707 3 - - - - - - - - 3 -

 726 1 - - - - - - - - 1 -

 727 4 - 4 - - - - - - - -

 729 4 - 3 - - - - - - 1 -

 746 2 - - - - - - - 2 - -

 747 1 - 1 - - - - - - - -

 780 2 - 2 - - - - - - - -

Outside Glenview Estates 53 9 10 2 2 4 2 10 3 11 -

 Page 2

A D V A N C E D TA B L E S
6.8 MASTER-TRAILER PROCESSING

-564 MENTOR

 1995 County Transit Survey

 December 1995

Trips (one-way) from Glenview Estates Area

Total trips

 Origins

 ===

 Total 707 708 725 726 727 729 730 746 780 783

 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Total trips 631 56 112 20 18 32 35 143 35 175 5

Destinations within

Glenview Estates

 707 20 - - - - - - - - 20 -

 708 3 - - - - - - 3 - - -

 726 6 - - - - - - - - 6 -

 727 11 - 11 - - - - - - - -

 729 19 - 13 - - - - 3 - 3 -

 746 7 - - - - - - 5 2 - -

 747 13 - 9 - - - - - - 4 -

 780 2 - 2 - - - - - - - -

Outside Glenview Estates 550 56 77 20 18 32 35 132 33 142 5

Version 8.1 MENTOR -565

.

. .
T A B L E S V I E W A B L E T H R O U G H A B R O W S E R 7

. .I N T R O D U C T I O N
his chapter explains how to customize Mentor specs to produce HTML
output files that allow you to viewed tables through a Web browser. It
includes information about WebTables, Cascading Style Sheets (CSS),

and On-Demand tables. This chapter assumes that there is a basic understanding of
tables and CfMC terminology. If you are not familiar with creating tables, review
Chapters 4, 5, and 6.

At the end of this chapter there is a section on how to simultaneously create a print
file, a delimited file, and an HTML file. For more information, go to “Preparing
Mentor Output Files For Post Processing”

NOTE: Any references to “Class” statements in this chapter pertain to use of
style sheets. This option is available in Mentor 7.7 or above. If using prior
versions, the alternate commands must be used.

For information on Dynamic Charts, contact CFMC Customer Support at
support@cfmc.com.

WebTables Overview

The HTML (.htm) files created by Mentor must be placed in a Web-accessible
directory. The .htm files created by Mentor must be created in or moved to this
Web-accessible directory

Make sure that you have JavaScript enabled in your browser. The default in most
browsers will enable JavaScript. However, if you would like to make sure that this
default is turned on:

• To check this in your Netscape Browser, go to File Preferences Enable
JavaScript (there are three boxes to check).

T

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.1 Basic WebTables

-566 MENTOR

• In IE, go to Tools ==> Internet Options ==>Advanced, and check box JIT
Compiler -enabled. These steps will vary with different browser versions.

• In Mozilla, Firefox, go to Tools ==> Options ==>Web Features, check
Enable Java, JavaScript boxes.

• In Safari, click on Preferences, Security, click on Enable Java and
JavaScript boxes.

BROWSER COMPATIBILITY

You can use any version of IE 5 or above or Netscape 4 or above to view
WebTables. Versions 6.0 or higher are the only browsers that will function fully.

The folowing sections describe basic and then complex WebTables.

EXAMPLE MENTOR FILES AVAILABLE ONLINE

For an example of Mentor files, go to http://distrib.cfmc.com/hints/webtab77/. The
files on this website are based on the Roadrunner survey that can be found in
CfMC’s Mentor and Survent example directories.

Certain aspects of the specs are explained within the files. The explanations are
offset by two single quotation marks ("). These are commonly used in CfMC files.
It is known as “commenting out” text or code.

7.1 Basic WebTables

Using Mentor enables you to transform plain ASCII tables into tables with HTML
enhancements to produce user-friendly tables on the Internet, called WebTables.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.1 Basic WebTables

MENTOR v 8.1 -567

WRITING SPECS
Mentor produces the enhanced HTML code that allows the tables to be viewed
through a browser. Included in this chapter is a Mentor .spx file that contains all of
the necessary coding to create colorful web tables. Notes explaining the code or
portions of code will be offset with ' ' (two single quotes).

MANAGING YOUR SPECS
In general, most web table-related commands can go in the ~set block or the ~edit
statement within your spec file. However, colinfo and tcon options MUST go in
the ~edit statement. In addition,

~set
web_tables= (
css_file_check=/www/htmldocs/cfmcweb/css/wmentor.css
css_file_path="http://product01.cfmc.com/cfmcweb/css/wmentor.css"
on Resize=”resetColors()”
)

MUST be put in a ~set block.

NOTE: Useful hint - using the full path for the CSS makes it easier to use the
same specs from one job to another.

USING SET COMMANDS IN TABS.SPX

~SET
WEB_TABLES=(
css_file_check=/www/htmldocs/cfmcweb/css/wmentor.css
css_file_path="http://product01.cfmc.com/cfmcweb/css/wmentor.css"
bgcolor=#F0F8FF ''is best set in the body statement on the css
web_format_ban=(class=banner) ‘’below is the alternative not using a CSS
'' or web_format_ban=(bgcolor=lime font=(color=red size=1))
web_format_stub=(class=stub)
web_format_freq=(class=freq)

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.1 Basic WebTables

-568 MENTOR

web_format_vper=(class=vper
web_format_stat=(class=stat)
web_format_comment=(class=comm)
web_format_hper=(class=hper)

''*********** rows alternate lime/red for bgcolor***************
'' web_format_odd_row=(bgcolor=red)
'' web_format_even_row=(bgcolor=lime)

WEB_FORMAT_TABLE=(
'' The following commands are all handled in the body statement in the css
'' class=vd10 ''font=(face="verdanal" size=2)
'' border=10
'' width=100% '' or width=200
'' cellspacing=1%
'' cellpadding=1%
'' bordercolor=#333366
)
)

GLOBAL EDIT STATEMENTS IN THE TABS.SPX
tabset=global:
global_edit=:-coltna
tcon=(first,

web_format_tcon_anchor=(class=TocBody)
web_format_tcon_anchor=(class=Toctabnum)
)

RANK_IF_INDICATED
RANK_COL_BASE=1
PDEC=1
SDEC=2
PUTCHARS=-Z-
-t4base
stats_on_separate_line
minfreq=1
dostats=.90 ALL_POSSIBLE_PAIRS_TEST
running_lines=1
}

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.1 Basic WebTables

MENTOR v 8.1 -569

''*********** cols alternate size ***************************************
'' Colinfo DONE IN EDIT STATEMENT in banner_a.def
'' web_format_odd_col=(bgcolor=lime font=(color=red size=5))
'' web_format_even_col=(bgcolor=pink font=(color=lime size=4))

For colinfo:

colinfo=(
c=1 webformat=(bgcolor=lime) font=(size=5)) /
c=2 webformat=(bgcolor=yellow) /
c=3=2 /
c=4=2 /
c=5 webformat=(bgcolor=lime) /
c=6=5 /
c=7=5 /
c=8 webformat=(bgcolor=yellow) /
c=9=8

)

When setting up your Web banner, the following will produce .prt, .dlm and .htm
banners.

BANNER=: make_banner
[level=2]
[underline=- level=1] Total
[underline== level=2 colspan=3] AGE
[underline=- level=1] Under 35
[underline=- level=1] 35 - 54
[underline=- level=1] Over 54
[underline== level=2 colspan=3] INCOME
[underline=- level=1] Under $15k
[underline=- level=1] $15 - $35
[underline=- level=1] Over $35k
[underline== level=2 colspan=2] RATING
[underline=- level=1] Good
[underline=- level=1] Neutral /Poor

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Files Needed to Create WebTables

-570 MENTOR

}
COLUMN=: TOTAL WITH &
 [1/51^1,2/3,4/5,6] WITH &''respondent age
 [1/52^1/2,3/4,5,6] WITH &''income
 [1/47^4,5/1,2,3] ''rating
}

Stub Front Options:

[web_format_row=(bgcolor="ccccff")] Top 2 box
[web_format_row=(bgcolor="ccccff")] Bottom 2 box
[stat Web_format_stub=(bgcolor="ccffff")]Mean
[stat web_format_stub=(bgcolor="ccffff")]& Standard deviation

Files Needed to Create WebTables

Similar to a Mentor run in version 7.6, you need a few files in order for your tables
to work in 7.7. You will start off with the following files.

• Tabs.spx (Table specs including stub options, etc)

• Banner_a.def (Specifies all the banner points and edits associated with that
particular banner)

• Studyname_x.def (Defines all question-by-question table definitions)

The banner_a.def and <studyname>_x.def can be ampersanded in to your tabs.spx
as separate files, or they can be included in the tabs.spx (cut and pasted in).

To simplify the process of putting up WebTables, the file examples in this
documentation are broken up into separate files that are ampersanded into the
tabs.spx file.

NOTE: If there are multiple banners within one run, then all of the banners can
be put in the same directory. However, if there are multiple banners with
separate runs, placing each banner in separate folders helps keep the job

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Files Produced by the Mentor Run

MENTOR v 8.1 -571

organized. For example, if there are three banners then you can have
folders for each run: ban01, ban02, ban03. Since you will have different
output (html,dlm,prt,...) for each banner, you will end up with a large
number of files. If you have them in separate folders, it will be easier to
maintain file organization.

Files Produced by the Mentor Run

After you run Mentor, the following files are produced:

• An HTML file - <studyname>.htm. This file brings all of the parts of the table
together. It calls in all the files that have been created by Mentor to produce the
desired tables. Mentor produces files with a .htm extension because, by default,
Mentor only allows three-character extensions.

NOTE: There is a meta command (>cfmc_extension htm=html) that can be put
in the tabs.spx spec that will produce .html extensions.

• An ASCII print file– <studyname>.prt (This is used for downloadable ASCII
tables.)

• A comma-delimited file – <studyname.dlm> (This can be imported into
applications, such as Excel.)

NOTE FOR WINDOWS/DOS CLIENTS
If Mentor is run on a Windows/DOS PC, then the html files generated by Mentor
are created with UPPERCASE names (TAB14.HTM). When these files are
transferred to the server, they must be changed to lower-case names.

WHEN MANUALLY TESTING AND PREPARING TO GO LIVE
After you run all of your specs through Mentor without errors and after your HTM
files are generated, then the files are copied to the Linux server or the HP-UX
server.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Basic steps to Running a Live Mentor 7.7 Job

-572 MENTOR

NOTE: CfMC spec writers use UltraEdit© for writing specs and putting up
tables.

These HTM files must reside in a Web-accessible directory on your server that
would have a path, such as this (if CfMC install directions were followed):

 /var/www/html/<studyname>

Basic steps to Running a Live Mentor 7.7 Job
1 Write the specs as if it’s a straight Mentor job, adding the necessary web-related

commands to the tabs.spx file. This will allow you to produce an htm file.

2 The live data must be transferred with fastcopy to a directory where it can be
accessed. This step will prevent the corruption of the data set. (Fastcopy is a CfMC
SUPER command. For more information, see Chapter 4 of your Survent Manual.)

3 Run the tables.

4 Once the tables are made, the htm (html) file must be transferred to the Web-
accessible directory onnthe server, unless the tables have been run in that area of
the server. They will then be viewable through a Web browser.

Setting up Directories and Running WebTables

CfMC follows a set procedure in setting up directories and running web tables.
This procedure is specific to how the machines are set up. Your system
administrator will have to tailor your procedure according to the setup of your own
machines. CfMC’s support team can provide some guidance, if necessary.

Automating or Running Tables on a Set Schedule

In order to run tables automatically, at certain times, you will need to have a
cronjob. This would have to be set up by your system administrator.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.2 Complex WebTables

MENTOR v 8.1 -573

1 A CfMC cron job script is included in this documentation. It follows the example
spec files. It is included as a guideline tool. So, in order to automatically run tables,
you must:

2 Set up the cron job.

3 Consider password protecting your tables. (See the Webpass script, which is also
included in this document.)

4 If more than one banner is used or you would like to access both Web Tables and
downloadable ASCII tables, an index page would be a good way to achieve this.
(An example of an index.html file is also included.)

7.2 Complex WebTables

When creating WebTables, using colors and different fonts in specs can produce
state of the art tables. Although sometimes dependent on the browser, creating
tables can be done with little effort. Mentor 7.7 has the ability to create these tables
with simple commands or by using Cascading Style Sheets (CSS).

The following section will show how these commands can be used.

BASIC COLORS

Color Hexadecimal Code
Aqua "#00FFFF"

Black "#000000"

Blue "#0000FF"

Fuchsia "#FF00FF"

Gray "#808080"

Green "#008000"

Lime "#00FF00"

Maroon "#800000"

Navy "#000080"

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.2 Complex WebTables

-574 MENTOR

Olive "#808000"

Purple "#800080"

Red "#FF0000"

Silver "#C0C0C0"

Teal "#008080"

Yellow "#FFFF00"

White "#FFFFFF"

HELPFUL INTERNET WEBSITES FOR CHOOSING COLORS

• http://hotwired.lycos.com/webmonkey/reference/color_codes

• http://www.zspc.com/color/index-e.html

• http://www.visibone.com/colorlab/

• http://www.december.com/html/spec/colorsafe.html

• http://www.simplythebest.net/info/216color.html

SOURCES FOR CSS HELP

There are many sources for help with CSS. Here are a few:

http://www.devguru.com/Technologies/css/quickref/css_index.html

http://www.w3schools.com/css/default.asp

http://glish.com/css/#tutorials

http://hotwired.lycos.com/webmonkey/

VALIDATION WEBSITES

There are useful validation websites which include the following:

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Basic Commands with and without Cascading Style Sheet

MENTOR v 8.1 -575

For HTML: http://validator.w3.org/

For CSS: http://jigsaw.w3.org/css-validator/validator-uri.html

Basic Commands with and without Cascading Style Sheet

Without CSS With CSS CSS Commands

~set web_tables=(~set web_tables=(

css_file_check=/www/htmldocs/sue
d/rrunr/css/style.css

Path that mentor uses to validate
styles

css_file_path="/sued/rrunr/css/styl
e.css"

Path that is inserted into html page

html_title="Road Runner
Fast Food Sample tables"

html_title="Road Runner Fast Food
Sample tables"

web_format_ban=(bgcol
or="ffffff"
font=(color=black))

web_format_ban=(class=banner) .banner {
 background-color: #ffff00;
 text-align:center;(default is
right)
 color: #000000;
 }

web_format_stub=
(bgcolor=yellow)

web_format_stub=(class=stub) .stub {
 background-color: #ffff00;
 }

web_format_freq=(bgcol
or=yellow
font=(color=green))

web_format_freq=(class=freq) .freq {
 background-color: #ffff00;
 color: #008000;
 }

web_format_vper=(class
=vper)

web_format_vper=(class=vper) .vper {
 color:#000066;
 text-align:center;
 }

web_format_stat=(font=
(color=red))

web_format_stat=(class=stat) .stat {
 color:red;
 }

web_format_hp=(bgcolo
r="ccffff"
font=(color=purple))

web_format_hp=(class=hper) .hper {
 background-color: #ccffff;
 color: purple;
 }

web_format_cumulative
_percent=(bgcolor="ccc
cff")

web_format_stat=(class=cper) .cper {
 background-color: #ccffff;
 }

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-576 MENTOR

Example Fi les and How They Work
The specs in subsequent sections create CfMC’s “Road Runner” demo. An
example of a Table of Contents and the table it produces follows the spec files
needed to produce them.

Explanations, which can be seen throughout the files, explain certain steps in the
specs and the functions that they perform.

THE TABS.SPX FILE

web_format_comment=(
bgcolor="ffffff")

web_format_comment=(class=com
m)

.comm {}

web_format_odd_col=(b
gcolor=yellow)

web_format_odd_col=(class=oddcol
)

.oddcol {
 color:yellow;
 }

web_format_even_col=(
bgcolor=yellow)

web_format_even_col=(class=even
col)

.evencol {
 color:yellow;
 }

web_format_odd_row=(
bgcolor=yellow)

web_format_odd_row=(class=oddro
w)

.oddrow {
 color:yellow;
 }

web_format_even_row=
(bgcolor=yellow)

web_format_even_row=(class=eve
nrow)

.evenrow {
 color:yellow;
 }

bgcolor=aqua
font=(face=arial)
border= width=90%
cellspacing=10
cell padding=20%

The look of the overall tables is set
in the body statement. Anything
added after that will override the
statements in the body statement

body {
 padding: 2em 3em 2em 3em;
 border-top: 1.7em solid #006699
;
 border-left: 1.3em solid #b0c4de;
 border-bottom: 1.7em solid
006699;
 border-right: 1.3em solid
#b0c4de;
 margin: 0;
 font-family: verdana, sans, arial;
 font-size: .8em;
 }

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

MENTOR v 8.1 -577

The tabs.spx file shown below controls the following:

• The ablility to turn off frequencies or percentages in the delimited tables.

• The ability to turn off the footer and the header.

• The ability to turn off the tables of contents for comma-delimited tables that are
used for many other purposes.

>filldef
>PURGESAME
>DEFINE @STUDY rrunr ''* NAME STUDY (REMEMBER CONSISTENCY)

>CREATEDB tables S=L

~set -varnames

>-printrep

~specfile @STUDY
~SET AUTOTAB drop_local_edit drop_base drop_t4 stat_base_ar
 DELIMITED_TABLES=(delimiter=comma banner -quoted_banner_text

stats_on_separate_line)
WEB_TABLES=(
css_file_check=/www/htmldocs/cfmcweb/css/wmentor.css
css_file_path="http://product01.cfmc.com/cfmcweb/css/wmentor.css"
‘’**
‘’PLEASE NOTE: If the background color is set in the banner edit or in the body
‘’statemant in the CSS it will override all other bgcolor statementsw below
‘’***
‘’*********** Contents alter colors within the elements of the tables*****
web_format_ban=(class=banner) ‘’below is the alternative not using a CSS
'' web_format_ban=(bgcolor=lime font=(color=red size=1))
web_format_stub=(class=stub)
web_format_freq=(class=freq)
web_format_vper=(class=vper
web_format_stat=(class=stat)
web_format_comment=(class=comm)
web_format_hper=(class=hper)

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-578 MENTOR

''*********** rows alternate lime/red for bgcolor***************
'' web_format_odd_row=(bgcolor=red)
'' web_format_even_row=(bgcolor=lime)

WEB_FORMAT_TABLE=(
'' The following commands are all handled in the body statement in the css
'' class=vd10 ''font=(face="verdanal" size=2)
'' border=10
'' width=100% '' or width=200
'' cellspacing=1%
'' cellpadding=1%
'' bordercolor=#333366
)
)
~DEFINE

STUB=stubpref1:
[-Vper SKIP_LINES=0 freq]Total Sample
[-VPER]No Answer
[Prt=Ar Vper=* SKIP_LINES=0 freq]Any Response
[comment]
}

STUB=stubpref2:
[supp -vper -freq] ''TOTAL
[SUPP] NO ANSWER
[comment]
}

tabset=global:
global_edit=:-coltna

''*********** THIS HANDLES TABLE OF CONTENTS APPEARANCE ***
tcon=(first,
'' web_format_tcon=(class=TocBody) ''this is for the title portion of toc
'' web_format_tcon_anchor=(class=Toctabnum) ''this is for the left side (TABLE #))

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

MENTOR v 8.1 -579

RANK_IF_INDICATED
RANK_COL_BASE=1
PDEC=1
SDEC=2
PUTCHARS=-Z-
-t4base
stats_on_separate_line
minfreq=1
dostats=.90 ALL_POSSIBLE_PAIRS_TEST
}

footer=:=\k(h)<center>\k(h,p)Tables prepared by Computers for Marketing
Corp.\k(h)

\k(h,p)PAGE #PgNum#\k(h)

\k(h,p)LAST UPDATED #DATE# #TIME# \k(h)

If you would like to download an ASCII version of these tables to your computer,

click "file", then "save as" AFTER
clicking here</center>
}
}
&banner_a.def
&rrunr_x^def

~in @STUDY~, DOT=100

>PRINTFILE @STUDY~

~EXECUTE

MAKE_TABLES

~end

The following scripts are used to transfer tables to a different directory

''BOB 6/23/03 Everything else will be ignored for now
~set printtcon ''to flush out table of contents (if tcon is on)

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-580 MENTOR

~specfile ''to close "specfiles" (e.g., .htm,.dlm)
~
>prtfile ''to close the print file
~
''do perform whatever system commands you want with this output
>sys cp @STUDY~.prt /www/htmldocs/<directory_name>
>sys cp @STUDY~*.htm /www/htmldocs/<directory_name>
>sys cp @STUDY~.dlm /www/htmldocs/<directory_name>
~END

THE BANNER_A.DEF FILE

TABSET=BANNER_A:
STUBPREF=STUBPREF1
stat=:I=BCD,I=EFg,I=HI

EDIT=:
 SWID=30
 CWID=7
''colinfo=(
'' c=1 webformat=(bgcolor=#ffffff) /
'' c=2=1 /
'' c=3=1 /
'' c=4=1 /
'' c=5=1 /
'' c=6=1 /
'' c=7=1 /
'' c=8=1 /
'' c=9=1
'')
}

BANNER=: make_banner
[level=2] ‘’space holder
[underline=- level=1] Total
[underline== level=2 colspan=3] AGE
[underline=- level=1] Under 35
[underline=- level=1] 35 - 54
[underline=- level=1] Over 54

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

MENTOR v 8.1 -581

[underline== level=2 colspan=3] INCOME
[underline=- level=1] Under $15k
[underline=- level=1] $15 - $35
[underline=- level=1] Over $35k
[underline== level=2 colspan=2] RATING
[underline=- level=1] Good
[underline=- level=1] Neutral /Poor
}
 COLUMN=: TOTAL WITH &
 [1/51^1,2/3,4/5,6] WITH & ''respondent age
 [1/52^1/2,3/4,5,6] WITH & ''income
 [1/47^4,5/1,2,3] ''rating
}

THE RRUNR_X.DEF FILE

tabset= { qn1_z:
title=:
Q1. How much do you agree with the following statement: The fast food at Road

Runners is worth what I pay for it.}
stub=:
 (5) Completely agree
 (4) Somewhat agree
 (3) Neither agree nor disagree
 (2) Somewhat disagree
 (1) Completely disagree
 Don't Know/Refused to answer
 [comment]
 [stat] Mean
 [stat] Standard deviation
 [stat] Standard error}
''qn1(5/4/3/2/1/0)
row=: [1/6.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/6.1 *ranges=1-5]
 }

tabset= { qn2a_z:

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-582 MENTOR

title=:
 Q2a. Please rate the following characteristics: The quality of the food.}
stub=:
 (5) Very good
 (4) Good
 (3) Neither poor nor good
 (2) Poor
 (1) Very poor
 Don't know/refused to answer
 [comment]
 [stat] Mean
 [stat] Standard deviation
 [stat] Standard error}
''qn2a(5/4/3/2/1/0)
row=: [1/7.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/7.1 *ranges=1-5]
 }

tabset= { qn2b_z:
title=:
 Q2B. Please rate the following characteristics: The quality of service.}
'' SAMEAS QN2A
stub=qn2a_s
''qn2b(5/4/3/2/1/0)
row=: [1/8.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/8.1 *ranges=1-5]
 }

tabset= { qn2c_z:
title=:
 Q2C. Please rate the following characteristics: The cleanliness of the restaurant.}
'' SAMEAS QN2A
stub=qn2a_s
''qn2c(5/4/3/2/1/0)
row=: [1/9.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/9.1 *ranges=1-5]
 }

tabset= { qn2d_z:

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

MENTOR v 8.1 -583

title=:
 Q2D. Please rate the following characteristics: The prices on the menu.}
'' SAMEAS QN2A
stub=qn2a_s
''qn2d(5/4/3/2/1/0)
row=: [1/10.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/10.1 *ranges=1-5]
 }

tabset= { qn2e_z:
title=:
 Q2E. Please rate the following characteristics: The accuracy of your bill.}
'' SAMEAS QN2A
stub=qn2a_s
''qn2e(5/4/3/2/1/0)
row=: [1/11.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/11.1 *ranges=1-5]
 }

tabset= { qn2f_z:
title=:
 Q2F. Please rate the following characteristics: The cleanliness of the restrooms.}
'' SAMEAS QN2A
stub=qn2a_s
''qn2f(5/4/3/2/1/0)
row=: [1/12.1^5/4/3/2/1/10] &
 $[mean,std,se] [1/12.1 *ranges=1-5]
 }

tabset= { qn2g_z:
title=:
 Q2g. What is your opinion of the Road Runners billing format? Is it...}
stub=:
 Easy to understand
 Hard to understand
 Neither easy nor hard to understand
 Don't know}
''qn2g(1/2/3/0)
row=: [1/13.1^1/2/3/10]

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-584 MENTOR

 }

Those are the three files that you have to set up properly and compile to test for
errors. The rest of the files are generated by Mentor.

THE INDEX.HTML FILE
The index.html file is created by the programmer. It provides access to both the
WebTables and downloadable ASCII tables within a browser if you choose to set it
up this way. The file’s source code follows. This is for a single-bannered table.

This is what the index page looks like through a browser.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

MENTOR v 8.1 -585

This is the index.html file

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>CfMC DEMO TABLES</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link href="css/webmentor.css" rel="stylesheet" type="text/css" />
</head>
<div class="header">
 <div class="logo">

”CfMC logo” border="0" />

 </div>
</div>

 <div class="hdivide">
</div>
<div class="content">
 <div class="spectab">
 <h1>CFMC DEMO TABLES</h1>

 <h2>Road Runner</h2>

 <table>
 <tbody>
 <tr>
 <td >ON-LINE TABLES</td>
 <td >Web Tables</td>
 <td >Quick upload/Printable</td>
 </tr>
 <tr>
 <td >ON-DEMAND TABLES</td>
 <td colspan="2" >Web Tables On-Demand</td>
 </tr>
 </tbody>
 </table>

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Example Files and How They Work

-586 MENTOR

 </div>
</div>

 <div class="hdivide"> </div>
</div>
</body>
</html>

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Custom CfMC Scripts

MENTOR v 8.1 -587

EXAMPLE OUTPUT OF A WEBTABLE
In this example, Table 001 was chosen, and it produced a nicely organized table.

Custom CfMC Scripts

THE WEBPASS SCRIPT
This script was written to give clients the ability to password protect real-time
results . This script is included with the install and instructions for customizing this
script are provided in the following sections.

Preparation

Edit your httpd's access.conf (or httpd.conf if access.conf is no longer used) and
alter “AllowOverride" in <Directory (** html doc home **)> </Directory> block to
be "AllowOverride AuthConfig".

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Custom CfMC Scripts

-588 MENTOR

NOTE: Make sure that httpd.conf has all of the ServerNames listed:

Example:

ServerName pd1.cfmc.com

 ServerName www.survey1.cfmc.com

This will stop the password screen from coming up multiple times.

Place this file in any directory in your $PATH (e.g., "/usr/local/bin")

Usage:

 "webpass <document name> <subdirectory of main html document directory>"

 or

 "webpass" (and follow the prompts)

Once this is run for a particular directory, it does not have to be run again. Replace
documents in or copy new documents into the password-protected web document
directory.

You may need to change the following variables:

$docloc = "/var/www/html"; change this to your main html doc location

$authname = "Password Protected Location"; Appears on username/password
screen

$passfile = ".htpasswd"; Name of file for passwords; this will be in document
directory.

Once you have customized your script, run it and set up a username and password,
you can then e-mail the client with the url where the html docs reside and their
username and password. The script example follows.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -589

7.3 ON-DEMAND TABLES

The On-Demand utility enables you to perform advanced data manipulation, such
as performing quick cross tabs between two variables. For example, any question in
a study can be crossed with any other question. On-Demand is very beneficial for
analyzing a study.

There is a simple command that activates the utility on the server where the study is
running. If the study is not running on the server, the .qpx and .tr can be placed in a
Web-accessible directory. Both options are easy to use.

7.3.1 Instal lat ion Requirements

If the software was properly installed, a cfmcweb directory will be created in the
Web-accessible area (html document directory) of the server. This directory will
probably be /var/www/html/ (CfMC's default), but check with your system
administrator if you do not know what it is. This cfmcweb directory will contain
subdirectories containing CfMC-specific applications.

There are two subdirectories in cfmcweb that pertain to the creation of On-Demand
Tables:

1 /var/www/html/cfmcweb/php/ondemand: holds php scripts. The files are:

• makedb.php - php script for setting up On-Demand presentation screen

• maketab.php - php script for making tables

• cleanup.php - cleans up tables directory files that were created during the run
that are no longer needed.

NOTE: You should NEVER edit these files

2 /var/www/html/cfmcweb/css: for html cascading style sheets. CfMC has included:

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-590 MENTOR

• ondemand.css

NOTE: You may add your own .css files to this directory based on the structure of
ondemand.css. It is not advisable to edit the ondemand.css, the default style sheet.
If Mentor 7.7+ is reinstalled, it will overwrite ondemand.css. Instead, rename the
file and make changes to the looks and options in this new file. It can then be
brought in on the command line during the original setup using the following
syntax: /var/www/html/rrunr/css/<cssfilename>.css. If a style sheet is added later,
the “ondeminit” can be edited to reflect that change.

Likewise, there will also be a cfmccgi subdirectory under the main cgi-bin
directory in the Web-accessible area. The Web server default location for this is
/var/www/cgi-bin/cfmccgi. But, once again, your system administrator should
know the actual location. There will be one file in this cfmccgi subdirectory, a perl
script "ondem.pl". You should NEVER edit this file.

7.3.2 Instal lat ion requirements

The following conditions must be met in order to use On-Demand Tables:

• A UNIX platform with a Web server that supports php (v4.3.0+).

• CfMC Mentor 7.7+ must be installed on the server where the On-Demand
Tables will run.

SETUP

Remember that the example specs provided here show the way it is done at
CfMC. They are just suggestions to help you run the tables that will be viewed
through the browser.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -591

There are two possible scenarios for running On-Demand Tables.

1 1 - A CfMC cron job script is included in this documentation. It follows the
example spec files. It is included as a guideline tool. So, in order to automatically
run tables, you must:

• The Web survey is running on the server

• .qpx (possibly a .def) is on the server

• data is on the server

• A Web area exists

2 2 - The study is not running on the server

Create a directory in a Web-accessible area of the server (ex.
/var/www/html/rrunr/ondemand/test)

Place the .qpx or .def and data file in that directory or subdirectory.

Place any auxiliary files needed (webtab.add) in that directory

Place data in that directory or somewhere on the server where it can be accessed.

In the directory where the .qpx/.def file type ==>ondemand.pl

The following screen will appear:

Welcome to On-Demand
COMMAND LINE USAGE:

/cfmc/dev.80/go/ondemand.pl <specfile> (MUST BE .qpx or .def) <option1>
<option2>...

Any or all of the following options may be used on the command line:

 data=<fully qualified data file name (def:/cfmc/dev.80/data/_STUDY_.tr)

 wwwloc=<web location of tables> (def:/var/www/html/_STUDY_/ondemand)

 cssfile=<fully qualified css file name
(def:/var/www/html/cfmcweb/css/ondemand.css)

 add[=filename (def:webtab.add)]

 batch

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-592 MENTOR

 setpass=<yes/no>

 debug

Please enter a spec file name (or press Enter to quit)

(NOTE: This MUST have a .qpx or .def file extension)==>rrunr.def

NOTE: The.qpx or .def extension must be used

NOTE: If at the original prompt (/var/www/html/rrunr), you typed

==>ondemand.pl rrunr.qpx, the previous screen would be skipped.

Next, the default data location can be changed.

Please enter the Data File, i.e., the fully qualified name of the data file that
your tables will use

Press <Enter> for /cfmc/dev8.0/data/rrunr.tr

==>/var/www/html/rrunr/tables/rrunr.tr

Next, you will get the prompt for the Web-accessible directory (public area):

Please enter the Tables Location, i.e., the location in the web area for your
tables

Press <Enter> for /var/www/html/rrunr/ondemand

==>/var/www/html/rrunr/ondemand/test

If the directory does not have proper read/write access, the following warning will
appear.:

WARNING: Permissions for web location
/var/www/html/rrunr/ondemand/test are 775 (drwxrwxr-x).

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -593

They should be 777

Press enter to set permission to 777 or break to get out

Next, the prompt for the style sheet that will be used appears:

Please enter the CSS File, i.e., the fully qualified name of the style sheet (css)
file

Press <Enter> for /var/www/html/cfmcweb/css/ondemand.css

==>/var/www/html/rrunr/ondemand/test/ondemand2.css

NOTE: You may add your own .css files, based on the structure of ondemand.css,
to this directory. It is not advisable to edit the ondemand.css (the default
style sheet). If Mentor 7.7+ is reinstalled, it will overwrite ondemand.css.
Instead, rename the file and make changes to the looks and options in this
new file. . It can then be brought in on the command line during the
original setup using the following syntax:
/var/www/html/rrunr/css/<cssfilename>.css. If a style sheet is later added
the “ondeminit” can be edited to reflect that change. It can then be
brought in on the command line.

The following prompt will appear. If an add file with additional specs is to be used,
type "y" at the prompt:

Do you have a file with additional spec that you would like to add to rrunr.def?
(y/(n))==>y

Please enter the this file's name (enter for webtab.add)==> <enter>

The following will appear:

NOTE: t the first running of ondemand.pl, a file called "ondeminit" will be placed
in the ${CFMC}control/ directory. This will contain general defaults for
definitions of data, wwwloc and cssfile based on your environment. For every run

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-594 MENTOR

of ondemand.pl, a file (also called ondeminit) will be placed in the directory local
to where ondemand.pl is run. This will allow you to run ondemand.pl repeatedly
without the need to redefine these variables if they don't need redefining. NOTE:
By default, ondemand.pl will still prompt for all of these variables unless the
"batch" option is used on the command line.

NOTE: The initial file "ondeminit" is created. It contains:

data=/var/www/html/rrunr/tables/rrunr.tr

wwwloc=/var/www/html/rrunr/ondemand/test

cssfile=/var/www/html/rrunr/test/ondemand2.css

add=webtab.add

This will allow you to use the "batch" option in future runs of
/cfmc/dev.80/go/ondemand.pl

So here’s recap

The data file used will be /var/www/html/rrunr/tables/rrunr.tr

The index.html and tables will be stored in
/var/www/html/rrunr/ondemand/test

The .css file used will be /var/www/html/rrunr/test/ondemand2.css

Additional efinitions will come from webtab.add

Press enter to continue or break to start over ==><enter>

At this point, you would have changed any defaults at the command line. The file
that holds these changes is “ondeminit” It is in the directory local to where
ondemand.pl is run. This file can be edited at any time.

The next prompt will deal with password protecting the directory. Type "y" to set a
password.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -595

Shall we set a password in /var/www/html/rrunr/ondemand/test?

 (y/(n)) ==>y

The following prompt asking for a user name appears. In this case, "test" is the user
name.

Please enter a user name or press enter for no more ==>test

The prompt will ask you for a password. At the next prompt you will be asked to re-
type the password. The next prompt allows for another user name. If this is not
necessary, press enter to proceed.

New password:

Re-type new password:

Adding password for user test

Please enter a user name or press enter for no more ==>

Everything needed has been entered and you are ready to proceed. The following
instructions appear, and you will be returned to the original prompt:

all done!

Now we will create the necessary files to run tables.

This may take a few moments, please be patient.

Now go to http://product01.cfmc.com/rrunr/ondemand/test to continue

The URL that is needed to access On-Demand Tables can be copied and pasted into
your browser. In this example, http://product01.cfmc.com/rrunr/ondemand/test
would be copied and pasted.

If the debug option is used, /var/www/html/rrunr/ondemand/test>ondemand.pl
rrunr.def debug the following is displayed:

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-596 MENTOR

Default Data File set to /cfmc/dev.80/data/_STUDY_.tr per
/cfmc/dev.80/control/ondeminit file

Default Tables Location set to /var/www/html/_STUDY_/ondemand per
/cfmc/dev.80/control/ondeminit file

Default CSS File set to /var/www/html/cfmcweb/css/ondemand.css per
/cfmc/dev.80/control/ondeminit file

Default Data File set to /var/www/html/sued/rrunr/tables/rrunr.tr per
ondeminit file

Default Tables Location set to /var/www/html/sued/rrunr/ondemand/test per
ondeminit file

Default CSS File set to /var/www/html/cfmcweb/css/ondemand.css per
ondeminit file

Default Add File set to test.add per ondeminit file

7.3.3 Edit ing

At any time, the specs used for On-Demand Tables can be edited. There are many
reasons for making changes. It might be to change something in the .def file,
adding banners or changing settings, to mention a few. After this is done, On-
Demand must be reinitialized. To avoid going through the prompts the "batch”
command can be used /cfmc/dev.80/go/==>ondemand.pl rrunr.def batch. The
ondeminit file created previously will be read and the following will be displayed:

Here's a recap:

 data=/cfmc/dev8.0/data/rrunr.tr

 index.html and tables will be stored in /var/www/html/rrunr/ondemand

 css file used will be /var/www/html/cfmcweb/css/ondemand.css

 additional definitions will come from webtab.add

Now we will create the necessary files to run tables.

This may take a few moments, please be patient.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -597

Now go to http://product01.cfmc.com//rrunr/ondemand/test/test to continue

[sued@product01 /www/htmldocs/rrunr/ondemand/test/test dev80]>

The "ondeminit" file created at the initial setup can be edited at any time. Once an
edited copy has been created, it will be placed in the directory local to where
ondemand.pl is run. If edited, the study would need to be reinitialized by typing:

/cfmc/dev.80/go/ondemand.pl rrunr.def batch

data=/cfmc/dev8.0/data/rrunr.tr

wwwloc=/var/www/html/rrunr/ondemand

cssfile=/var/www/html/cfmcweb/css/ondemand.css

add=webtab.add

Once again, this reflects the choices made in the setup, and it reflects the settings
created for this CfMC demo. Paths and directories will reflect the choices made at
setup by your system administrators.

If ,at any time, a password needs to be added after the initial setup, the following
command can be used.

==>ondemand.pl rrunr.def batch setpass=yes

This will skip all prompts until it gets to the password prompts.

WEBTAB.ADD

Using the webtab.add on the command line allows for bases, weights, banners,
headers and logos to be added at setup time. Just as the .qpx/.def file has to be in the
local directory (i.e., the directory where your type "ondemand.pl"), so does your
".add" file. The add file will be copied to the Web directory along with the .qpx/.def
file. If you change anything in an existing On-Demand setup, the study must be
reinitialized.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-598 MENTOR

{!MENTOR_DEF} and {!MENTOR_TAB} are used to pass Mentor
specifications to the .def or .tab file. The SURVENT compiler treats these blocks
as comments and no syntax checking is done. When you compile your
questionnaire with the option MENTOR_SPECS, these blocks will be passed to
the appropriate file.

The close brace (}) in a ~prepare block is interpreted as the end of a command
block. The close brace followed by an underscore (}) allows you to embed a close
brace (}) inside the compiler command block. The underscore is removed when
compiled and passed to the .def file.

The following is an example of the what is contained in the webtab.add file:

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -599

If using a .qpx If using a .def
webtab.add

{!MENTOR_DEF

tabset={base_ny:
 t4=:BASE: Location: New York
 }_
''base=:loc(4)
base=:[58.2#NY]
}_

tabset={base_ca:
 t4=:BASE: Location: California
 }_
''base=:loc(4)
base=:[58.2#CA]
}_

tabset={weight_01:
 t2=:WEIGHT: Gender: Males:10 Females:100
 }_
weight=:select([57^1/2],values(10,100))
}_

tabset={weight_02:
 t2=:WEIGHT: Martial Status: Married:10
Divorced:20 Single:100
 }_
 weight=:select([54^1/2/4],&
 values(10,20,100))
}_
}

webtab.add

tabset={base_ny:
 t4=:BASE: Location: New York
 }
''base=:loc(4)
base=:[58.2#NY]
}

tabset={base_ca:
 t4=:BASE: Location: California
 }
''base=:loc(4)
base=:[58.2#CA]
}

tabset={weight_01:
 t2=:WEIGHT: Gender: Males:10
Females:100
 }
weight=:select([57^1/2],values(10,100))
}

tabset={weight_02:
 t2=:WEIGHT: Martial Status: Married:10
Divorced:20 Single:100
 }

weight=:select([54^1/2/4],values(10,20,100)
)
}

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-600 MENTOR

7.3.4 Adding a Base or Weight
A base or weight can be defined in three different ways.

1 In the .qpx

2 Adding it with a file. This file can be named whatever you want it be, but by
default a file called webtab.add will be looked for if the add option is used.

3 Defining base or weight directly on the On-Demand selection screen define box.

Using the qpx

This section describes how the .qpx would look.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -601

NOTE: Use the t4 statement to define your base text, and the t2 statement to
define text associated with weights. For the benefit of the final user, be
sure to at least define what question label the base or weight is defined
from.

NOTE: Fully qualify the file names of all ampersand/include files so the .qpx
when copied to the web area and compiled will find them. If
ampersanding in files to the .qpx make sure paths are fully qualified.
(example /cfmc/websurv/studies/rrunr/webtab.add)

NOTE: Multi language studies need the >language speaking=<language> option
set in the .qpx. Survent doesn't but using the db file (which is used in On-
Demand Tables) requires it. you must choose a language to display
results.

>purgesame

~PREP COMPILE

[RRUNR,640,"EXAMPLE JOB",SPECWID=128,&
TEXT_START=5/1,WORK_START=4/1]

{!AUTO_PUNCHES}
{!BLANK_LINES=1}

{!MENTOR_DEF

tabset={base_ny:
t4=:BASE: Location: New York
}_
''base=:loc(4)
base=:[58.2#NY]
}_

 tabset={base_ca:
t4=:BASE: Location: California
}_

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-602 MENTOR

''base=:loc(4)
base=:[58.2#CA]
}_

tabset={weight_01:
t2=:WEIGHT: Gender: Males:10 Females:100
}_
weight=:select([57^1/2],values(10,100))
}_

tabset={weight_02:
t2=:WEIGHT: Martial Status: Married:10 Divorced:20 Single:100
}_
weight=:select([54^1/2/4],values(10,20,100))
}_
}

{ QN1: 1/6.1
!MISC RATING=5
Q1. How much do you agree with the following statement:
The fast food at Road Runners is worth what I pay for it.
! CAT
5 (5) Completely agree
4 (4) Somewhat agree
3 (3) Neither agree nor disagree
2 (2) Somewhat disagree
1 (1) Completely disagree
0 Don't Know/Refused to answer
}

 { QN2A: 1/7.1
!MISC RATING=5
Q2a. Please rate the following
characteristics:
The quality of the food.
! CAT
5 (5) Very good
4 (4) Good
3 (3) Neither poor nor good

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -603

2 (2) Poor
1 (1) Very poor
0 Don't know/refused to answer
}

~end

ADDING A FILE ON THE COMMAND LINE

A file name webtab.add can be used to define these bases and weights as well. This
file will be placed in the directory where the On-Demand tables will be run. In this
case, that would be /var/www/html/rrunr/ondemand (directory used in previous
examples).

NOTE: Use the t4 statement to define your base text, and the t2 statement to
define text associated with weights. For the benefit of the final user, be
sure to at least define what question label the base or weight is defined
from.

 webtab.add
{!MENTOR_DEF

tabset={base_ny:
t4=:BASE: Location: New York
}_
''base=:loc(4)
base=:[58.2#NY]
}_

tabset={base_ca:
t4=:BASE: Location: California
}_
''base=:loc(4)
base=:[58.2#CA]
}_

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-604 MENTOR

tabset={weight_01:
t2=:WEIGHT: Gender: Males:10 Females:100
}_
weight=:select([57^1/2],values(10,100))
}_

tabset={weight_02:
t2=:WEIGHT: Martial Status: Married:10 Divorced:20 Single:100
}_
weight=:select([54^1/2/4],values(10,20,100))
}_
}

 If you add the option "add" to your ondemand.pl command line, the file
"webtab.add" will be looked for in the local directory and added to the
questionnaire spec. If you embellish the "add" command with, for example,
"add=somestuff.spx", a file called "somestuff.spx" will be added to the
questionnaire spec. Only one file may be added for now. The spec should be a
complete !mentor_def block and it will be inserted at the very end of the db file.

 This is done at setup time. The syntax is /var/www/html/<study>/ondemand.pl
<study> add. Just as the qpx file has to be in the local directory (i.e., the directory
where your type "ondemand.pl"), so does your "add" file. The add file will be
copied to the web directory just as the qpx file is (if you're not running
ondemand.pl in this web directory, of course). This feature was developed to add
bases and weights at initialization. If you want to add pre-defined bases and
weights to an existing ondemand setup, reinitialize the study.

USING THE DEFINE BOX

As in any CfMC utility (hole,scan,...) a base or a weight can be set for the tables.
You can use a data location to set the base or weight. An example would be a base
of [51^1], which means only include those cases that have a one-punch in column
fifty one. You can also use variables from previous Mentor runs. The DB file in
which the variables are defined is accessible in this utility. For further information,
see the Utilities manual.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -605

The following are examples of base definitions:

RATING(1,2,Y) : named question code list

STATE(<>AZ-CA,NV) : code range/ (<>=not)

SEX(M) OR [AGE#18-24,99] : combinations (AND/OR)

Example location specs: : ,=net -=range

[2/10.2^1-20,24,B] : punches (N=not,B=blank)

[TIMES#1-10,99,DK,RF," "] : numbers or letters

[10.2,...,20*F#1-20] : number nets across columns

WARNING: Do not use "/"s between categories!

The following are examples of weight definitions:

 Use a pre-defined name, (i.e. "WGHTIT"), OR if weight is in the data, use the
format:"[5/23.3*F2]" for Record 5, column 23, length 3, with 2 implied decimals.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-606 MENTOR

To specify a new weight variable, use the format:
“Select([1/6.1^1//5],Values(1.23,2.5,0.76,1.03,1))” which assigns weight values
using punches 1-5 of column 6.

EDIT OPTIONS
When the index page appears, there is a section on the bottom where you can edit
table options.

When Open edit options is clicked, the following will appear. If the radio button is
“on,” the menu will expand. Below the Statistical Testing is “of,” therefore the
menu is collapsed. These options are explained in previous chapters.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -607

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-608 MENTOR

FILES CREATED

During the setup phase, the following files will be created in your On-Demand
Web table directory when the .qpx is compiled by the utility:

• <study>.sum

• <study>.def

• <study>.db

• <study>.qpx

• mkdb.db

• index.html - this file allows access to the On-Demand tables

NOTE: An index.html file will be created in this directory. If you are using a
pre-existing Web area for your On-Demand Tables, make sure you don't
overwrite anything important, such as the index.html file.

 Once the On-Demand Tables are accessed, other files will appear in the directory.
These files will all have an .html extension. There will be a different file for each
table.

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -609

7.3.5 Creating On-Demand Tables

ON-DEMAND SELECTION SCREEN
Use the On-Demand selection screen to choose the variables that are to be crossed.
Any question in the .qpx can be crossed with any other question in the same .qpx..
A screen listing all the variables will be displayed. To choose the banner, click the
radio button in the left column. For the stub, click the radio button in the second
column. A Base or Weight can be added. Once the selection is made, click Submit
on the bottom of the page.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

-610 MENTOR

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
7.3 ON-DEMAND TABLES

MENTOR v 8.1 -611

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-612 MENTOR

FINAL OUTPUT OF TABLES

Each table will appear in a pop-up window. If you minimize the table window,
more than one table can be viewed at the same time.

Preparing Mentor Output Fi les For Post Processing

You can create a print file, a delimited file and an html file simultaneously using
these minimum keywords:

• ~specfile <rootname>

• >printfile <filename>

• ~set webtables delimited_tables

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -613

You can run tables from your own tabsets or you can use the .ban file and the .def
file created by ~prepare. The most efficient way to make your own banner tabsets
is by using the banner element option of make_banner.

1 Creating three files simultaneously by making your own tabsets.

If you make your own banner and use the make_banner option, a .ban is made for
you and is named using the ~specfile <rootname>. It contains all of the necessary
print, delimited and html banner specifications.

Notice in the .ban file that when you use the default delimiter of tabs, the delimited
banner is created using "\t" in place of the tabs.

Mentor specs (post01.spx)

tabset= { qn12_y:

banner=:

make_banner

 [level=2]

 [level=1] Total

 [level=2] Overall Road Runners Rating

 [level=1] (5) Very good

 [level=1] (4) Good

 [level=1] (3) Neither poor nor good

 [level=1] (2) Poor

 [level=1] (1) Very poor

 [level=1] Don't know/refused to answer

 }

statistics=: b-g

col=: total with [47.1^5/4/3/2/1/10]

 }

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-614 MENTOR

Mentor banner (post01.ban)

banner=qn12_bn:

\k(p)

Overall Road Runners Rating

==
=

(3) Don’t

Neither know/

poor (1) refused

Very (4) nor (2) Very to

Total good Good good Poor poor answer

------ ------ ------ ------ ------ ------ ------

\k(d)

\t\tOverall Road Runners Rating\tOverall Road Runners Rating\tOverall Road

Runners Rating\tOverall Road Runners ...

\tTotal\t(5) Very good\t(4) Good\t(3) Neither poor nor good\t(2) Poor\t(1) Very

poor\tDon't know/refused to answer

\k(h)

<tr>

<td colspan="1">

<td colspan="1">

<td colspan="6" align="center"> Overall Road Runners Rating

</tr>

<tr>

<td colspan="1">

<td colspan="1" align="right"> Total

<td colspan="1" align="right"> (5) Very good

<td colspan="1" align="right"> (4) Good

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -615

<td colspan="1" align="right"> (3) Neither poor nor good

<td colspan="1" align="right"> (2) Poor

<td colspan="1" align="right"> (1) Very poor

<td colspan="1" align="right"> Don't know/refused to answer

</tr>

}

2 Creating three files simultaneously by using the .ban file and .def file created by
~prepare

This setup ampersands in (brings in) the .ban file and the .def file created by
~prepare. The ~set option auto_banner_heading=title is used to provide a 30
character banner heading. The ~specrules option of column_statistics is used to
add a statistics element to the banner tabset.

Mentor banner from ~prepare (rrunr.ban)

tabset= { qn12_y:

banner_title=:

 Q12. Overall, how would you rate Road

 Runners?}

banner=:

make_banner

 [level=2] Q12. Overall, how would you...

 [level=1] (5) Very good

 [level=1] (4) Good

 [level=1] (3) Neither poor nor good

 [level=1] (2) Poor

 [level=1] (1) Very poor

 [level=1] Don't know/refused to answer

 }

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-616 MENTOR

statistics=: a-f

''qn12(5/4/3/2/1/0)

col=: [47.1^5/4/3/2/1/10]

 }

If you use ~specrules base option and have bases or filters that look like this:
base=: (QN6(1)), you'll want to add the ~prepare created dbfile to this run. If you
typically use these ~set options:

 drop_base

 drop_title_4

you will also want to add these ~set options:

 drop_filter

 drop_filter_title

A new tabset element has been added to Mentor 7.7 to join banner tabsets called
joined_tabsets. This setups joins a user created banner tabset called usertotal and
the Q12 banner tabset from the ~prepare created .ban file.

Mentor specs (post02.spx)

 tabset= { usertotal:

 banner=:

 make_banner

 [level=2]

 [level=1] Total

 }

 col=: total

 }

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -617

 joined_tabset={ banner1_y:

 usertotal with &

 qn12_y

 }

Mentor banner (post02.ban)

banner=banner1_bn:

\k(p)

Q12. Overall, how would you...

===

(3) Don’t

Neither know/

(5) poor (1) refused

Very (4) nor (2) Very to

Total good Good good Poor poor answer

------ ------ ------ ------ ------ ------ ------

\k(d)

\t\tQ12. Overall, how would you...\tQ12. Overall, how would you...\tQ12.

Overall, how would you...\tQ12. Overall, ...

\tTotal\t(5) Very good\t(4) Good\t(3) Neither poor nor good\t(2) Poor\t(1) Very
poor\tDon't know/refused to answer

\k(h)

<tr>

<td colspan="1">

<td colspan="1">

<td colspan="6" align="center"> Q12. Overall, how would you...

</tr>

<tr>

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-618 MENTOR

<td colspan="1">

<td colspan="1" align="right"> Total

<td colspan="1" align="right"> (5) Very good

<td colspan="1" align="right"> (4) Good

<td colspan="1" align="right"> (3) Neither poor nor good

<td colspan="1" align="right"> (2) Poor

<td colspan="1" align="right"> (1) Very poor

<td colspan="1" align="right"> Don't know/refused to answer

</tr>

}

The joined_tabset option automatically adjusts the statistics element in the
~prepare .ban file from statistics=: a-f to statistics=: b-g when the usertotal banner
tabset was joined with the Q12 banner tabset.

Mentor print file (post02.prt)

3 Customizing the delimited file

There are a number of ~set delimited_tables options available that let you select
what is passed to the delimited file and these options have no affect on the print
file or the html file. Stats letters and footnotes always go to the delimited file but
column stats labels like (A) do not. There is no table of contents associated with a
delimited file. All of the following items can be turned on or off. All of these
items are automatically passed to the delimited file except for the banner and the
percent signs:

 BANner

 BANner_TITLE

 COMMENT

 do_TABle_NAME

 FILTER_TITLE

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -619

 FOOTer

 HEADer

 PERcent_SIGN

 STUB

 TITLE

 Title_2

 Title_4

 Title_5

These additional ~set delimited_tables options are also available:

 ADD_SPACE_BEFORE_STATS

 Column_WIDth=

 DELIMITER=

 FILL_LINES

 FILL_TABLE

 LABELS

 QUOTED_BANNER_TEXT

 STATS_ON_SEPARATE_LINE

 Stub_WIDth=

 USE_AS_PRINTED

By default, cells that are in the print file as blank, zero or dash, are passes to the
delimited file as zeros. The option:

 ~set delimited_tables=(use_as_printed)

allows you to create a delimited file with cells containing the same

characters as the printed table.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-620 MENTOR

You can now change the CfMC assigned extensions on files. If you want to make
a comma delimited file and you want an extension that is recognizable as such in
Excel, you can change the extension by using:

 >cfmc_extension dlm=csv

Mentor specs (post03.spx)

~set delimited_tables=(

 banner

 -quoted_banner_text

 delimiter=comma

 -footer

 percent_sign

 stats_on_separate_line

 use_as_printed

)

Mentor default delimited file (post02.dlm)

Mentor enhanced delimited file (post03.csv)

4 Customizing an html file

There are a number of ~set webtables options available that let you select what is
passed to the html file and these options have no affect on the print file or the
delimited file. Stats letters, column stats labels like (A), footnotes, comments and
percent signs always go to the html file. A "back to table of contents" anchor is
added to the end of each table. All of the following items can be turned on or off.
All these items are automatically passed to the html file:

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -621

 BANner

 BANner_TITLE

 do_TABle_NAME

 FILTER_TITLE

 FOOTer

 HEADer

 STUB

 TITLE

 Title_2

 Title_4

 Title_5

These additional ~set webtables options are also available:

 BGCOLOR=

 CSS_FILE_CHECK=

 CSS_FILE_PATH=

 FRAMESet

 FRAMETABLE=

 HTML_TITLE=

 TCON_ANCHOR_TEXT=

 WEB_FORMAT_BANner=()

 WEB_FORMAT_COMMENT=()

 WEB_FORMAT_Cumulative_Percent_items=()

 WEB_FORMAT_EVEN_COL=()

 WEB_FORMAT_EVEN_ROW=()

 WEB_FORMAT_FREQuency_items=()

 WEB_FORMAT_Horizontal_Percent_items=()

 WEB_FORMAT_ODD_COL=()

 WEB_FORMAT_ODD_ROW=()

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-622 MENTOR

 WEB_FORMAT_STATistical_test_items=()

 WEB_FORMAT_STATistics_ROW=()

 WEB_FORMAT_STUB=()

 WEB_FORMAT_TABLE=()

 WEB_FORMAT_Vertical_Percent_items=()

All of these items are used specifically with Dynamic Charts:

 BANNER_LEVELS=

 DOCTYPE=

 DYNAMIC_SCRIPTS=

 DYNAMIC_TABLES

 GROUPS=()

 HTML_SRC=

 ONRESIZE=

 SURVEY=

 SURVEY_NAME=

Mentor specs (post04.spx)

You can use the \k(p,h,d) options to pass specific text to specific files. To change
the footer specs to remove the page numbers from the html file and the delimited
file you can use:

 footer={:=

 Tables prepared by Computers for Marketing Corp.

 \k(p)Page #PAGE_NUMBER#\k(p,h,d)

 }

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

MENTOR v 8.1 -623

The html files are designed to match the printed files in content. To print
significance letters on a separate line, you need to use the appropriate edit statement
and this also affects the printed tables. The table of contents is most useful if it is
printed first. Edit options that control the page numbering in the table of contents
are ignored when creating an html file.

 global_edit={:

 stats_on_separate_line

 tcon=(first

 print_page_numbers

 -tcon_page_numbers

)

 }

This example uses the following webtables options to customize the html file.

 ~set webtables=(

 html_title="Road Runner Survey Title"

 -header

 tcon_anchor_text="***BACK TO THE TABLE OF CONTENTS***"

 web_format_statistical_test_items=(font=(color=red))

)

Mentor default html file (post02.htm)

Mentor enhanced html file (post04.htm)

5 Putting the table of contents in a frame in the html file

Mentor specs (post05.spx)

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Preparing Mentor Output Files For Post Processing

-624 MENTOR

For this example, two banner tabsets from the ~prepare created .ban file will be
joined to create the banner.

 joined_tabset={ banner1_y:

 usertotal with &

 qn12_y with &

 qn16_y

 }

The only other change in this example is to put the table of contents in a frame
separate from the tables using:

 ~set webtables=(frameset)

By putting the table of contents in a separate frame, three html files are created
instead of one. The starter file is named using the ~specfile <rootname>, the table
of contents file has a "t" added to the end of the <rootname> and all of the tables
are in a file with "aa" added to the end of the <rootname>. Notice that the "back to

table of contents" anchor is removed because it is no longer necessary when the
table of contents is in its own separate frame.

Mentor starter html file (post05.htm)

Mentor table of contents html file (post05t.htm)

Mentor tables html file (post05aa.htm)

. .
 .

. .TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Augmenting Prepare Specs to Enhance Tables

MENTOR v 8.1 -625

Augmenting Prepare Specs to Enhance Tables

You can use Survent questionnaire specifications to produce two table building
specification files, ready to be used by Mentor, called the DEF file and the TAB
file. You can use the ~PREPARE COMPILE CMentor_SPECS command or
CfMC's menu-assisted EZWriter application to create these files. The DEF file
contains the syntax to define a table for each question and the TAB file contains the
commands to build the tables defined in the DEF file. The DEF file can also be
edited to add basing, weights, statistics, print format controls, etc. The TAB file can
be remade by Mentor to reflect any changes to the DEF file. For more information
see “4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES”.

Refer to “4.11 SAMPLE SPECIFICATION FILES” for details on using these files
to make tables. All examples refer to the RRUNR sample specification files
included with your Mentor software.

TA B L E S VI E W A B L E T H R O U G H A B R O W S E R
Augmenting Prepare Specs to Enhance Tables

-626 MENTOR

Version 8.1 MENTOR -627

.

. .
S T A T I S T I C S (S I G N I F I C A N C E T E S T I N G) 8

. .I N T R O D U C T I O N
his chapter explains how to do significance testing (T-tests), chi square
tests, ANOVA tests, and various other tests using the Mentor software. It
also describes some of the program's methodology and some common

problems that occur with this type of testing. The actual statistical formulas are not
presented in this chapter, but you can find them in Appendix A: STATISTICAL
FORMULAS.

This chapter assumes a basic understanding of table building and of CfMC
terminology. If you are not familiar with table building, review chapters 4, 5 and 6.
Although a basic understanding of statistics is not needed to produce the tests, it is
very useful for understanding the process. In most cases a brief statistical
description is provided, but for a more detailed reference consult a statistics
textbook.

Significance testing can be created in two different ways. Testing can be done (1)
while the program is reading data cases (table building phase), or (2) from the
numbers that are printed on the table (table printing phase). Tests created during
the table building phase work in almost all situations, while tests created during the
table printing phase only work in a select number of situations (independent and
unweighted). Most of this chapter deals with tests created during the table-building
phase. See “8.5 PRINT PHASE STATISTICAL TESTING” for information on the
table-printing phase tests.

The Mentor program can report significance testing in two ways: (1) marking cells
that are significantly greater than other cells with the letter associated with the
lesser column or (2) printing the actual statistical value and/or its significance.
Most of this chapter describes marking the significantly greater cells. See“8.7
PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES” for information on
printing the actual T values on the table.

T

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-628 MENTOR

You can test both columns and rows, although column tests are more common.
Most of this chapter describes column tests. See “8.8 SIGNIFICANCE TESTING
ON ROWS (PREFERENCE TESTING)” for information on row testing.

You can only test means or percentages produced from simple frequencies. A
simple frequency is one in which a given respondent has a value of 1 or 0 in a
given cell (except for any weighting). Items such as sigma, sums, and medians
cannot be tested. For a detailed list of what cannot be tested, see “8.10 NOTES ON
SIGNIFICANCE TESTING”.

8.1 SIGNIFICANCE TESTING TO MARK CELLS

To use significance testing on a table to mark cells, two options are required: the
STATISTICS statement (as an element of the table) and the EDIT statement option
DO_STATISTICS. The STATISTICS statement defines which columns will be
tested, while the DO_STATISTICS option sets the confidence level. The system
defaults are set to the following:

• System total row is the statistical base

• Tables can only have a single weight

• Confidence level is set to 95%

• The All Possible Pairs Test is used for multiple column tests

8.1.1 The STATISTICS Statement

The STATISTICS statement defines which columns and/or rows to test against
each other and whether the test is independent, dependent, inclusive, or if t values
are to be printed on the table. An independent test is one in which no case is in
more than one of the cells being tested. A dependent test is one in which at least
one case is in more than one of the cells. An inclusive test is one in which the first
column in a test completely contains all the cases in all the rest of the columns. A

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -629

printable test can only test pairs of columns and no column can be the last column
in more than one pair.

To set up a column test, first assign a name to the statement, and then list the letters
associated with each column (no spaces). The first column in the table is assigned
the letter A, the second the letter B, and so on. To test the first three columns of the
table against each other the statement would look like this:

STATISTICS= STAT1: ABC

Assigning a name to the STATISTICS= variable is optional, but doing so allows
you to reference the statement by its name; for instance in a TABLE_SET
definition or in the ~EXECUTE block. If there is more than one test that needs to
be performed on a given table, end the first test with a comma, and then enter the
next set of columns. To identify the test as independent, put I= in front of that
particular set of columns. If a test is inclusive, put T= in front of the columns set. If
t values will be printed on the table, use the PRINTABLE_T option before the list
of columns.

A typical STATISTICS statement looks like this:

STATISTICS= STAT2: I=BC,DEF,I=GHI,T=AKLM,BDGJ

This statement would create the following five tests:

1 An independent test on columns B and C

2 A dependent test on columns D, E, and F

3 An independent test on columns G, H, and I

4 An inclusive test on columns A, K, L, and M

5 A dependent test on columns B, D, G, and J

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-630 MENTOR

NOTE: The STATISTICS statement, like all other table elements, can be assigned
a default name when it is defined inside of a TABLE_SET. All examples
in this chapter use this convention.

8.1.2 Independent, Dependent, Inclusive, and Printable Tests

An important distinction exists between independent and dependent tests. The
formula for the dependent test contains additional calculations that rely entirely on
the distribution of the individual data cases. Therefore, you generally cannot verify
the results of a dependent test by examining the values printed on the table. These
calculations cause dependent tests to require a smaller percentage difference to be
marked as significant. For example, suppose the mean rating of brand A is being
tested against brand B. If one respondent rated brand A higher than brand B, he has
a clear preference for brand A. However, if one person rated brand A higher than
another rated brand B, the difference in the rating might be because the first person
always rates high and the other person always rates low, so you must distribute the
difference between the difference in the brands and the difference in the
respondents.

If all the columns in a given test are independent, then the extra calculations for the
dependent test drop out of the calculation. Computer processing time can be
reduced and additional error checking performed on independent tests if these tests
are specified as independent (I=) on the STATISTICS= statement. This allows the
program to drop the additional unnecessary calculations and prints an error
message if the tests are not really independent.

NEW PROTECTION VALUE IN SIGNIFICANCE TESTING
In the calculation of the variance used in Mentor's significance testing, the
protection limit on the lowest possible value in the denominator was changed from
0.0001 to 0.000001.

There is a new ~set tinyv option which can be used to set this value back to the
original default value of 0.0001 in the unlikely event the user needs this to
reproduce past results.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -631

An inclusive test is one in which all the subsequent columns are completely
contained in the first column. This test, sometimes referred to as completely
dependent, is modified in the following way. The resultant test is an independent
test that is exactly the same test as testing the contained column against everyone
who is in the other column, but not in the contained column.

Example:

• testing the total against males results in the same test as testing the females
against males

• testing people from California against people from San Francisco results in the
same test as testing people from California, but not from San Francisco against
people from San Francisco

If all the columns in a test have this property the program can perform additional
error checking if the test has been specified as inclusive. This will cause the
program to print an error message if it finds a case that is not in the first column, but
is in a subsequent column.

If the t values or their significance are to be printed on the table, you can error
check at definition time to make sure that there will be room on the table to print
the values. Since the t value will be printed under the second column in the test,
only pairs of columns may be tested and no column can be the second column in
more than one pair. The use of the PRINTABLE_T option will error check the
STATISTICS statement to make sure it follows these rules. If the PRINTABLE_T
option is not used and more than one value is created in any cell, the error will not
be reported until the table is printed.

8.1.3 Sett ing the Confidence Level

Significance testing is done in a two-step process:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-632 MENTOR

First, the program reads the data and does all the initial calculations determined by
the elements on the STATISTICS statement.

Second, it prints the table using the confidence level specified on the
DO_STATISTICS option on the EDIT statement.

The DO_STATISTICS= option can be set to any of the following: .80, .90, .95,
.99, and APPROXIMATELY .nn (where nn is any value). You can combine
options with a plus sign (+). DO_STATISTICS without an option has a default
significance level of 95%.

NOTE: Neither DO_STATISTICS=.80 nor APPROXIMATELY .nn can be used
in conjunction with the Newman-Keuls testing procedure discussed later
in this chapter.

Here are some example settings of the DO_STATISTICS option:

DO_STATISTICS=.90

Sets the confidence level to 90%; the significance level to 10%

DO_STATISTICS=.99

Sets the confidence level to 99%; the significance level to 1%

DO_STATISTICS=.90+.95

Performs bi-level testing at both the 95% and 90% confidence levels.

DO_STATISTICS=APPROXIMATELY .85

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -633

Sets the confidence level to 85%, but uses an approximation formula for the t-
values rather than looking it up in a table.

DO_STATISTICS=.95+APPROXIMATELY .88

Performs bi-level testing at both the 95% confidence level (table look-up) and at the
88% level using an approximation formula.

The program will mark significantly higher cells by putting the letter associated
with the lower cell to the right of the frequency of the higher cell. Multiple letters
run into the next cell then are continued on the next line, until all the letters are
printed. Normally the printed letters print in upper case, unless you are doing bi-
level testing. If the difference is significant at the higher level the letter prints in
upper case, and lower case if it is different at the lower level, but not at the higher
level. For an example of bi-level testing, see “8.1.5 Changing the Confidence
Level”.

When significance testing is done, the program will print a percentage sign, along
with the appropriate letter for that column under the System Total row. This makes
it easy to distinguish both the statistical base and the columns that were tested.
Columns that are not tested will not have a letter designation under the total row. It
will also print an automatic footnote at the bottom of each page which includes the
significance level, the test used, and which columns were tested.

NOTE: A 95% confidence level is equivalent to a .05 significance level.

8.1.4 Standard Signif icance Test ing

The minimum specification required to do significance testing is a STATISTICS
statement, along with the EDIT option DO_STATISTICS. If either of these
statements is specified without the other, then no testing will be done and no
footnote will print on the table.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-634 MENTOR

In most of the examples in this chapter, the STATISTICS statement and the EDIT
options that affect the significance testing are specified in the TABLE_SET
definition for a given table, but in general these options would be specified in the
TABLE_SET that defines the banner and therefore apply to the entire run.
Switching settings from table to table may be both confusing and difficult to
check. Here is an example of standard significance testing at the 95% confidence
level.

NOTE: The following set of commands defines a standard front end for the next
set of examples.

>PURGESAME

>PRINT_FILE STAT1

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T101

~DEFINE

STUB= STUBTOP1:

[BASE_ROW] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DECIMALS=2,
-PERCENT_SIGN }

STUB_PREFACE= STUBTOP1

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=======> <================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ---------- ------- -------------- -------- ----- ----- --- ------------ -------- ---------- -----------}

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -635

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

Here is the first example:

TABLE_SET= { TAB101:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS }

HEADER=: TABLE WITH SIGNIFICANCE TESTING }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [11^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [11]

STORE= T101 }

~EXECUTE

TABLE_SET= BAN1

TABLE_SET= TAB101

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-636 MENTOR

Here is the table that is printed:

TABLE WITH SIGNIFICANCE TESTING

TABLE 101

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105G

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 19 32 30 60G

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -637

VERY POOR 44 9 35B 17 13 10 11 14J 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79GH

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

In Table 101, notice the "C" next to the frequency of 120 in the MALE column and
NET GOOD row. This signifies that the percentage of males who were a NET
GOOD mention is significantly higher at the 95% level than the percentage of
females who were a NET GOOD mention. The letter "C" is used because the
FEMALES column is the third column in the banner and it is so designated under
the TOTAL row at the top of the table. Also notice that there is no "A" under the
TOTAL column because it was not included in any of the tests.

The footnote on the bottom of the page tells you which significance level was used
(.05 or a 95% confidence level), which test was used (All Possible Pairs), and
which columns were tested (BC, DEF, and GHIJ).

8.1.5 Changing the Confidence Level

The confidence level easily can be changed by using the EDIT option
DO_STATISTICS. For instance, to test at the 99% confidence level, you would
specify DO_STATISTICS=.99. Below is an example of a table that would be tested

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-638 MENTOR

at the 99% level. Table settings that are the same as Table 101 are restated here for
clarity.

TABLE_SET= { TAB102:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.99 }

HEADER=: TABLE WITH SIGNIFICANCE TESTING AT THE 99%
CONFIDENCE LEVEL }

TITLE= TAB101

TITLE_4= TAB101

STUB= TAB101

ROW= TAB101

STORE_TABLES=* }

Here is the table that is printed:

TABLE WITH SIGNIFICANCE TESTING AT THE 99% CONFIDENCE
LEVEL

TABLE 102

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -639

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

VERY POOR 44 9 35B 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79G

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.01) (all_pairs) columns tested BC, DEF, GHIJ

If you compare this table to Table 101, you will notice that there is no "G" in the
NET GOOD row under the banner point BRND D. This is because these two cells
are significantly different at the 95% level, but not at the 99% level. Also, notice
the change in the table footnote.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-640 MENTOR

8.1.6 Bi-Level Testing (Testing at Two Different Confidence Levels)

To do bi-level testing, or testing at two different confidence levels, on the same
table specify the EDIT option DO_STATISTICS= to the two different levels and
join them with a plus sign (+). For example, to test at both the 99% and 95% levels
say DO_STATISTICS=.99+.95. The example below is the same as Table 101
above, except for the DO_STATISTICS option.

The program will use upper- and lower-case letters to distinguish between those
cells that are significant at the upper and lower levels. The upper-case letter also
will be associated with the higher significance level regardless of the order in
which they are specified on the DO_STATISTICS command.

TABLE_SET= { TAB103:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.95+.99 }

HEADER=:TABLE WITH SIGNIFICANCE TESTING AT THE 95% AND
99% CONFIDENCE LEVELS }

TITLE= TAB101

TITLE_4= TAB101

STUB= TAB101

ROW= TAB101

STORE_TABLES=* }

Here is the table that is printed:

TABLE WITH SIGNIFICANCE TESTING AT THE 95% AND 99%
CONFIDENCE LEVELS

TABLE 103

RATING OF SERVICE

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -641

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105g

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 19 32 30 60g

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28f 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

VERY POOR 44 9 35B 17 13 10 11 14j 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79Gh

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

-642 MENTOR

 (sig=.01 + sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

If you compare the above table to both Table 101 and Table 102, you will notice
that it is actually a combination of the two. Every letter marking from Table 102 is
replicated on this table, and every letter marking from Table 101 that was not on
Table 102 is printed here with a lower case letter. Notice the lower case "g" in the
NET GOOD row under the BRND D column. This means that this cell is
significantly greater than column G at the 95% level, but not at the 99% level. The
footnote (sig=.01 + sig=.05) indicates testing at both levels.

8.1.7 Using Nonstandard Confidence Levels

The program can test at confidence levels other than 99%, 95%, 90%, or 80% by
using the APPROXIMATELY option in conjunction with the DO_STATISTICS
option on the EDIT statement. Use this option to test at any other confidence level
that is desired. Be aware though that it uses a formula to determine whether an
item is significant or not rather than looking up the t value in a table. This formula
has the same error rates as the table values (i.e. its marking will be wrong the same
percent of the time), but for values on the border of being significant it may be
different.

NOTE: This option cannot be used in conjunction with the Newman-Keuls
procedure.

This example is the same as Table 101, except for the DO_STATISTICS option on
the EDIT statement

TABLE_SET= { TAB104:

STATISTICS=: I=BC,I=DEF,GHIJ

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.1 SIGNIFICANCE TESTING TO MARK CELLS

MENTOR v 8.1 -643

LOCAL_EDIT=: DO_STATISTICS= APPROXIMATELY .93 }

HEADER=: TABLE WITH SIGNIFICANCE TESTING AT AN OTHER
CONFIDENCE LEVEL (93%) }

TITLE= TAB101

TITLE_4= TAB101

STUB= TAB101

ROW= TAB101

STORE_TABLES=* }

The printed table would look similar to Table 101, except for some of the statistical
markings and the footnote. The footnote would be as follows:

 (sig= apprx 0.07) (all_pairs) columns tested BC, DEF, GHIJ

8.1.8 Inclusive T Tests

If you have a situation where you are testing a set of columns against the total
column or against a column that contains all the values in those columns, you may
want to mark the test as inclusive by using the T= option in front of the list of
columns. This option will verify that all subsequent columns are contained in the
first column in the list and report an error if it finds a data case that is not contained.

This example is the same as Table 101 except for the STATISTICS statement.

TABLE_SET= { TAB105:

STATISTICS=: T=ABC,T=ADEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.95 }

HEADER=:TABLE WITH INCLUSIVE SIGNIFICANCE TESTING AT THE
95% CONFIDENCE LEVEL}

TITLE= TAB101

TITLE_4= TAB101

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

-644 MENTOR

STUB= TAB101

ROW= TAB101

STORE_TABLES=* }

The printed table would look similar to Table 101, except for some of the statistical
markings and the footnote. The footnote would be as follows:

 (sig=.05) (all_pairs) columns tested T= ABC, T= ADEF,
GHIJ

Notice that the test of GHIJ is a dependent test, even though the others are
inclusive.

8.2 Changing the Statist ical Base

If the table is to represent percentages from a row other than the System Total row,
you must specify which row will be the base. The program checks that the
percentage base and the statistical base are the same row. If you change one, you
must change the other. This is done to keep you from printing significance on cells
that have no relationship to the percentage that is printing.

NOTE: Significance testing for means is unaffected by the statistical base, instead
the base for each mean is calculated internally as part of calculating the
mean.

8.2.1 Changing to the Any Response Row

If the System Any Response row is the percentage base, then you can change it to
the default statistical base by using the SET option STATISTICS_BASE_AR. If
you do not use this option and percentage off the Any Response row, the program
will print an error message that the percentage base is different than the statistical
base. If the percentage base is the System Any Response row, you will probably
want to create a new STUB_PREFACE to mark it as the base row for the test.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

MENTOR v 8.1 -645

This STUB_PREFACE should use the STUB option BASE_ROW along with the
PRINT_ROW=AR, so that the program will print the percentage signs and column
letters under the Any Response row. If the System Total row is also printed, the
STUB option -BASE_ROW on its definition can be used to suppress the percentage
signs and letters from printing under it.

You can set the default statistical base back to the System-generated Total row by
using the SET option -STATISTICS_BASE_AR. However, be careful not to make
mistakes if you turn this option on and off multiple times in one run. It is
recommended that in a given run you use either the System Total or System Any
Response row as the percentage base and not to flip back and forth.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT2

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T201

~DEFINE

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DEC
IMALS=2,

 -PERCENT_SIGN }

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

-646 MENTOR

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

Example:

STUB= STUB_TOP_AR:

[-VERTICAL_PERCENT -BASE_ROW] TOTAL

[-VERTICAL_PERCENT] NO ANSWER

[PRINT_ROW=AR,BASE_ROW] TOTAL RESPONDING }

TABLE_SET= { TAB201:

SET STATISTICS_BASE_AR

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: VERTICAL_PERCENT=AR,DO_STATISTICS=.95 }

STUB_PREFACE= STUB_TOP_AR

HEADER=: TABLE WITH SIGNIFICANCE TESTING BASED ON THE
ANY RESPONSE ROW }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= THOSE RESPONDING }

STUB=:

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

MENTOR v 8.1 -647

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [12^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [12]

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

-648 MENTOR

Here is the table that is printed:

TABLE WITH SIGNIFICANCE TESTING BASED ON THE ANY
RESPONSE ROW

TABLE 201

RATING OF SERVICE

BASE= THOSE RESPONDING

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

NO ANSWER 48 26 22 16 16 14 11 6 10 32

TOTAL RESPONDING 352 170 182 109 129 99 80 102 97 144

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 171 102C 69 50 57 61DE 39 51 47 87I

 48.6 60.0 37.9 45.9 44.2 61.6 48.8 50.0 48.5 60.4

VERY GOOD 86 58C 28 29 34 21 19 29 23 48

 24.4 34.1 15.4 26.6 26.4 21.2 23.8 28.4 23.7 33.3

GOOD 85 44 41 21 23 40DE 20 22 24 39

 24.1 25.9 22.5 19.3 17.8 40.4 25.0 21.6 24.7 27.1

FAIR 81 38 43 22 40F 14 16 18 24 30

 23.0 22.4 23.6 20.2 31.0 14.1 20.0 17.6 24.7 20.8

NET POOR 76 18 58B 28 25 19 16 27J 20 19

 21.6 10.6 31.9 25.7 19.4 19.2 20.0 26.5 20.6 13.2

POOR 35 9 26B 11 15 9 7 13 11 10

 9.9 5.3 14.3 10.1 11.6 9.1 8.8 12.7 11.3 6.9

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

MENTOR v 8.1 -649

VERY POOR 41 9 32B 17 10 10 9 14J 9 9

 11.6 5.3 17.6 15.6 7.8 10.1 11.2 13.7 9.3 6.2

DON'T KNOW/REFUSED 24 12 12 9 7 5 9 6 6 8

 6.8 7.1 6.6 8.3 5.4 5.1 11.2 5.9 6.2 5.6

MEAN 3.43 3.84C 3.04 3.34 3.46 3.56 3.46 3.41 3.45 3.79HI

STD DEVIATION 1.32 1.15 1.35 1.44 1.25 1.24 1.33 1.42 1.27 1.20

STD ERROR 0.07 0.09 0.10 0.14 0.11 0.13 0.16 0.14 0.13 0.10

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

8.2.2 Changing to Any Row in the Table

When doing significance testing, it is often useful to define a base row so that both
you and the System can easily determine which row is the statistical base row.
Although the base row is only needed when the statistical base is not the System
Total or Any Response row, or if the base changes in the body of the table or when
the table is weighted, it is often useful to create it. This will not only reduce
possible errors, but also will allow easy modification of the table due to a future
client request. Make sure that the stub option BASE_ROW is defined on any such
row so that the table will be labeled properly.

To create a base row use the keyword $[BASE] on a variable definition followed by
the definition of the base. Follow that definition with a set of empty brackets (i.e.
$[]). This forces the program to go back to producing the default frequencies. The
base definition actually creates two different categories in the variable. Therefore,
the stub has to have two separate labels, one for each of the categories. If the table
is not weighted then the two categories will have the same values in each, and one
of them may be suppressed. However, if the table is weighted then the first row will
have the weighted base and the second row will contain something called the
effective base. See “8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES” for
a definition of the effective base and why it is needed.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

-650 MENTOR

In the example below, the System Total row and both categories created by the
$[BASE] would all produce the same numbers, so only the first category created
by the $[BASE] is printed. Notice the VERTICAL_PERCENT=* option on the
base row to guarantee that it is both the statistical and percentage base.

STUB= STUB_TOP_SUP:

[SUPPRESS] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { TAB202:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.95 }

STUB_PREFACE= STUB_TOP_SUP

HEADER=: TABLE WITH SIGNIFICANCE TESTING AND HAS A BASE
ROW SPECIFIED }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

[BASE_ROW,VERTICAL_PERCENT=*] TOTAL (STAT BASE)

[SUPPRESS] EFFECTIVE BASE

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

MENTOR v 8.1 -651

ROW=: $[BASE] TOTAL $[] [12^4,5/5/4/3/1,2/2/1/X]
$[MEAN,STD,SE] [12]

STORE_TABLES=* }

The printed table will look fundamentally the same as Table 201.

8.2.3 Changing in the Middle of a Table

If the table you wish to create has a percentage base which changes in the body of
the table, then you must define a base row in the variable each time the percentage
base changes. Suppose you were trying to do significance testing on a top box and
bottom box table with a changing percent base (See “6.1.2 Top Box Tables with a
Changing Percentage Base”). For purposes of this example, only two brands are
actually shown.

For each top box the percentage base not only has to be defined after a $[BASE]
keyword, but the STUB options BASE_ROW and VERTICAL_PERCENTAGE=*
should be specified on each stub.

TABLE_SET= { TAB203:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.95 }

STUB_PREFACE= STUB_TOP_SUP

HEADER=:

TABLE WITH SIGNIFICANCE TESTING WITH A CHANGING
PERCENTAGE/STATISTICAL BASE }

TITLE=: SUMMARY OF RATING OF SERVICE FOR BRANDS A AND B}

TITLE_4=: BASE= THOSE WHO RATED THE BRAND }

STUB=:

[BASE_ROW,VERTICAL_PERCENT=*] TOTAL RATED BRAND A (STAT
BASE)

[SUPPRESS] EFFECTIVE BASE

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

-652 MENTOR

 TOP BOX

 BOTTOM BOX

[BASE_ROW,VERTICAL_PERCENT=*] TOTAL RATED BRAND B (STAT
BASE)

[SUPPRESS] EFFECTIVE BASE

 TOP BOX

 BOTTOM BOX }

ROW=: $[BASE] [12^1-5] $[] [12^4,5/1,2] $[BASE]
[21^1-5] $[] [21^4,5/1,2]

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.2 Changing the Statistical Base

MENTOR v 8.1 -653

Here is the table that is printed:

TABLE WITH SIGNIFICANCE TESTING WITH A CHANGING
PERCENTAGE/STATISTICAL BASE

TABLE 203

SUMMARY OF RATING OF SERVICE FOR BRANDS A AND B

BASE= THOSE WHO RATED THE BRAND

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL RATED BRAND A (STAT 328 158 170 100 122 94 71 96 91 136

BASE) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

TOP BOX 171 102C 69 50 57 61DE 39 51 47 87I

 52.1 64.6 40.6 50.0 46.7 64.9 54.9 53.1 51.6 64.0

BOTTOM BOX 76 18 58B 28 25 19 16 27J 20 19

 23.2 11.4 34.1 28.0 20.5 20.2 22.5 28.1 22.0 14.0

TOTAL RATED BRAND B (STAT 378 186 192 117 138 109 83 102 101 170

BASE) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

TOP BOX 175 106C 69 53 55 65DE 38 46 48 98H

 46.3 57.0 35.9 45.3 39.9 59.6 45.8 45.1 47.5 57.6

BOTTOM BOX 127 43 84B 39 45 35 28 42J 35J 41

 33.6 23.1 43.8 33.3 32.6 32.1 33.7 41.2 34.7 24.1

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-654 MENTOR

Notice that each base row is marked with percentage signs and the column letters
designation, making it clear that the statistical base has changed.

8.3 Changing the Statist ical Tests

Significance testing can produce two potential errors: marking a test as significant
when it is not; or not marking a test as significant when it is. In general, the first
type of error is the more dangerous of the two as it may cause decisions to be made
based on incorrect assumptions. There are various ways to change the formulas
thus reducing the possibility for this type of error.

There are five different sets of formulas that the program can use to do the
significance testing.

1 The All Possible Pairs Test (default)

2 The Newman-Keuls Test

3 The ANOVA-Scan Test

4 The Fisher Test

5 The Kruskal-Wallis Test

The following sections briefly describe each type of test, how each one works, and
when it might be appropriate to use a particular test. For more detailed information
about each test, consult a statistics textbook. Several of the tests are included in
Appendix A: STATISTICAL FORMULAS.

8.3.1 The All Possible Pairs Test

The All Possible Pairs Test (APP) is the default. When more than two columns are
tested at a time, the APP test will act as though each pair in the set of columns is
being tested individually. For instance, the same set of tests would be performed
whether your STATISTICS statement was specified as ABC or AB,AC,BC. In

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -655

general, out of all the tests, the APP test is the most likely to mark cells as
significantly different.

For an example that uses this test, see Table 101 in “8.1.4 Standard Significance
Testing”.

8.3.2 The Newman-Keuls Test Procedure

In general, the Newman-Keuls procedure (N-K) is not as likely to mark a test as
significant as the APP test. This is because it uses the additional information
supplied by all the columns in the test to produce a more reliable result. When
testing more than two columns at a time, the N-K procedure assumes the items are
alike and uses this additional information in its calculations.

NOTE: Testing items that are not alike (such as males and people from Chicago)
using the N-K procedure may cause results to be skewed. You should be
careful when testing dissimilar items, especially when using any test other
than APP.

The N-K procedure requires larger differences because you are testing like items.
You would ordinarily expect a larger difference between the smallest and the largest
in the group. As additional columns are added into the test, it will require larger and
larger differences between cells in order to see them as significantly different.

For example, suppose you flipped two coins 100 times each. One coin came up
heads 42 times and the other came up heads 56 times. If you tested just these two
samples against each other, you might guess that the second coin was more likely to
come up heads due to the design of the coin. Now suppose you flipped five more
coins and got values for heads like 47, 51, 54, 50, and 46. If you now look at all
seven coins at one time, you would probably conclude that the coins are not
actually different, but that the difference in the values is due to expected
randomness.

The N-K procedure is different from the APP test in the following ways:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-656 MENTOR

1 The N-K procedure estimates which of the two columns is most likely to be
different and tests it first. If they are not different, then it does not test any of the
other pairs of columns. If they are different, then it looks for the next pair of
columns that are most likely to be different and tests them. It continues this until it
finds a pair that is not significantly different or until all the pairs have been tested.
This procedure assumes that sample sizes for the columns being tested are similar,
but does make corrections if they are not.

2 The N-K procedure uses a pooled variance. This pooled variance is calculated by
using a formula to combine the variance for each sample in the test. Since this
pooled variance is derived from a much larger sample size than any of the
individual samples, it is a more reliable estimation of the true variance. The effect
of the pooled variance can be eliminated by use of one of the other VARIANCE
options on the EDIT statement. See “8.3.4 Changing the Variance”.

3 The N-K procedure requires slightly higher t values to mark items as significantly
different based on how many columns are being tested.

To use the N-K procedure instead of the APP test, use the option
NEWMAN_KEULS_TEST on the EDIT statement.

The EDIT statement below shows an example of doing the Newman-Keuls
procedure at the 95% confidence level.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT3

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T301

~DEFINE

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -657

STUB= STUBTOP1:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DEC
IMALS=2,

 -PERCENT_SIGN,RUNNING_LINES=1 }

STUB_PREFACE= STUBTOP1

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

Example:

TABLE_SET= { TAB301:

STATISTICS=: I=BC,I=DEF,GHIJ

LOCAL_EDIT=: DO_STATISTICS=.95 NEWMAN_KEULS_TEST }

HEADER=:

TABLE WITH SIGNIFICANCE TESTING USING THE NEWMAN-KEULS
TESTING PROCEDURE }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-658 MENTOR

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [11^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [11]

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -659

Here is the table that is printed:

TABLE WITH STATISTICAL TESTING USING THE NEWMAN-KEULS
TESTING PROCEDURE

TABLE 301

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-660 MENTOR

VERY POOR 44 9 35B 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (n_k) columns tested BC, DEF, GHIJ

If you compare this table with Table 101 you will notice that the VERY POOR row
under the column BRND B is marked with a "J" in Table 101, but not in this table.
This means that the Newman-Keuls procedure determined that this was an
expected difference when testing four separate samples, while the All Possible
Pairs Test determined it was a significant difference. Notice that the footnote at the
bottom of the page now says (n_k) instead of (all_pairs).

8.3.3 Other Testing Procedures

There are three other less used tests available. They are the ANOVA-Scan (A/S),
Fisher, and Kruskal-Wallis (K/W) tests. These tests only can be performed on
independent samples, and Kruskal-Wallis only works on means.

The ANOVA-Scan and Fisher tests are similar in that both first perform an
ANOVA (analysis of variance) on the set of columns, and then only test the
individual columns if the ANOVA shows significance. The difference between the
two is that the Fisher test, like Newman-Keuls, takes into account that multiple
columns are being tested and therefore requires a larger t value to show
significance. In general, these two tests are less likely than the APP test is to mark
items as significant.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -661

The Kruskal-Wallis test only works on means of independent samples created with
the EDIT option COLUMN_MEAN. It is normally done on rating scales and treats
the ratings as ordinals instead of values. This means that it treats each point in the
scale only as higher than the previous ones. In other words, a rating of 4 is not twice
as high as 2, it is just two ratings higher.

For the ANOVA-Scan test use the EDIT option ANOVA_SCAN, and for the Fisher
test the EDIT option FISHER. The Kruskal-Wallis test is invoked by using the stub
option DO_STATISTICS=KRUSKAL_WALLIS. See “8.5.3 Changing the Type of
Test by Row” for examples of the Kruskal-Wallis test.

Here is an example of an ANOVA-Scan test. This example is similar to the one for
Table 301, except for the EDIT option ANOVA_SCAN and the STATISTICS
statement that only specifies those tests that are independent.

TABLE_SET= { TAB302:

STATISTICS=: I=BC,I=DEF

LOCAL_EDIT=: DO_STATISTICS=.95,ANOVA_SCAN }

HEADER=: TABLE WITH STATISTICAL TESTING USING THE ANOVA
SCAN TEST }

TITLE= TAB301

TITLE_4= TAB301

STUB= TAB301

ROW= TAB301

STORE_TABLES=* }

The printed table would look similar to Table 301, except for some of the statistical
markings and the footnote. The footnote would be as follows:

 (sig=.05) (anova_scan) columns tested BC, DEF

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-662 MENTOR

Here is an example of the Fisher test. It is the same as the one for Table 302, except
that the EDIT option FISHER is used instead of ANOVA_SCAN. As with the
ANOVA_SCAN, only the independent columns are specified on the STATISTICS
statement.

TABLE_SET= { TAB303:

STATISTICS=: I=BC,I=DEF

LOCAL_EDIT=: DO_STATISTICS=.95,FISHER }

HEADER=: TABLE WITH STATISTICAL TESTING USING THE FISHER
TEST }

TITLE= TAB301

TITLE_4= TAB301

STUB= TAB301

ROW= TAB301

STORE_TABLES=* }

The printed table would look similar to Table 301, except for some of the statistical
markings and the footnote. The footnote would be as follows:

 (sig=.05) (Fisher) columns tested BC, DEF

REPEATED MEASURES OPTION

If you have a repeated measures test (everyone is in every banner point) or an
incomplete replication (a person is in more than one of the banner points), then you
must use the RM feature on the STATISTICS= statement with the
ANOVA_SCAN or Fisher.

Example:

 STATISTICS=: RM=AB,RM=CD,RM=EFGH,RM=IJKL,RM=MNOP

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -663

This causes Mentor to accumulate the sum of within_person variance (and the
corresponding degrees of freedom), so that they can be deducted from the
total_variance (and degrees of freedom) prior to calculating the F_ratio for the
analysis of variance. In the case of complete replication, this is equivalent to a
properly done repeated_measures analysis of variance. In the case of incomplete
replication, it has the same heuristic justification of that behind the use of the
(incompletely based) correlation matrix in the Newman_Keuls procedure.

Here are the steps in this procedure:

1 Both the fisher and ANOVA_SCAN do an ANOVA first.

2 They both test for significance at the level specified.

3 If the ANOVA is significant the program goes ahead otherwise it stops.

4 If the program goes ahead, then:

• the ANOVA_SCAN does an All Possible Pairs test at the same significance
level.

• the Fisher does a more stringent test on the pairs. The Fisher test takes into
account that multiple columns are being tested and requires a larger t value to
show significance. The significance used is:

the original significance level

(number of groups x (number of groups - 1)) / 2

where the number of groups is the number of points being tested in the banner.

In general, the ANOVA_SCAN and Fisher are less likely to mark items as
significant than the all possible pairs test. If you are weighting the data, you must
use STATISTICS=RM even if this is an independent sample.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-664 MENTOR

Following are two examples. Example One (stat1.spx) uses the All Possible Pairs
test. Example Two (stat2.spx) reproduces these same tables using the
ANOVA_SCAN and Repeated Measures. Example Three (stat3.spx) again
reproduces these same tables using the Fisher test and Repeated Measures.

EXAMPLE ONE - USING THE ALL POSSIBLE PAIRS TEST

~comment stat1^spx

This job has 4 products but it is a 2 x 2 design. It is set up using multiple 80
column records. General information is on record 1.

 first product seen data [2/12.8]

 second product seen data [3/12.8]

 third product seen data [4/12.8]

 fourth product seen data [5/12.8]

 first product seen [8/1] \ code 1 = green high salt

 second product seen [8/7] \ code 2 = blue low salt

 third product seen [8/13] / code 3 = blue high salt

 fourth product seen [8/19] / code 4 = green low salt

~define

''define a variable to keep track of first pass through the tables

firstpass[27/59^1]

''define a variable to keep track of first product seen

firstseen[27/60^1]

proc= { proc1:

 modify firstpass = true ''this is first pass through with banner1

 modify firstseen = true ''this is first product seen

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -665

 copy [27/01] = [8/01]

 copy [27/12.8] = [2/12.8]

 do_tables leave_open

 modify firstseen = false ''this is not the first product seen

 copy [8/01] = [8/07]

 copy [2/12.8] = [3/12.8]

 do_tables leave_open

 copy [8/01] = [8/13]

 copy [2/12.8] = [4/12.8]

 do_tables leave_open

 copy [8/01] = [8/19]

 copy [2/12.8] = [5/12.8]

 do_tables

 modify firstpass = false ''this is not the first pass through

 copy [8/01] = [27/01]

 copy [2/12.8] = [27/12.8]

 do_tables leave_open

 copy [8/01] = [8/07]

 copy [2/12.8] = [3/12.8]

 do_tables leave_open

 copy [8/01] = [8/13]

 copy [2/12.8] = [4/12.8]

 do_tables leave_open

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-666 MENTOR

 copy [8/01] = [8/19]

 copy [2/12.8] = [5/12.8]

 do_tables

}

banner1: [8/01^2/1/3/4] with &

 ([8/01^3/2/1/4] by (total with firstseen))

banner2: [8/01^3/4/1/2] with &

 ((dud with dud with dud with dud) by (dud with
dud))

stub={summary:

 [freqonly] TOTAL

 [suppress] NO ANSWER

 }

stub={preface:

 [freqonly,-base_row] TOTAL

 [freqonly] DON'T KNOW

 [base_row,print_row=ar,vper=*] STAT BASE

 }

edit={editsum: stub_preface=summary }

tabset=&

{global:

 global_edit={:

 -col_tna

 rank_if_indicated

 rank_column_base=1

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -667

 -percent_sign

 stat_decimals=2

 putchars=-z--

 continue=top

 do_statistics=.90 + .95

 all_possible_pairs_test

 }

}

tabset=&

{ban1:

 edit={:

 col_width=6

 stub_width=24

 stub_preface=preface

 }

 stats=: ab,cd,efgh,ijkl

 ban={:

| PRODUCT TOTAL FIRST POSITION

| PACKAGE TYPE-TOTAL <---------------------> <--------------------->

| TYPE-TOTAL <---------> BLUE BLUE GREEN GREEN BLUE BLUE GREEN GREEN

| <---------> HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER

| BLUE GREEN SALT SALT SALT SALT SALT SALT SALT SALT SALT SALT

| ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

 }

 col=: banner1 when firstpass otherwise banner2

}

tabset={q101:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-668 MENTOR

 local_edit=editsum

 title={: SUMMARY OF MEANS - DINNER ROLLS ATTRIBUTE
RATINGS

 }

 stub={:

 [stats] OVERALL APPEARANCE OF PRODUCT AND
PACKAGE

 [stats] NATURAL OR PROCESSED LOOK

 [stats] LOOKS MOIST OR DRY

 [stats] FEELINGS ABOUT THE MOISTNESS OR
DRYNESS

 [stats] OVERALL COLOR

 [stats] LOOKS LIKE WHAT I EXPECTED

 [stats] EXPECTED LIKING OF TASTE

 [stats] ENVIRONMENTAL IMPACT OF PACKAGE

 }

 row=: &

 $[mean] [2/12] &

 $[mean] [2/13] &

 $[mean] [2/14] &

 $[mean] [2/15] &

 $[mean] [2/16] &

 $[mean] [2/17] &

 $[mean] [2/18] &

 $[mean] [2/19]

}

tabset={q102:

 title={: OVERALL APPEARANCE OF PRODUCT AND PACKAGE }

 stub={:

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -669

 [] TOP THREE BOX (NET)

 [] TOP TWO BOX (NET)

 [] (9) LOVE IT

 [] (8)

 [] (7)

 [] (6)

 [] (5)

 [] (4)

 [] (3)

 [] (2)

 [] (1) HATE IT

 [] BOTTOM TWO BOX (NET)

 [] BOTTOM THREE BOX (NET)

 [stats] MEAN

 [stats] STD DEVIATION

 [stats] STD ERROR

 }

 row=: &

 [2/12^7.9/8,9/9//1/1,2/1.3] $[mean,std,se]
[2/12]

}

~input stats^tr work_length=2070 total_length=2160

>printfile stat1^prt

~set

 statistics_base_ar

 drop_local_edit

'' stat_dump

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-670 MENTOR

~execute

read_proc=proc1

tabset=global

tabset=ban1

 tabset=q101 tab=*

 tabset=q102 tab=*

~end

EXAMPLE TWO - USING THE ANOVA_SCAN AND REPEATED
MEASURES

~comment stat2^spx

This job has 4 products but it is a 2 x 2 design. It is set up using multiple 80
column records. General information is on record 1.

first product seen data [2/12.8]

second product seen data [3/12.8]

third product seen data [4/12.8]

fourth product seen data [5/12.8]

first product seen [8/1] \ code 1 = green high salt

second product seen [8/7] \ code 2 = blue low salt

third product seen [8/13] / code 3 = blue high salt

fourth product seen [8/19] / code 4 = green low salt

~define

''define a variable to keep track of first pass through the tables

firstpass[27/59^1]

''define a variable to keep track of first product seen

firstseen[27/60^1]

proc= { proc1:

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -671

modify firstpass = true ''this is first pass through with banner1

modify firstseen = true 'this is first product seen

copy [27/01] = [8/01]

copy [27/12.8] = [2/12.8]

do_tables leave_open

modify firstseen = false ''this is not the first product seen

copy [8/01] = [8/07]

copy [2/12.8] = [3/12.8]

do_tables leave_open

copy [8/01] = [8/13]

copy [2/12.8] = [4/12.8]

do_tables leave_open

copy [8/01] = [8/19]

copy [2/12.8] = [5/12.8]

do_tables

modify firstpass = false ''this is not the first pass through

copy [8/01] = [27/01]

copy [2/12.8] = [27/12.8]

do_tables leave_open

copy [8/01] = [8/07]

copy [2/12.8] = [3/12.8]

do_tables leave_open

copy [8/01] = [8/13]

copy [2/12.8] = [4/12.8]

do_tables leave_open

copy [8/01] = [8/19]

copy [2/12.8] = [5/12.8]

do_tables

}

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-672 MENTOR

banner1: [8/01^2/1/3/4] with &

 ([8/01^3/2/1/4] by (total with firstseen))

banner2: [8/01^3/4/1/2] with &

 ((dud with dud with dud with dud) by (dud with
dud))

stub={summary:

 [freqonly] TOTAL

 [suppress] NO ANSWER

 }

stub={preface:

 [freqonly,-base_row] TOTAL

 [freqonly] DON'T KNOW

 [base_row,print_row=ar,vper=*] STAT BASE

 }

edit={editsum: stub_preface=summary }

tabset=&

{global:

 global_edit={:

 -col_tna

 rank_if_indicated

 rank_column_base=1

 -percent_sign

 stat_decimals=2

 putchars=-z--

 continue=top

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -673

 do_statistics=.90 + .95

 anova_scan

 }

}

tabset=&

{ban1:

 edit={:

 col_width=6

 stub_width=24

 stub_preface=preface

 }

 stats=: rm=ab,rm=cd,rm=efgh,i=ijkl

 ban={:

| PRODUCT TOTAL FIRST POSITION

| PACKAGE TYPE-TOTAL <---------------------> <--------------------->

| TYPE-TOTAL <---------> BLUE BLUE GREEN GREEN BLUE BLUE GREEN GREEN

| <---------> HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER

| BLUE GREEN SALT SALT SALT SALT SALT SALT SALT SALT SALT SALT

| ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

 }

 col=: banner1 when firstpass otherwise banner2

}

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-674 MENTOR

tabset={q101:

 local_edit=editsum

 title={: SUMMARY OF MEANS - DINNER ROLLS ATTRIBUTE
RATINGS

 }

 stub={:

 [stats] OVERALL APPEARANCE OF PRODUCT AND
PACKAGE

 [stats] NATURAL OR PROCESSED LOOK

 [stats] LOOKS MOIST OR DRY

 [stats] FEELINGS ABOUT THE MOISTNESS OR
DRYNESS

 [stats] OVERALL COLOR

 [stats] LOOKS LIKE WHAT I EXPECTED

 [stats] EXPECTED LIKING OF TASTE

 [stats] ENVIRONMENTAL IMPACT OF PACKAGE

 }

 row=: &

 $[mean] [2/12] &

 $[mean] [2/13] &

 $[mean] [2/14] &

 $[mean] [2/15] &

 $[mean] [2/16] &

 $[mean] [2/17] &

 $[mean] [2/18] &

 $[mean] [2/19]

}

tabset={q102:

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -675

 title={: OVERALL APPEARANCE OF PRODUCT AND PACKAGE }

 stub={:

 [] TOP THREE BOX (NET)

 [] TOP TWO BOX (NET)

 [] (9) LOVE IT

 [] (8)

 [] (7)

 [] (6)

 [] (5)

 [] (4)

 [] (3)

 [] (2)

 [] (1) HATE IT

 [] BOTTOM TWO BOX (NET)

 [] BOTTOM THREE BOX (NET)

 [stats] MEAN

 [stats] STD DEVIATION

 [stats] STD ERROR

 }

 row=: &

 [2/12^7.9/8,9/9//1/1,2/1.3] $[mean,std,se]
[2/12]

}

~input stats^tr work_length=2070 total_length=2160

>printfile stat2^prt

~set

 statistics_base_ar

 drop_local_edit

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-676 MENTOR

'' stat_dump

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -677

~execute

read_proc=proc1

tabset=global

tabset=ban1

 tabset=q101 tab=*

 tabset=q102 tab=*

~end

EXAMPLE THREE - USING THE FISHER TEST AND REPEATED
MEASURES

~comment stat3^spx

This job has 4 products but it is a 2 x 2 design. It is
set up using multiple 80 column records. General
information is on record 1.

 first product seen data [2/12.8]

 second product seen data [3/12.8]

 third product seen data [4/12.8]

 fourth product seen data [5/12.8]

 first product seen [8/1] \ code 1 = green high salt

 second product seen [8/7] \ code 2 = blue low salt

 third product seen [8/13] / code 3 = blue high salt

 fourth product seen [8/19] / code 4 = green low salt

~define

''define a variable to keep track of first pass through the tables

firstpass[27/59^1]

''define a variable to keep track of first product seen

firstseen[27/60^1]

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-678 MENTOR

proc= { proc1:

 modify firstpass = true ''this is first pass through with banner1

 modify firstseen = true ''this is first product seen

 copy [27/01] = [8/01]

 copy [27/12.8] = [2/12.8]

 do_tables leave_open

 modify firstseen = false ''this is not the first product seen

 copy [8/01] = [8/07]

 copy [2/12.8] = [3/12.8]

 do_tables leave_open

 copy [8/01] = [8/13]

 copy [2/12.8] = [4/12.8]

 do_tables leave_open

 copy [8/01] = [8/19]

 copy [2/12.8] = [5/12.8]

 do_tables

 modify firstpass = false ''this is not the first pass through

 copy [8/01] = [27/01]

 copy [2/12.8] = [27/12.8]

 do_tables leave_open

 copy [8/01] = [8/07]

 copy [2/12.8] = [3/12.8]

 do_tables leave_open

 copy [8/01] = [8/13]

 copy [2/12.8] = [4/12.8]

 do_tables leave_open

 copy [8/01] = [8/19]

 copy [2/12.8] = [5/12.8]

 do_tables

}

banner1: [8/01^2/1/3/4] with &

 ([8/01^3/2/1/4] by (total with firstseen))

banner2: [8/01^3/4/1/2] with &

 ((dud with dud with dud with dud) by (dud with dud))

stub={summary:

 [freqonly] TOTAL

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -679

 [suppress] NO ANSWER

 }

stub={preface:

 [freqonly,-base_row] TOTAL

 [freqonly] DON'T KNOW

 [base_row,print_row=ar,vper=*] STAT BASE

 }

edit={editsum: stub_preface=summary }

tabset=&

{global:

 global_edit={:

 -col_tna

 rank_if_indicated

 rank_column_base=1

 -percent_sign

 stat_decimals=2

 putchars=-z--

 continue=top

 do_statistics=.90 + .95

 fisher

 }

}

tabset=&

{ban1:

 edit={:

 col_width=6

 stub_width=24

 stub_preface=preface

 }

 stats=: rm=ab,rm=cd,rm=efgh,i=ijkl

 ban={:

| PRODUCT TOTAL FIRST POSITION

| PACKAGE TYPE-TOTAL <---------------------> <--------------------->

| TYPE-TOTAL <---------> BLUE BLUE GREEN GREEN BLUE BLUE GREEN GREEN

| <---------> HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER HIGH LOWER

| BLUE GREEN SALT SALT SALT SALT SALT SALT SALT SALT SALT SALT

| ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-680 MENTOR

 }

 col=: banner1 when firstpass otherwise banner2

}

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -681

tabset={q101:

 local_edit=editsum

 title={: SUMMARY OF MEANS - DINNER ROLLS ATTRIBUTE
RATINGS

 }

 stub={:

 [stats] OVERALL APPEARANCE OF PRODUCT AND
PACKAGE

 [stats] NATURAL OR PROCESSED LOOK

 [stats] LOOKS MOIST OR DRY

 [stats] FEELINGS ABOUT THE MOISTNESS OR
DRYNESS

 [stats] OVERALL COLOR

 [stats] LOOKS LIKE WHAT I EXPECTED

 [stats] EXPECTED LIKING OF TASTE

 [stats] ENVIRONMENTAL IMPACT OF PACKAGE

 }

 row=: &

 $[mean] [2/12] &

 $[mean] [2/13] &

 $[mean] [2/14] &

 $[mean] [2/15] &

 $[mean] [2/16] &

 $[mean] [2/17] &

 $[mean] [2/18] &

 $[mean] [2/19]

}

tabset={q102:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

-682 MENTOR

 title={: OVERALL APPEARANCE OF PRODUCT AND PACKAGE }

 stub={:

 [] TOP THREE BOX (NET)

 [] TOP TWO BOX (NET)

 [] (9) LOVE IT

 [] (8)

 [] (7)

 [] (6)

 [] (5)

 [] (4)

 [] (3)

 [] (2)

 [] (1) HATE IT

 [] BOTTOM TWO BOX (NET)

 [] BOTTOM THREE BOX (NET)

 [stats] MEAN

 [stats] STD DEVIATION

 [stats] STD ERROR

 }

 row=: &

 [2/12^7.9/8,9/9//1/1,2/1.3] $[mean,std,se]
[2/12]

}

~input stats^tr work_length=2070 total_length=2160

>printfile stat3^prt

~set

 statistics_base_ar

 drop_local_edit

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.3 Changing the Statistical Tests

MENTOR v 8.1 -683

'' stat_dump

~execute

read_proc=proc1

tabset=global

tabset=ban1

 tabset=q101 tab=*

 tabset=q102 tab=*

~end

_

8.3.4 Changing the Variance

When determining significance the Mentor program can calculate the variance of a
multiple column test in three different ways. It can use a pooled variance, a paired
variance, or a separate variance. Pooled variance uses a formula that combines the
variance of all the columns in a test. Paired variance combines the variance of each
pair in a test. Separate variance calculates the variance for each item separately. The
default variance for the All Possible Pairs Test is a paired variance, while the
default variance for the Newman-Keuls test is a pooled variance.

You can change the default variance used by the program with one of these EDIT
options: USUAL_VARIANCE (default), POOLED_VARIANCE,
PAIRED_VARIANCE, or SEPARATE_VARIANCE.

The following is a table of the type of variance that is used when testing means
using a STATISTICS statement that looks like STATISTICS= STAT1: ABCDE.

EDIT OPTION All Possible Pairs Newman-Keuls

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-684 MENTOR

USUAL_VARIANCE VAR(a,b) VAR(a,b,c,d,e)

POOLED_VARIANCE VAR(a,b,c,d,e) VAR(a,b,c,d,e)

PAIRED_VARIANCE VAR(a,b) VAR(a,b)

SEPARATE_VARIANCE VAR(a)+VAR(b) VAR(a)+VAR(b)

Separate variance may be useful when trying to duplicate a formula from a
textbook or some other program, but it only makes sense for independent or
inclusive tests. Also, any overlap in the sample (after taking into account any
inclusive test) will force separate variance to be ignored and the paired variance to
be used.

None of this affects the testing done on percentages. The variance for percentage
tests is always defined as the square root of (p times (1-p)), where p is the sum of
the all frequencies in the test divided by all the sum of all the percentage bases in
the test.

8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

When doing significance testing with weighted data, it is recommended that you
create the effective base row, even when the percentage base is the System
Weighted Total or the System Weighted Any Response row. The effective base
row is needed to verify any tests on weighted data.

The effective base is an estimation of how the weighting is affecting the test. It is
the actual base number that is used when determining whether two samples are
significantly different. The effective base will never be higher than the original
unweighted base and will usually be slightly less. As the variance in the weights
increases, the effective base decreases in order to compensate for the likely change
in the percentages that will occur. Without this correction, some weighting factor
could always be applied, which would make any item significantly greater than
any other. Since the effective base is so integral to the test, it is recommended that
it be printed on the table so that it can be determined how the weighting might be
affecting the significance testing.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

MENTOR v 8.1 -685

There are two different ways to create the effective base row. You can use either the
$[BASE] or $[EFFECTIVE_N] keywords. The $[BASE] keyword creates two
different rows, both of which are needed for the significance tests: the weighted
total (which is needed to properly calculate all the percentages) and the effective
base (which is used as the base for the significance test). The $[EFFECTIVE_N]
keyword can be used to create the effective base when the percentage base is either
the System Total or Any Response rows. In this case you do not need to again
specify the percentage base because the system has already calculated it.

In the example below, the $[BASE] keyword is used to create the effective base. A
new STUB_PREFACE is defined because the SET UNWEIGHTED_TOP option is
used to also produce an unweighted total row.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT4

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T401

~DEFINE

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DEC
IMALS=2,

 -PERCENT_SIGN,DO_STATISTICS=.95,RUNNING_LINES=1 }

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-686 MENTOR

| ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

Example:

STUB= STUB_TOP_UNWGT:

[-VERTICAL_PERCENT] UNWEIGHTED TOTAL

[SUPPRESS] UNWEIGHTED NO ANSWER

[SUPPRESS] WEIGHTED TOTAL

[SUPPRESS] WEIGHTED NO ANSWER }

TABLE_SET= { TAB401:

WEIGHT=:
SELECT_VALUE([6^1//3/X],VALUES(1.021,.880,1.130,1))

SET UNWEIGHTED_TOP

STATISTICS=: I=BC,I=DEF,GHIJ;

STUB_PREFACE= STUB_TOP_UNWGT

HEADER=: WEIGHTED TABLE WITH STATISTICAL TESTING
(USING BASE ROW) }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

[BASE_ROW,VERTICAL_PERCENT=*] WEIGHTED TOTAL (% BASE)

[-VERTICAL_PERCENT] EFFECTIVE BASE (STAT BASE)

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

MENTOR v 8.1 -687

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: $[BASE] TOTAL $[] [11^4,5/5/4/3/1,2/2/1/X]
$[MEAN,STD,SE] [11]

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-688 MENTOR

Here is the table that is printed:

WEIGHTED TABLE WITH STATISTICAL TESTING (USING BASE
ROW)

TABLE 401

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

UNWEIGHTED TOTAL 400 196 204 125 145 113 91 108 107 176

WEIGHTED TOTAL (% BASE) 400 194 206 128 128 128 91 108 106 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

EFFECTIVE BASE (STAT BASE) 396 194 202 125 145 113 90 107 106 174

NET GOOD 200 120C 80 58 55 84DE 43 55 54 106G

 50.1 62.0 38.9 45.6 43.4 65.5 47.5 51.3 51.0 60.6

 VERY GOOD 102 69C 33 36 33 31 19 32 30 60G

 25.4 35.7 15.8 28.0 26.2 23.9 21.1 29.5 27.8 33.9

GOOD 99 51 48 22 22 53DE 24 24 25 47

 24.6 26.3 23.1 17.6 17.2 41.6 26.3 21.8 23.2 26.7

FAIR 89 42 47 29F 39F 16 19 20 23 35

 22.3 21.8 22.8 22.4 30.3 12.4 20.7 18.3 21.7 19.9

NET POOR 83 17 65B 30 26 23 19 27J 22 24

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

MENTOR v 8.1 -689

 20.7 8.9 31.7 23.2 20.7 17.7 20.4 24.9 20.8 13.4

POOR 39 8 30B 12 15 11 8 13 13 12

 9.6 4.2 14.7 9.6 11.7 8.8 8.8 11.8 12.0 7.0

VERY POOR 44 9 35B 17 11 11 11 14J 9 11

 11.0 4.7 17.0 13.6 9.0 8.8 11.6 13.1 8.8 6.4

DON'T KNOW/REFUSED 28 14 14 11 7 6 10 6 7 11

 7.0 7.3 6.7 8.8 5.5 4.4 11.4 5.5 6.5 6.1

MEAN 3.47 3.91C 3.07 3.40 3.42 3.66 3.41 3.45 3.53 3.79GH

 I

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.31 1.40 1.30 1.20

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

In the preceding table, the unweighted total, weighted total, and effective base are
all printed. Compare the three numbers and notice that the effective base is usually
a little less than the unweighted total. This is because all the weights were close
together (near 1.00), so the weighting did not substantially change the percentages
on the table. Compare these percentages with those that were printed on Table 101.
If the weights had a greater variance (for example, respondents were assigned
weights between 5 and .2), the effective base would have been much less than the
unweighted total.

To see how the effective base works, look at the TOTAL column in the above table.
Notice that the weighted and unweighted totals are both 400, because weights were
chosen to weight the sample back to its original size. Also notice that the effective
base is only 396, which is due to the minor variation in the weights that were
applied to this table. The formula for the effective base is as follows:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-690 MENTOR

EB= WEIGHTED TOTAL SQUARED DIVIDED BY THE SUM OF THE
SQUARE OF EACH WEIGHT

Reproduce the number 396 from above by plugging in all the appropriate numbers
from TABLE 401.

EB= (WT)**2 / (Fn*(Wn**2))

EB= ((400)**2) / ((125*(1.021**2)) + (145*(.880**2)) +
(113*(1.13**2)) + (17*(1**2)))

EB= 160000 / (130.30 + 112.29 +
144.29 + 17)

EB= 160000 / 403.88

EB= 396.16

An important characteristic of the effective base is demonstrated in the 31-50 AGE
column, where the unweighted total and the effective base are both 145 while the
weighted total is only 128. Since the weighting on this table was based on AGE
and everyone in that column was weighted by the same factor of 0.880, the
weighted total drops to 128. However, since there is no variance in the weighting,
the effective base remains unchanged. Furthermore, the percentages in that column
are exactly the same as those in Table 101.

Exactly the same table could be produced by using the $[EFFECTIVE_N]
keyword instead of the $[BASE] keyword and a different STUB_PREFACE.

STUB= STUB_TOP_WGT:

[-VERTICAL_PERCENT] UNWEIGHTED TOTAL

[SUPPRESS] UNWEIGHTED NO ANSWER

[BASE_ROW] WEIGHTED TOTAL

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

MENTOR v 8.1 -691

[SUPPRESS] WEIGHTED NO ANSWER }

TABLE_SET= { TAB402:

STUB_PREFACE= STUB_TOP_WGT

HEADER=: WEIGHTED TABLE WITH STATISTICAL TESTING (USING
EFFECTIVE_N) }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

[-VERTICAL_PERCENT] EFFECTIVE BASE (STAT BASE)

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: $[EFFECTIVE_N] TOTAL $[] [11^4,5/5/4/3/1,2/2/1/X]
$[MEAN,STD,SE] [11]

STORE_TABLES=* }

The printed table would be basically the same as Table 401.

8.4.1 Weighted Tables with Different Weights

When performing significance testing in conjunction with applying different
weights to different columns, use the SET option

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-692 MENTOR

MULTIPLE_WEIGHT_STATISTICS. This option allows significance testing on
similarly weighted columns when the table has columns with varying weights.
However, it does not allow a given respondent to have a different weight in the
same test. You can test independent columns with different weights, but
dependent columns must have the same weights applied to them. For instance,
MULTIPLE_WEIGHT_STATISTICS allows significance testing on a table where
both a weighted and unweighted total column have been created, but it does not
allow the unweighted total to be tested against any of the weighted columns. If
this statement is not used, then the program will print an error message if a
STATISTICS statement is used in conjunction with a
COLUMN_SHORT_WEIGHT or COLUMN_WEIGHT table element.

The example below shows how to produce an unweighted total column and still do
significance testing on the rest of the table. Notice in the STATISTICS statement
that all the letters are one lower in the alphabet than previous statements because
an additional category has been added to the column variable.

TABLE_SET= { TAB403:

HEADER=: TABLE WITH STATISTICAL TESTING AND DIFFERENT
WEIGHTS APPLIED

TO DIFFERENT COLUMNS OF THE TABLE }

SET MULTIPLE_WEIGHT_STATISTICS

COLUMN_SHORT_WEIGHT=: TOTAL WITH &

SELECT_VALUE([6^1//3/X],VALUES(1.021,.880,1.130,1))

STATISTICS=: I=CD,I=EFG,HIJK;

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| UNWGHT WGHT <=========> <=================> <=========================>

| TOTAL TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ------ ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

COLUMN=: TOTAL WITH TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

TITLE= TAB402

TITLE_4= TAB402

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

MENTOR v 8.1 -693

STUB= TAB402

ROW= TAB402

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES

-694 MENTOR

Here is the table that is printed:

TABLE WITH STATISTICAL TESTING AND DIFFERENT WEIGHTS
APPLIED TO DIFFERENT COLUMNS OF THE TABLE

TABLE 403

RATING OF SERVICE

BASE= TOTAL SAMPLE

SEX AGE ADVERTISING AWARENESS

 UNWGHT WGHT <=========> <=================> <=========================>

 TOTAL TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ------ ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

UNWEIGHTED TOTAL 400 400 196 204 125 145 113 91 108 107 176

WEIGHTED TOTAL 400 400 194 206 128 128 128 91 108 106 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % % %

 (C) (D) (E) (F) (G) (H) (I) (J) (K)

EFFECTIVE BASE (STAT BASE) 400 396 194 202 125 145 113 90 107 106 174

NET GOOD 197 200 120D 80 58 55 84EF 43 55 54 106H

 49.2 50.1 62.0 38.9 45.6 43.4 65.5 47.5 51.3 51.0 60.6

VERY GOOD 102 102 69D 33 36 33 31 19 32 30 60H

 25.5 25.4 35.7 15.8 28.0 26.2 23.9 21.1 29.5 27.8 33.9

GOOD 95 99 51 48 22 22 53EF 24 24 25 47

 23.8 24.6 26.3 23.1 17.6 17.2 41.6 26.3 21.8 23.2 26.7

FAIR 92 89 42 47 29G 39G 16 19 20 23 35

 23.0 22.3 21.8 22.8 22.4 30.3 12.4 20.7 18.3 21.7 19.9

NET POOR 83 83 17 65C 30 26 23 19 27K 22 24

 20.8 20.7 8.9 31.7 23.2 20.7 17.7 20.4 24.9 20.8 13.4

POOR 39 39 8 30C 12 15 11 8 13 13 12

 9.8 9.6 4.2 14.7 9.6 11.7 8.8 8.8 11.8 12.0 7.0

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

MENTOR v 8.1 -695

VERY POOR 44 44 9 35C 17 11 11 11 14K 9 11

 11.0 11.0 4.7 17.0 13.6 9.0 8.8 11.6 13.1 8.8 6.4

DON'T KNOW/REFUSED 28 28 14 14 11 7 6 10 6 7 11

 7.0 7.0 7.3 6.7 8.8 5.5 4.4 11.4 5.5 6.5 6.1

MEAN 3.46 3.47 3.91D 3.07 3.40 3.42 3.66 3.41 3.45 3.53 3.79HI

 J

STD DEVIATION 1.31 1.31 1.12 1.35 1.41 1.28 1.22 1.31 1.40 1.30 1.20

STD ERROR 0.07 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested CD, EFG, HIJK

8.5 PRINT PHASE STATISTICAL TESTING

Print phase statistical testing is calculated from the numbers that are printed on the
table. This means that this

has several advantages. But it also has several drawbacks.

The advantages:

• Table processing time will be much faster.

• Tables can be loaded into table manipulation, altered, and still be tested.

• A different type of test can be performed on each row in the table, including a
Kruskal-Wallis test on the COLUMN_MEAN.

• The columns being tested can be changed without rereading any data.

The limitations:

• The columns must be independent or inclusive.

• The data cannot be weighted.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

-696 MENTOR

• Means created during the data reading phase with $[MEAN] will not be tested.
Only Means created using the EDIT option COLUMN_MEAN can be tested.

• If testing errors are made, such as dependent or weighted columns are tested or
inclusive tests are not marked as Inclusive, no error messages will be generated
and possibly incorrect statistical markings will be printed on the table.

NOTE: Both print phase and table building phase significance testing can be
performed on the same table, although it is recommended that each test
different sets of columns.

8.5.1 EDIT Options

To produce print phase significance testing, you need to use the EDIT options
DO_PRINTER_STATISTICS and DO_STATISTICS_TESTS instead of the
STATISTICS statement that is used for table building phase tests. The
DO_PRINTER_STATISTICS option lets the program know you are going to be
doing print phase testing and the DO_STATISTICS_TESTS specifies the columns
to be tested.

Like the STATISTICS statement, the DO_STATISTICS_TESTS option uses letters
to designate which columns are being tested and a comma to separate multiple
tests. Unlike the STATISTICS statement, all tests must be independent, (there is no
I= option), however tests may be inclusive and must be marked as such by using
T=. T values may be printed as with the STATISTICS statement, but the
PRINTABLE_T option cannot be used to error check the tests. See “8.7
PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES” for more
information about printing T values for print phase based tests and an example of
using the T= option.

To test the first three banner points against each other, the EDIT statement would
be look something like:

EDIT= EDIT1: DO_PRINTER_STATISTICS,DO_STATISTICS_TEST=ABC }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

MENTOR v 8.1 -697

The other EDIT options, such as DO_STATISTICS= to set the confidence level,
and NEWMAN_KEULS_TEST to perform a Newman Keuls test, work the same
way with the same defaults.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT5

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T501

~DEFINE

STUB= STUBTOP1:

[BASE_ROW] TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DEC
IMALS=2,

 -PERCENT_SIGN,RUNNING_LINES=1 }

STUB_PREFACE= STUBTOP1

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

-698 MENTOR

Example:

TABLE_SET= { TAB501:

LOCAL_EDIT=:
DO_PRINTER_STATISTICS,DO_STATISTICS_TESTS=BC,DEF

 ALL_POSSIBLE_PAIRS_TEST DO_STATISTICS=.95

COLUMN_STATISTICS_VALUES=VALUES(,5,4,3,,2,1)

 COLUMN_MEAN,COLUMN_STD COLUMN_SE }

HEADER=: TABLE WITH STATISTICAL TESTING DONE DURING THE
PRINT PHASE }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[PRINT_ROW=MEAN] MEAN

[PRINT_ROW=STD] STD DEV

[PRINT_ROW=SE] STD ERR }

ROW=: [11^4,5/5/4/3/1,2/2/1/X]

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

MENTOR v 8.1 -699

Here is the table that is printed:

TABLE WITH STATISTICAL TESTING DONE ON THE PRINTED
NUMBERS

TABLE 501

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

-700 MENTOR

VERY POOR 44 9 35B 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79

STD DEV 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF

This table is very similar to Table 101 at the beginning of this chapter. The only
difference is that columns G, H, I, and J are not tested in this table because they are
not independent. Notice that the footnote has nothing in it to differentiate between
tests done during the print phase or table building phase.

8.5.2 Changing the Confidence Level and the Type of Test

Changing the default significance levels or type of test procedure is done in
exactly the same way as with the table building phase tests. For example, if you
wanted to test at the 90% confidence level using the N-K test procedure you would
add the options DO_STATISTICS=.90 and NEWMAN_KEULS_TEST onto your
EDIT statement. Bi-level testing and using the approximation formula are also
specified the same way. See 8.1.3 through 8.1.7 for more information on the EDIT
option DO_STATISTICS. See “8.4 SIGNIFICANCE TESTING ON WEIGHTED
TABLES” for more information about changing the type of test.

TABLE_SET= { TAB502:

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

MENTOR v 8.1 -701

LOCAL_EDIT=:
DO_PRINTER_STATISTICS,DO_STATISTICS_TESTS=BC,DEF

 NEWMAN_KEULS_TEST,DO_STATISTICS=.90

COLUMN_STATISTICS_VALUES=VALUES(,5,4,3,,2,1)

 COLUMN_MEAN,COLUMN_STD,COLUMN_SE }

HEADER=: TABLE WITH STATISTICAL TESTING DONE DURING THE
PRINT PHASE

CHANGING THE CONFIDENCE LEVEL AND USING THE NEWMAN-KEULS
PROCEDURE }

TITLE= TAB501

TITLE_4= TAB501

STUB= TAB501

ROW= TAB501

STORE_TABLES=* }

The printed table would similar to Table 501 except for some of the statistical
markings and the footnote. The footnote would be as follows:

 (sig=.10) (n_k) columns tested BC, DEF

8.5.3 Changing the Type of Test by Row

When doing print phase statistical testing you can use the STUB option
DO_STATISTICS to change the type of test being performed on that row or to
exclude that row entirely from testing. This means that you can test some of the
rows using the APP test, test other rows using the N-K test, and not test other rows.
DO_STATISTICS can be set to any of ALL_POSSIBLE_PAIRS_TEST,
NEWMAN_KEULS_TEST, ANOVA_SCAN, FISHER, or
KRUSKAL_WALLIS_TEST. If -DO_STATISTICS is used, then that row will be
excluded from the test.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

-702 MENTOR

In the example below the NET GOOD, FAIR, and NET POOR are tested with the
APP test as specified on the EDIT statement. The COLUMN_MEAN is tested
using the Kruskall-Wallis test. The rest of the rows are not tested.

TABLE_SET= { TAB503:

LOCAL_EDIT=:
DO_PRINTER_STATISTICS,DO_STATISTICS_TESTS=BC,DEF

 ALL_POSSIBLE_PAIRS_TEST,DO_STATISTICS=.95

COLUMN_STATISTICS_VALUES=VALUES(,5,4,3,,2,1)

 COLUMN_MEAN,COLUMN_STD,COLUMN_SE }

HEADER=: TABLE WITH STATISTICAL TESTING DONE DURING THE
PRINT PHASE

USING THE KRUSKAL WALLIS TEST ON THE MEAN }

TITLE= TAB501

TITLE_4= TAB501

TITLE_5=:\2NNETS AND FAIR MENTIONS ARE TESTED USING ALL
PAIRS TEST

MEAN IS TESTED USING KRUSKAL WALLIS TEST }

STUB=:

NET GOOD

[-DO_STATISTICS] | VERY GOOD

[-DO_STATISTICS] | GOOD

FAIR

NET POOR

[-DO_STATISTICS] | POOR

[-DO_STATISTICS] | VERY POOR

[-DO_STATISTICS] DON'T KNOW/REFUSED

[PRINT_ROW=MEAN,DO_STATISTICS=KRUSKAL_WALLIS_TEST] MEAN

[PRINT_ROW=STD] STD DEV

[PRINT_ROW=SE] STD ERR }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

MENTOR v 8.1 -703

ROW= TAB501

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.5 PRINT PHASE STATISTICAL TESTING

-704 MENTOR

Here is the table that is printed:

TABLE WITH STATISTICAL TESTING DONE ON THE PRINTED
NUMBERS

USING THE KRUSKAL WALLIS TEST ON THE MEAN

TABLE 503

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F)

NET GOOD 197 120C 77 57 63 74DE 42 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19 27 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -705

VERY POOR 44 9 35 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79

STD DEV 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

NETS AND FAIR MENTIONS ARE TESTED USING ALL PAIRS TEST

MEAN IS TESTED USING KRUSKAL WALLIS TEST

 (sig=.05) (all_pairs) (k_w) columns tested BC, DEF

Notice that the standard footnote mentions that both the APP and Kruskall-Wallis
tests were used, but does not say what rows were tested with which test. As in this
example, you may want to use the TITLE_5 keyword to create a customized
footnote.

8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

Often when doing significance testing there will be only a particular row or couple
of rows in the table that are of interest. The processing time and the number of
undesirable letters that print on the table can be greatly reduced by only performing
the statistical tests on the specific rows.

The Mentor program can be instructed to test mean rows only, test only specified
rows, or to drop columns with low sample sizes from the testing.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-706 MENTOR

8.6.1 Testing Mean Rows Only

To perform statistical testing on mean rows only you can use the SET option
MEAN_STATISTICS_ONLY. This option causes the program to ignore all testing
for percentages. Return to testing both means and percentages by turning the
option off with -MEAN_STATISTICS_ONLY.

NOTE: The following set of commands defines a standard front end for the next
set of examples.

>PURGESAME

>PRINT_FILE STAT6

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T601

~DEFINE

STUB= STUB_TOP_TOT:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=: COLUMN_WIDTH=7,STUB_WIDTH=30,-
COLUMN_TNA,STATISTICS_DECIMALS=2,

 -PERCENT_SIGN,RUNNING_LINES=1 }

STATISTICS=: I=BC,I=DEF,GHIJ;

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ----- ---- ------ ----- ----- ----- ------ ------ ------ ------}

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -707

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

Example:

TABLE_SET= { TAB601:

STUB_PREFACE= STUB_TOP_TOT

SET MEAN_STATISTICS_ONLY

LOCAL_EDIT=: DO_STATISTICS=.95 }

HEADER=: TABLE WITH STATISTICAL TESTS PERFORMED ON MEANS
ONLY }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [11^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [11]

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-708 MENTOR

Here is the table that is printed:

TABLE WITH STATISTICAL TESTS PERFORMED ON MEANS ONLY

TABLE 601

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197 120 77 57 63 74 42 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28 44 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65 29 30 20 19 27 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

VERY POOR 44 9 35 17 13 10 11 14 9 11

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -709

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79GH

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

Compare this table with Table 101 and notice that only the MEAN row is marked
with any letter because the tests on all the other rows were suppressed.

NOTE: There is no change in the footnote on the table, so a customized notation
may want to be included somewhere on the table pointing out which rows
were tested.

8.6.2 Excluding any Row from Statist ical Testing

If only specific rows in the table are to be tested, you can either mark the rows that
are to be tested or the rows that are to be excluded. If a simple variable is being
defined the keyword STATISTICS may be used inside parentheses in front of the
code as part of the data definition. If the variable definition is complex (it uses
joiners or functions), then the keyword $[DO_STATISTICS] must be used to mark
the parts of the table that will be tested and the keyword $[-DO_STATISTICS] to
mark which parts of the table will not be tested.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-710 MENTOR

For example, suppose you only wanted to test the top two box (codes 5 and 4) and
the bottom two box (codes 1 and 2) in a 5 point scale stored in data position 21.
Using the STATISTICS keyword method the variable would look like:

[21^(STATISTICS)4,5/5/4/3/(STATISTICS)1,2/2/1]

This would cause only those categories marked with the STATISTICS keyword to
be tested, while all other categories would not be tested.

Using the $[DO_STATISTICS] keyword method the variable would look like:

[21^4,5] $[-DO_STATISTICS] [21^5/4/3] $[DO_STATISTICS]
[21^1,2] &

$[-DO_STATISTICS] [21^2/1]

The default is that categories are tested so the net of 4 and 5 will be tested. All
categories after $[-DO_STATISTICS] are not tested, while $[DO_STATISTICS]
turns testing back on.

If table printing phase statistical testing is being done, you can exclude a row from
the test by using the STUB option -DO_STATISTICS. See “8.5.3 Changing the
Type of Test by Row” for more information.

NOTE: The $[DO_STATISTICS] keyword should not be confused with either the
EDIT statement option DO_STATISTICS or the STUB option
DO_STATISTICS.

The following example shows how to test only the top box, bottom box, and mean
on a rating scale:

TABLE_SET= { TAB602:

LOCAL_EDIT=: DO_STATISTICS=.95 }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -711

HEADER=: TABLE WITH STATISTICAL TESTS PERFORMED ON
SELECTED ROWS ONLY }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

TITLE_5=:\2N ONLY ROWS WITH (*) ARE TESTED }

STUB=:

NET GOOD (*)

| VERY GOOD

| GOOD

FAIR

NET POOR (*)

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN (*)

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [11^(STATISTICS)4,5/5/4/3/(STATISTICS)1,2/2/1/X]
$[MEAN,STD,SE] [11]

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-712 MENTOR

Here is an alternate way to write the row variable:

ROW602A:[11^4,5] $[-DO_STATISTICS] [11^5/4/3] &

$[DO_STATISTICS] [11^1,2] $[-DO_STATISTICS] [11^2/1/X]
&

$[DO_STATISTICS, MEAN,STD,SE] [11]

Here is the table that is printed:

TABLE WITH STATISTICAL TESTS PERFORMED ON SELECTED ROWS
ONLY

TABLE 602

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD (*) 197 120C 77 57 63 74DE 42 55 54 105G

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

VERY GOOD 102 70 32 35 38 27 19 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28 44 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -713

NET POOR (*) 83 18 65B 29 30 20 19 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

POOR 39 9 30 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

VERY POOR 44 9 35 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN (*) 3.46 3.90C 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79GH

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

 ONLY ROWS WITH (*) ARE TESTED

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

If you compare this table with Table 601 note that only the NET GOOD, NET
POOR, and MEAN row in this table have statistical markings. In addition, a
TITLE_5 variable was defined to create a customized footnote.

8.6.3 Excluding Columns with Low Bases from Statist ical Testing

If some of the columns in the test could have low bases you might want to exclude
them from the testing. You may want to do this because the small bases might skew
the tests, or because the sample is such that you do not want to report on any small
base. The EDIT option MINIMUM_BASE= can be used to suppress not only
statistical testing but also all the other values in that column. If MINIMUM_BASE
is set to some value like 50, then any column that has a base less than 50, will print
an asterisk (*) under the base row where the letter usually prints, and the rest of the

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-714 MENTOR

column will be blank. The FLAG_MINIMUM_BASE option can be used in
conjunction with MINIMUM_BASE. Instead of blanking the column, the program
will print all the numbers in that column followed by an asterisk where the
statistical markings would normally print.

TABLE_SET= { TAB603:

STATISTICS=: I=BC,I=DEF,GHIJ;

LOCAL_EDIT=: MINIMUM_BASE=100,DO_STATISTICS=.95 }

HEADER=: USING MINIMUM BASE OPTION TO SUPPRESS A COLUMN
WITH A LOW BASE }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

| VERY GOOD

| GOOD

FAIR

NET POOR

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR }

ROW=: [11^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [11]

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -715

Here is the table that is printed:

USING MINIMUM BASE OPTION TO SUPPRESS A COLUMN WITH A
LOW BASE

TABLE 603

RATING OF SERVICE

BASE= TOTAL SAMPLE

SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (*) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 50.9 50.5 59.7

VERY GOOD 102 70C 32 35 38 27 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 29.6 28.0 34.1

GOOD 95 50 45 22 25 47DE 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 25.0 20.6 13.6

POOR 39 9 30B 12 17 10 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 12.0 12.1 7.4

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-716 MENTOR

VERY POOR 44 9 35B 17 13 10 14J 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.45 3.53 3.79H

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

* - small base

Notice that the column BRND A is blank except for the base value. Also notice
that the footnote includes a note that the asterisk denotes a small base.

You can suppress only the statistical testing instead of the entire column by also
using the EDIT option FLAG_MINIMUM_BASE. In the example below the only
difference from Table 603 is this option.

TABLE_SET= { TAB604:

HEADER=: USING MINIMUM BASE OPTION TO FLAG A COLUMN
WITH A LOW BASE }

LOCAL_EDIT=:
MINIMUM_BASE=100,FLAG_MINIMUM_BASE,DO_STATISTICS=.95 }

TITLE= TAB603

TITLE_4= TAB603

STUB= TAB603

ROW= TAB603

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

MENTOR v 8.1 -717

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING

-718 MENTOR

Here is the table that is printed:

USING MINIMUM BASE OPTION TO FLAG A COLUMN WITH A LOW
BASE

TABLE 604

RATING OF SERVICE

BASE= TOTAL SAMPLE

SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (B) (C) (D) (E) (F) (*) (H) (I) (J)

NET GOOD 197 120C 77 57 63 74DE 42* 55 54 105

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

 VERY GOOD 102 70C 32 35 38 27 19* 32 30 60

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

 GOOD 95 50 45 22 25 47DE 23* 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92 44 48 28F 44F 14 20* 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83 18 65B 29 30 20 19* 27J 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

 POOR 39 9 30B 12 17 10 8* 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

MENTOR v 8.1 -719

 VERY POOR 44 9 35B 17 13 10 11* 14J 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10* 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46 3.90C 3.05 3.40 3.42 3.66 3.38* 3.45 3.53 3.79H

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32* 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15* 0.14 0.13 0.09

 (sig=.05) (all_pairs) columns tested BC, DEF, GHIJ

* - small base

8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

Both t values and the significance of the t value can be printed on the table either in
addition to or instead of the statistical letter markings. The STUB options
DO_T_TEST and DO_SIG_T are used to print these values. If you are printing
values from a STATISTICS statementyou can also use PRINTABLE_T for error
checking. PRINTABLE_T checks that the STAT= tests are only in pairs and that no
column is the second column in any pair more than once (you can only print one T
value per column).

The STUB options DO_T_TEST and DO_SIG_T can be set to any of the
following:

• DO_T_TEST=*Print the t value for the last data row seen

• DO_T_TEST=n Print the t value for the Nth row in the table

• DO_T_TEST=-nPrint the t value for the Nth row above this row in the table

• DO_T_TEST=PRINT_MEANPrint the t value for the COLUMN_MEAN

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

-720 MENTOR

In the example below the t values and their significance are printed for the top box,
bottom box, and mean rows in the table.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT7

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T701

~DEFINE

STUB= STUB_TOP_TOT:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STATISTICS_DEC
IMALS=2,

 -PERCENT_SIGN }

BANNER=:

| SEX AGE ADVERTISING AWARENESS

| <=========> <=================> <=========================>

| TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

| ---- ---- ------ ----- ----- ----- ------ ------ ------ ------}

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3] WITH [7^1//4]

}

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

MENTOR v 8.1 -721

Example:

TABLE_SET= { TAB701:

STUB_PREFACE= STUB_TOP_TOT

STATISTICS=: PRINTABLE_T
T=AB,T=AC,T=AD,T=AE,T=AF,T=AG,T=AH,T=AI,T=AJ

LOCAL_EDIT=: DO_STATISTICS=.95 }

HEADER=: TABLE WITH T AND SIGNIFICANCE VALUES PRINTED ON
THE TABLE }

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

[DO_T_TEST=*,SKIP_LINES=0] T-VALUE

[DO_SIG_T=*,SKIP_LINES=0] SIGNIFICANCE

| VERY GOOD

| GOOD

FAIR

NET POOR

[DO_T_TEST=*,SKIP_LINES=0] T-VALUE

[DO_SIG_T=*,SKIP_LINES=0] SIGNIFICANCE

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[STATISTICS_ROW] MEAN

[STATISTICS_ROW] STD DEVIATION

[STATISTICS_ROW] STD ERROR

[DO_T_TEST=9] T-VALUE

[DO_SIG_T=9] SIGNIFICANCE OF T }

ROW=: [11^4,5/5/4/3/1,2/2/1/X] $[MEAN,STD,SE] [11]

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

-722 MENTOR

STORE_TABLES=* }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

MENTOR v 8.1 -723

Here is the table that is printed:

TABLE WITH T AND SIGNIFICANCE VALUES PRINTED ON THE TABLE

TABLE 701

RATING OF SERVICE

BASE= TOTAL SAMPLE

 SEX AGE ADVERTISING AWARENESS

 <=========> <=================> <=========================>

 TOTAL MALE FEMALE 18-30 31-50 51-70 BRND A BRND B BRND C BRND D

 ----- ---- ------ ----- ----- ----- ------ ------ ------ ------

TOTAL 400 196 204 125 145 113 91 108 107 176

 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % % % % % %

 (A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

NET GOOD 197C 120A 77 57 63 74A 42 55 54 105A

 49.2 61.2 37.7 45.6 43.4 65.5 46.2 50.9 50.5 59.7

T-VALUE -4.69 4.69 0.98 1.75 -4.07 0.67 -0.41 -0.29 -3.69

SIGNIFICANCE 0.00 0.00 0.33 0.08 0.00 0.51 0.69 0.77 0.00

VERY GOOD 102C 70A 32 35 38 27 19 32 30 60A

 25.5 35.7 15.7 28.0 26.2 23.9 20.9 29.6 28.0 34.1

GOOD 95E 50 45 22 25 47A 23 23 24 45

 23.8 25.5 22.1 17.6 17.2 41.6 25.3 21.3 22.4 25.6

FAIR 92F 44 48 28 44A 14 20 20 24 36

 23.0 22.4 23.5 22.4 30.3 12.4 22.0 18.5 22.4 20.5

NET POOR 83BJ 18 65A 29 30 20 19 27 22 24

 20.8 9.2 31.9 23.2 20.7 17.7 20.9 25.0 20.6 13.6

T-VALUE 5.58 -5.58 -0.81 0.02 0.94 -0.03 -1.27 0.06 3.11

SIGNIFICANCE 0.00 0.00 0.42 0.98 0.35 0.97 0.20 0.95 0.00

POOR 39B 9 30A 12 17 10 8 13 13 13

 9.8 4.6 14.7 9.6 11.7 8.8 8.8 12.0 12.1 7.4

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

-724 MENTOR

VERY POOR 44BJ 9 35A 17 13 10 11 14 9 11

 11.0 4.6 17.2 13.6 9.0 8.8 12.1 13.0 8.4 6.2

DON'T KNOW/REFUSED 28 14 14 11 8 5 10 6 7 11

 7.0 7.1 6.9 8.8 5.5 4.4 11.0 5.6 6.5 6.2

MEAN 3.46C 3.90A 3.05 3.40 3.42 3.66 3.38 3.45 3.53 3.79A

STD DEVIATION 1.31 1.12 1.35 1.41 1.28 1.22 1.32 1.40 1.29 1.21

STD ERROR 0.07 0.08 0.10 0.13 0.11 0.12 0.15 0.14 0.13 0.09

T-VALUE -6.58 6.58 0.57 0.44 -1.84 0.62 0.10 -0.60 -4.38

SIGNIFICANCE OF T 0.00 0.00 0.57 0.67 0.06 0.54 0.91 0.55 0.00

 (sig=.05) (all_pairs) columns tested T= AB, T= AC, T= AD, T= AE, T= AF,

T= AG, T= AH, T= AI, T= AJ

Notice that t values are positive when the first item in the cell is greater than the
second item, and negative when the opposite is true. Also notice that any cell with
a significance of 0.05 or less is either marked with the letter A (negative t value) or
the Total column is marked with its letter (positive t value). Further notice that the
t values for males and females are opposites of each other. This is because each is
being tested inclusively against the total which is actually the same as testing them
against each other.

Basically the same table could be produced using the print phase tests. For more
information on print phase tests see “8.5 PRINT PHASE STATISTICAL
TESTING”. Here is an example of printing the t values when doing print phase
tests.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES

MENTOR v 8.1 -725

TABLE_SET= { TAB702:

LOCAL_EDIT=:
DO_PRINTER_STATISTICS,ALL_POSSIBLE_PAIRS_TEST,

 DO_STATISTICS=.95,

DO_STATISTICS_TESTS=T=AB,T=AC,T=AD,T=AE,T=AF,T=AG,T=AH,
T=AI,T=AJ

 COLUMN_STATISTICS_VALUES=VALUES(,5,4,3,,2,1)

 COLUMN_MEAN,COLUMN_STD,COLUMN_SE }

HEADER=: TABLE WITH T AND SIGNIFICANCE VALUES PRINTED ON
THE TABLE

FOR TESTS PERFORMED ON THE NUMBERS ON THE PRINTED TABLE
}

TITLE=: RATING OF SERVICE }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

NET GOOD

[DO_T_TEST=*,SKIP_LINES=0] T-VALUE

[DO_SIG_T=*,SKIP_LINES=0] SIGNIFICANCE

| VERY GOOD

| GOOD

FAIR

NET POOR

[DO_T_TEST=*,SKIP_LINES=0] T-VALUE

[DO_SIG_T=*,SKIP_LINES=0] SIGNIFICANCE

| POOR

| VERY POOR

DON'T KNOW/REFUSED

[PRINT_ROW=MEAN] MEAN

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

-726 MENTOR

[PRINT_ROW=STD] STANDARD DEVIATION

[PRINT_ROW=SE] STANDARD ERROR

[DO_T_TEST=PRINT_MEAN] T-VALUE

[DO_SIG_T=PRINT_MEAN] SIGNIFICANCE OF T }

ROW=: [11^4,5/5/4/3/1,2/2/1/X]

STORE_TABLES=* }

The printed table will look basically the same as Table 701.

8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

Significance testing on rows can be performed in two ways: a direct comparison
test or a distributed preference test. In both cases only two rows may be compared
at one time, although multiple pairs of rows may be compared in a single table. As
with column testing, the STATISTICS statement and the DO_STATISTICS option
on the EDIT statement control the tests.

NOTE: Row testing cannot be performed during the table-printing phase.

On the STATISTICS statement, rows are designated numerically rather than
alphabetically as are the columns. The first data row is assigned the number "1",
the second data row the number "2", and so on. Every data row is included in this
count even if it is not printed. To do a direct comparison of rows use the letter D
followed by an equal sign (=) before the two row numbers. Separate the two row
numbers with a comma. Separate different pairs of rows with a space. To do a
distributed preference test use P instead of D. Rows can only be tested sequentially
and a given row may only be in one test on the table. For example, if rows 1 and 4
are being compared, then rows 5 and 6 could also be compared, but row 3 could
not be compared with row 7 (row 4 being in between), nor could row 1 be
compared to row 2 (row 1 is already being compared to row 4).

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

MENTOR v 8.1 -727

8.8.1 Direct Comparison Testing

A direct comparison of two rows is similar to the test that is performed on columns,
except that the letter D must be specified to indicate that it is a direct test. To do a
direct comparison of rows 1 and 2 use the following STATISTICS statement:

STATISTICS= ROWSTAT1: D=1,2

The following statement would test row 1 versus row 2, row 3 versus row 4, and
row 5 versus row 6.

STATISTICS= ROWSTAT2: D=1,2 D=3,4 D=5,6

Row testing can be combined with column testing by specifying both the column
and row tests on the same STATISTICS statement. The following statement would
do column testing on columns B, C, and D, in addition to testing row 4 versus row
6.

STATISTICS= ROWSTAT3: BCD, D=4,6

The DO_STATISTICS option on the EDIT statement is again used to set the
confidence level. The same setting is used for both the row and column tests. As
with column testing, a footnote will be printed to indicate which rows were tested
and the significance level used. If the difference is significant, a lower case "s" will
print under the second row tested.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

-728 MENTOR

This is an example of a direct comparison of rows.

NOTE: The following set of commands defines a standard front end for the next
set of examples

>PURGESAME

>PRINT_FILE STAT8

~INPUT DATA

~SET DROP_LOCAL_EDIT,BEGIN_TABLE_NAME=T801

~DEFINE

STUB= STUBTOP1:

TOTAL

[SUPPRESS] NO ANSWER }

TABLE_SET= { BAN1:

EDIT=:
COLUMN_WIDTH=7,STUB_WIDTH=30,-COLUMN_TNA,STUB_PREFACE=S
TUBTOP1,

STATISTICS_DECIMALS=2,-PERCENT_SIGN,DO_STATISTICS=1 }

BANNER=:

| SEX AGE

| <=========> <=================>

| TOTAL MALE FEMALE 18-30 31-50 51-70

| ----- ---- ------ ----- ----- -----}

COLUMN=: TOTAL WITH [5^1/2] WITH [6^1//3]

}

And here is this example:

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

MENTOR v 8.1 -729

TABLE_SET= { TAB801:

STATISTICS=: D=1,2 D=4,5 D=7,8

HEADER=:

TABLE WITH DIRECT STATISTICAL TESTING OF ROWS AT THE 95%
CONFIDENCE LEVEL}

TITLE=: PREFERENCE OF PRODUCTS }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

[COMMENT,UNDERLINE] FIRST TEST

[STUB_INDENT=2] PREFER BRAND A

[STUB_INDENT=2] PREFER BRAND B

[STUB_INDENT=2] NO PREFERENCE A VS B

[COMMENT,UNDERLINE] SECOND TEST

[STUB_INDENT=2] PREFER BRAND C

[STUB_INDENT=2] PREFER BRAND D

[STUB_INDENT=2] NO PREFERENCE C VS D

[COMMENT,UNDERLINE] THIRD TEST

[STUB_INDENT=2] PREFER BRAND E

[STUB_INDENT=2] PREFER BRAND F

[STUB_INDENT=2] NO PREFERENCE E VS F

}

ROW=: [7,8,9^1/2/X]

STORE_TABLES=* }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

-730 MENTOR

Here is the table that is printed:

TABLE WITH DIRECT STATISTICAL TESTING OF ROWS AT THE
95% CONFIDENCE LEVEL

TABLE 801

PREFERENCE OF PRODUCTS

TITLE_4=: BASE= TOTAL SAMPLE

 SEX AGE

 <=========> <=================>

 TOTAL MALE FEMALE 18-30 31-50 51-70

 ----- ---- ------ ----- ----- -----

TOTAL 500 251 249 140 223 101

 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % %

FIRST TEST

(a) PREFER BRAND A 236 111 125 88 98 30

 47.2 44.2 50.2 62.9 43.9 29.7

(b) PREFER BRAND B 214 113 101 43 101 59

 42.8 45.0 40.6 30.7 45.3 58.4

s s

NO PREFERENCE A VS B 50 27 23 9 24 12

 10.0 10.8 9.2 6.4 10.8 11.9

SECOND TEST

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

MENTOR v 8.1 -731

 (d) PREFER BRAND C 266 125 141 78 121 48

 53.2 49.8 56.6 55.7 54.3 47.5

(e) PREFER BRAND D 190 108 82 49 84 43

 38.0 43.0 32.9 35.0 37.7 42.6

s s s s

NO PREFERENCE C VS D 44 18 26 13 18 10

 8.8 7.2 10.4 9.3 8.1 9.9

THIRD TEST

(g) PREFER BRAND E 248 132 116 87 93 44

 49.6 52.6 46.6 62.1 41.7 43.6

(h) PREFER BRAND F 187 87 100 40 96 42

 37.4 34.7 40.2 28.6 43.0 41.6

s s s

NO PREFERENCE E VS F 65 32 33 13 34 15

 13.0 12.7 13.3 9.3 15.2 14.9

 (sig=.05) (all_pairs) rows tested a/b, d/e, g/h

Notice the "s" in the FEMALE column underneath the PREFER BRAND D row.
This indicates that there is a significant difference between PREFER BRAND C
and PREFER BRAND D for females. The blank under the MALE column in that
row indicates that there is no significant difference for males. Also notice the
additional lower case letter assigned to each row that was tested. This allows easy
identification of which rows were tested against each other when compared to the
footnote that prints at the bottom of the page.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

-732 MENTOR

8.8.2 Distr ibuted Preference Testing

A distributed preference test allows a "No Preference" (or similar neutral third
category) to be distributed between the two original categories while ensuring the
integrity of the underlying statistical test. This is usually done for cosmetic
purposes so that the percentages of the two preference categories add up to 100
percent.

The rules for the STATISTICS statement are the same as for the direct comparison,
except the letter P is used instead of a D. To do a distributed preference test on
rows 1 and 2, use the following STATISTICS statement:

STATISTICS= ROWSTAT4: P=1,2

In a distributed preference test, the SELECT_VALUE function is used to define
the row variable. This ensures that the "No preference" response is evenly divided
between the two categories (see “9.3.2 Functions” for more information on the
SELECT_VALUE function). A typical row definition might look like this:

ROW=: SELECT_VALUE([7^1/X],VALUES(1,.5)) WITH &
SELECT_VALUE([7^2/X],VALUES(1,.5))

This causes the X punch ("No preference") to have a value of .5 for both
categories, splitting it evenly between the two.

As with the direct comparison, significant differences are marked with an "s"
underneath the second row being tested. However, unlike the direct comparison
test, small (not significant) differences are marked with a lower case "ns" and
statistically equal rows are marked with a lower case "e".

The following example uses a distributed preference test to compare the same
rows used in Table 801. Note the difference in the row variable definition.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

MENTOR v 8.1 -733

TABLE_SET= { TAB802:

STATISTICS=: P=1,2 P=3,4 P=5,6

HEADER=:

TABLE WITH DISTRIBUTED PREFERENCE TESTING OF ROWS AT THE
95% CONFIDENCE LEVEL}

TITLE=: PREFERENCE OF PRODUCTS }

TITLE_4=: BASE= TOTAL SAMPLE }

STUB=:

[COMMENT,UNDERLINE] FIRST TEST

[STUB_INDENT=2] PREFER BRAND A

[STUB_INDENT=2] PREFER BRAND B

[COMMENT,UNDERLINE] SECOND TEST

[STUB_INDENT=2] PREFER BRAND C

[STUB_INDENT=2] PREFER BRAND D

[COMMENT,UNDERLINE] THIRD TEST

[STUB_INDENT=2] PREFER BRAND E

[STUB_INDENT=2] PREFER BRAND F

}

ROW=: SELECT_VALUE([7^1/X],VALUES(1,.5)) WITH &

 SELECT_VALUE([7^2/X],VALUES(1,.5)) WITH &

 SELECT_VALUE([8^1/X],VALUES(1,.5)) WITH &

 SELECT_VALUE([8^2/X],VALUES(1,.5)) WITH &

 SELECT_VALUE([9^1/X],VALUES(1,.5)) WITH &

 SELECT_VALUE([9^2/X],VALUES(1,.5))

STORE_TABLES=* }

Here is the table that is printed:

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)

-734 MENTOR

TABLE WITH DISTRIBUTED PREFERENCE TESTING OF ROWS AT
THE 95% CONFIDENCE LEVEL

TABLE 802

PREFERENCE OF PRODUCTS

TITLE_4=: BASE= TOTAL SAMPLE

 SEX AGE

 <=========> <=================>

 TOTAL MALE FEMALE 18-30 31-50 51-70

 ----- ---- ------ ----- ----- -----

TOTAL 500 251 249 140 223 101

 100.0 100.0 100.0 100.0 100.0 100.0

 % % % % % %

FIRST TEST

 (a) PREFER BRAND A 261 124 136 92 110 36

 52.2 49.6 54.8 66.1 49.3 35.6

 (b) PREFER BRAND B 239 126 112 48 113 65

 47.8 50.4 45.2 33.9 50.7 64.4

 e e ns s e s

SECOND TEST

 (c) PREFER BRAND C 288 134 154 84 130 53

 57.6 53.4 61.8 60.4 58.3 52.5

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -735

 (d) PREFER BRAND D 212 117 95 56 93 48

 42.4 46.6 38.2 39.6 41.7 47.5

 s ns s s s e

THIRD TEST

 (e) PREFER BRAND E 280 148 132 94 110 52

 56.1 59.0 53.2 66.8 49.3 51.0

 (f) PREFER BRAND F 220 103 116 46 113 50

 43.9 41.0 46.8 33.2 50.7 49.0

 s s ns s e e

 (sig=.05) (all_pairs) rows tested a/b, c/d, e/f

Compare this table with Table 801 and notice how the frequency and percentages
have changed. The numbers in this table equal the sum of the numbers in Table 801
plus half of the numbers that were in the NO PREFERENCE row. Also notice that
"s" appears in the same place, but that cells that were previously blank now contain
either an "ns" or "e", depending upon the difference of the two cells. One
additional thing to notice is that the footnote for this table is exactly the same as the
one from Table 801, so the only way to tell which test was done is by looking to see
if there are any of the "ns" or "e" markings on the table.

8.9 CHI-SQUARE AND ANOVA TESTS

Statistical significance testing is often desirable as a part of cross-tabulation
reporting. Such testing is used to determine whether or not a statistically significant
relationship exists between two or more tabulated factors. Tests commonly used for

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-736 MENTOR

this are chi-square and analysis of variance (ANOVA). ANOVA tests for
significance between means. So, if significance testing is desired on any question
for which means are calculated, ANOVA would be the likely choice. The
chi-square test is for significance between parts of the column axis (banner) and
the entire row axis (stub). It would be chosen for questions where calculation of
means is not applicable. For both ANOVA and chi-square testing, row categories
must be mutually exclusive, as must column categories within tested parts of the
banner.

The ANOVA and chi-square tests discussed here are invoked by EDIT= statements
rather than by variable/axis definition expressions and are performed by Mentor at
the time of printing rather than at the time of numeric calculation. Run times are
shortened by this approach thus improving overall efficiency. There are occasions
when having statistics computed at the time of numerical calculation is required. A
discussion of invoking statistical testing with variable/axis definition expressions
can be found in the Appendix B: TILDE COMMANDS.

The following are some relevant keywords for creating tables with ANOVA and
chi-square tests.

EDIT

Used in the ~DEFINE block this controls numerous printing and percentage
options. Each table can have its own EDIT statement, so options can be changed as
required by varying question types. Some options that pertain to ANOVA and
chi-square testing are:

TABLE_TESTS=<region> is used to specify table regions to be tested. Text
labeling for the test is included in the region definition. The EDIT statement must
include a separate TABLE_TESTS= command for each region tested.

-TABLE_TESTS causes statistical testing not to be performed. This option should
be included in an EDIT statement separate from that which includes
TABLE_TESTS=<region> options, and invoked for tables that do not require
statistical testing.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -737

COLUMN_STATISTICS_VALUES=VALUES(<values>) assigns response
weights to the row categories. These weights are used in the calculation of statistics
such as mean and standard deviation, and for ANOVA testing.

MEAN, STD, ANOVA, and CHI_SQUARE cause the corresponding statistical
calculations to be performed and printed as part of the table. (STD is the
abbreviation for standard deviation.)

-CHI_SQUARE_ANOVA_FORMAT places chi-square and ANOVA statistics in
list form after the corresponding table. If this option is not used, these statistics will
be printed directly under the table regions tested, provided the regions are wide
enough. ANOVA and chi-square statistics for table regions with narrow column
widths, such as yes/no questions in the banner, will not print and will cause Mentor
to generate error messages.

SHOW_SIGNIFICANCE_ONLY causes only the significance to show under the
table regions tested. This will not work with -CHI_SQUARE_ANOVA_FORMAT,
so it cannot be done in list form.

MARK_CHI_SQUARE marks cells as significant based on chi-square testing. This
is an alternative to Neuman_Keuls, ANOVA_SCAN, and ALL_PAIRS testing. For
each significant CHI_SQUARE test on the table, a formula is used to determine
which cells are the most extreme. For bi-level testing, the process is repeated.

The syntax is: EDIT={edit1: MARK_CHI_SQUARE=abcde } See
Mentor, Volume II, ~DEFINE EDIT for more details and examples.

LOCAL_EDIT=<name>

Used in the ~EXECUTE block, this invokes a previously defined EDIT statement.
Options specified in the EDIT statement and also named in a LOCAL_EDIT
command will take precedent over the same options in any other EDIT statements
previously invoked. Options that are in a previously invoked EDIT statement, but
not in the LOCAL_EDIT command will stay in affect. If ~SET
DROP_LOCAL_EDIT is used, a LOCAL_EDIT command is in effect only for the
first table following it.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-738 MENTOR

STUB

Text that will label each vertical category on the printed tables is defined using this
statement. Control is offered over various options, but one is of particular interest:

[-COLUMN_STATISTICS_VALUES] excludes that category from statistical
calculations. It is often used to exclude the "Don't know" category.

More detailed descriptions of the capabilities and syntax of these keywords can

be found in Appendix B: TILDE COMMANDS, STUB=.

The example that follows illustrates how to create tables with ANOVA and
chi-square tests. Also demonstrated are the following design characteristics:

• Separate definition of table regions for testing makes the specs more readable
and easier to understand should maintenance be required in the future.

• Region definitions ($R) are created to be banner (column) specific, but not stub
(row) specific by always typing "1 to LAST" for the row part of the definition.
This way, it is necessary to type the column parts of the region definitions for a
banner only once since the same banner regions are tested each time a specific
banner is used. Testing of row categories is then controlled on a
question-by-question basis through use of
[-COLUMN_STATISTICS_VALUES].

• Separate EDIT statements invoked by LOCAL_EDIT commands control which
statistical tests are to be performed on each question.

• For banner 1, the -CHI_SQUARE_ANOVA_FORMAT option is used to print
ANOVA and chi-square statistics in list form following their corresponding
tables.

~INPUT DATACLN

~SET AUTOMATIC_TABLES,DROP_LOCAL_EDIT

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -739

~DEFINE

EDIT={STATS_OFF: -TABLE_TESTS }

''Banner 1 definitions

'' column row

'' Stat tests must be labeled region region

'' since they will appear in list form in banner in stub

'' ------------------------------------ --------- ---------

BAN1_REG1: [$T="STAT TEST FOR SERVICE TYPE " $R 2 TO 3 BY 1 TO LAST]

BAN1_REG2: [$T="STAT TEST FOR NEW SERVICE " $R 4 TO 5 BY 1 TO LAST]

BAN1_REG3: [$T="STAT TEST FOR TAX PREPARATION " $R 6 TO 7 BY 1 TO
LAST]

BAN1_REG4: [$T="STAT TEST FOR FREQUENCY OF USE " $R 8 TO 10 BY 1 TO
LAST]

BAN1_REG5: [$T="STAT TEST FOR SALES " $R 11 TO 14 BY 1 TO LAST]

EDIT={ BAN1_EDIT: -COLUMN_TNA,PERCENT_DECIMALS=0,

 COLUMN_WIDTH=5,STUB_WIDTH=25,

 -CHI_SQUARE_ANOVA_FORMAT, ''puts stat tests in

 ''list following table

 TABLE_TESTS=BAN1_REG1,TABLE_TESTS=BAN1_REG2,

 TABLE_TESTS=BAN1_REG3,TABLE_TESTS=BAN1_REG4,

 TABLE_TESTS=BAN1_REG5

 }

BANNER={BAN1_BANNER:

'' REG1 REG2 REG3 REG4 REG5

'' <-------> <-------> <-------> <------------> <----------------->

| NEW TAX FREQUENCY SALES

| SERVICE SERVICE PREPARA- OF USE ===================

| TYPE ========= TION ============== 500-

| ========= SW NW ========= MED- <500 <1 4.9 5+

|TOTAL NEW OLD AREA AREA YES NO LOW IUM HIGH MIL. BIL. BIL. BIL.

|----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

 }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-740 MENTOR

BAN1_COL: TOTAL WITH &

 [199^1/2] WITH &

 ([217#S] AND [15^1,2]) WITH &

 ([199^1] AND (([217#S] AND &

 [15^N1,2]) OR [217#L])) WITH &

 [78^1/2] WITH &

 [147^1,2,6/3/4,5] WITH &

[182.8#1-499999/500000-999999/1000000-4999999/5000000-99999999]

''End of banner 1 definitions

''Banner 2 definitions

'' column column

'' region region

'' in banner in stub

'' --------- ---------

BAN2_REG1: [$R 2 TO 4 BY 1 TO LAST]

BAN2_REG2: [$R 5 TO 8 BY 1 TO LAST]

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -741

''Since -CHI-SQUARE-ANOVA-FORMAT is not used in this edit

''statement, statistics tests for BAN2 will appear under their

''corresponding table regions.

EDIT={BAN2_EDIT:-COLUMN_TNA,PERCENT_DECIMALS=0,

 COLUMN_WIDTH=5,STUB_WIDTH=25,

 TABLE_TESTS=BAN2_REG1,TABLE_TESTS=BAN2_REG2

 }

BANNER={BAN2_BANNER:

'' REG1 REG2

'' <------------> <----------------->

| FREQUENCY SALES

| OF USE ===================

| ============== 500-

| MED- <500 <1 4.9 5+

|TOTAL LOW IUM HIGH MIL. BIL. BIL. BIL.

|----- ---- ---- ---- ---- ---- ---- ----

}

BAN2_COL: TOTAL WITH [147^1,2,6/3/4,5] WITH &

[182.8#1-499999/500000-999999/1000000-4999999/5000000-9
9999999]

''End of banner 2 definitions

''Stub definitions

''Question 4

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-742 MENTOR

TITLE={Q4_TITLE:

 Q4. Please indicate on a scale from 1 to 4 how
satisfied you are with & your overall relationship with
this company.

 }

STUB={Q4_STUB:

 4 - Very satisfied

 3 - Satisfied

 2 - Dissatisfied

 1 - Very dissatisfied

[-COLUMN_STATISTICS_VALUES] Don't know/not sure
''excluded from

''statistics

 }

Q4_ROW: [163^4//1/Y]

EDIT={Q4_EDIT:
COLUMN_STATISTICS_VALUES=VALUES(4,3,2,1),

 MEAN,STD,ANOVA

 }

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -743

''Question 19

TITLE={Q19_TITLE:

 Q19. Does this company prepare taxes?

 }

STUB={Q19_STUB:

 Yes

 No

[-COLUMN_STATISTICS_VALUES] Don't know/not sure
''excluded from

''statistics

 }

Q19_ROW: [78^1//3]

EDIT={Q19_EDIT: CHI_SQUARE }

EDIT={Q19SIG_EDIT: CHI_SQUARE,SHOW_SIGNIFICANCE_ONLY

 }

>CREATE_DB TABLES

>PRINT_FILE TABLES

~EXECUTE

''BAN1's EDIT statement causes statistics tests to be
printed as

''lists after the corresponding tables.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-744 MENTOR

BANNER=ban1_banner,EDIT=ban1_edit,COLUMN=ban1_col

''Question 4

LOCAL_EDIT=q4_edit,TITLE=q4_title,STUB=q4_stub,ROW=q4_r
ow

''Question 19 with statistics test

LOCAL_EDIT=q19_edit,TITLE=q19_title,STUB=q19_stub,ROW=q
19_row

''BAN2's EDIT statement allows statistics tests to be
printed

''under their corresponding table regions (default).

BANNER=ban2_banner,EDIT=ban2_edit,COLUMN=ban2_col

''Question 19 with statistics test

LOCAL_EDIT=q19_edit,TITLE=q19_title,STUB=Q19_STUB,ROW=Q
19_ROW

''Question 19 with statistics test showing significance
only

LOCAL_EDIT=q19sig_edit,TITLE=q19_title,STUB=q19_stub,RO
W=q19_row

''Question 19 without statistics test

LOCAL_EDIT=stats_off,TITLE=q19_title,STUB=q19_stub,ROW=
q19_row

RESET,PRINT_ALL

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -745

~END

Here are the tables that are printed:

TABLE 001

Q4. Please indicate on a scale from 1 to 4 how satisfied
you are with your overall relationship with this
company.

 NEW TAX FREQUENCY SALES

 SERVICE SERVICE PREPARA- OF USE ===================

 TYPE ========= TION ============== 500-

 ========= SW NW ========= MED- <500 <1 4.9 5+

 TOTAL NEW OLD AREA AREA YES NO LOW IUM HIGH MIL. BIL. BIL. BIL.

 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Total 151 96 55 12 84 64 79 56 30 41 37 18 49 25

 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

N/A - - - - - - - - - - - - - -

4 - Very satisfied 31 22 9 - 22 12 19 9 7 9 12 3 7 3

 21% 23% 16% 26% 19% 24% 16% 23% 22% 32% 17% 14% 12%

3 - Satisfied 68 39 29 6 33 34 30 25 16 17 12 12 22 12

 45% 41% 53% 50% 39% 53% 38% 45% 53% 41% 32% 67% 45% 48%

2 - Dissatisfied 38 28 10 5 23 11 25 16 5 11 12 1 14 6

 25% 29% 18% 42% 27% 17% 32% 29% 17% 27% 32% 6% 29% 24%

1 - Very dissatisfied 8 4 4 1 3 5 2 4 1 2 - 1 4 2

 5% 4% 7% 8% 4% 8% 3% 7% 3% 5% 6% 8% 8%

Don't know/not sure 6 3 3 - 3 2 3 2 1 2 1 1 2 2

 4% 3% 5% 4% 3% 4% 4% 3% 5% 3% 6% 4% 8%

Mean 2.8 2.8 2.8 2.4 2.9 2.9 2.9 2.7 3.0 2.8 3.0 3.0 2.7 2.7

Standard Deviation 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-746 MENTOR

STAT TEST FOR SERVICE TYPE

anova = 0.02, df1,df2 = (1,143) prob = 0.8694

STAT TEST FOR NEW SERVICE

anova = 3.83, df1,df2 = (1,91) prob = 0.0504

STAT TEST FOR TAX PREPARATION

anova = 0.01, df1,df2 = (1,136) prob = 0.9204

STAT TEST FOR FREQUENCY OF USE

anova = 1.10, df1,df2 = (2,119) prob = 0.3374

STAT TEST FOR SALES

anova = 1.50, df1,df2 = (3,119) prob = 0.2178

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -747

TABLE 002

Q19. Does this company prepare taxes?

 NEW TAX FREQUENCY SALES

 SERVICE SERVICE PREPARA- OF USE ===================

 TYPE ========= TION ============== 500-

 ========= SW NW ========= MED- <500 <1 4.9 5+

 TOTAL NEW OLD AREA AREA YES NO LOW IUM HIGH MIL. BIL. BIL. BIL.

 ----- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Total 151 96 55 12 84 64 79 56 30 41 37 18 49 25

 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

N/A - - - - - - - - - - - - - -

Yes 64 23 41 4 19 64 - 25 14 22 15 11 18 14

 42% 24% 75% 33% 23% 100% 45% 47% 54% 41% 61% 37% 56%

No 79 69 10 8 61 - 79 31 15 15 20 5 27 11

 52% 72% 18% 67% 73% 100% 55% 50% 37% 54% 28% 55% 44%

Don't know/not sure 8 4 4 - 4 - - - 1 4 2 2 4 -

 5% 4% 7% 5% 3% 10% 5% 11% 8%

STAT TEST FOR SERVICE TYPE

chi_square = 38.51, d_f = 1, prob = 0.0000

STAT TEST FOR NEW SERVICE

chi_square = 0.13, d_f = 1, prob E<5

STAT TEST FOR TAX PREPARATION

chi_square = 138.98, d_f = 1, prob = 0.0000

STAT TEST FOR FREQUENCY OF USE

chi_square = 2.00, d_f = 2, prob = 0.3694

STAT TEST FOR SALES

chi_square = 4.93, d_f = 3, prob = 0.1764

TABLE 003

Q19. Does this company prepare taxes?

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-748 MENTOR

 FREQUENCY SALES

 OF USE ===================

 ============== 500-

 MED- <500 <1 4.9 5+

 TOTAL LOW IUM HIGH MIL. BIL. BIL. BIL.

 ----- ---- ---- ---- ---- ---- ---- ----

Total 151 56 30 41 37 18 49 25

 100% 100% 100% 100% 100% 100% 100% 100%

N/A - - - - - - - -

Yes 64 25 14 22 15 11 18 14

 42% 45% 47% 54% 41% 61% 37% 56%

No 79 31 15 15 20 5 27 11

 52% 55% 50% 37% 54% 28% 55% 44%

Don't know/not sure 8 - 1 4 2 2 4 -

 5% 3% 10% 5% 11% 8%

CHI-SQUARE: <-- 2.00 --><-- 4.93 -->

 D.F.: 2 3

 SIG: 0.3694 0.1764

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -749

TABLE 004

Q19. Does this company prepare taxes?

 FREQUENCY SALES

 OF USE ===================

 ============== 500-

 MED- <500 <1 4.9 5+

 TOTAL LOW IUM HIGH MIL. BIL. BIL. BIL.

 ----- ---- ---- ---- ---- ---- ---- ----

Total 151 56 30 41 37 18 49 25

 100% 100% 100% 100% 100% 100% 100% 100%

N/A - - - - - - - -

Yes 64 25 14 22 15 11 18 14

 42% 45% 47% 54% 41% 61% 37% 56%

No 79 31 15 15 20 5 27 11

 52% 55% 50% 37% 54% 28% 55% 44%

Don't know/not sure 8 - 1 4 2 2 4 -

 5% 3% 10% 5% 11% 8%

CHI-SQUARE (SIG): <-- 0.3694 --><-- 0.1764 -->

TABLE 005

Q19. Does this company prepare taxes?

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-750 MENTOR

 FREQUENCY SALES

 OF USE ===================

 ============== 500-

 MED- <500 <1 4.9 5+

 TOTAL LOW IUM HIGH MIL. BIL. BIL. BIL.

 ----- ---- ---- ---- ---- ---- ---- ----

Total 151 56 30 41 37 18 49 25

 100% 100% 100% 100% 100% 100% 100% 100%

N/A - - - - - - - -

Yes 64 25 14 22 15 11 18 14

 42% 45% 47% 54% 41% 61% 37% 56%

No 79 31 15 15 20 5 27 11

 52% 55% 50% 37% 54% 28% 55% 44%

Don't know/not sure 8 - 1 4 2 2 4 -

 5% 3% 10% 5% 11% 8%

DISCUSSION OF OUTPUT

While interpretation of these statistical tests for specific reports is beyond the
scope of this manual, some explanation of the results might he helpful.

For table 001, output from the ANOVA was as follows:

STAT TEST FOR SERVICE TYPE

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -751

anova = 0.02, df1,df2 = (1,143) prob = 0.8694

STAT TEST FOR NEW SERVICE

anova = 3.83, df1,df2 = (1,91) prob = 0.0504

STAT TEST FOR TAX PREPARATION

anova = 0.01, df1,df2 = (1,136) prob = 0.9204

STAT TEST FOR FREQUENCY OF USE

anova = 1.10, df1,df2 = (2,119) prob = 0.3374

STAT TEST FOR SALES

anova = 1.50, df1,df2 = (3,119) prob = 0.2178

The number following "ANOVA=" is the value of the F statistic for the region
tested. "df1,df2" are the degrees of freedom for the F statistic's numerator and
denominator respectively. "prob=" is the probability of there not being a more than
coincidental relationship between the factors tested.

To check whether the desired row and banner categories are in fact being used in
the ANOVA calculation, the following equations can be used:

df1 = (the number of banner points included in the ANOVA) - 1

df2 = (the sum of frequencies of all cells included in the ANOVA) - (the number of
banner points included in the ANOVA)

If a column is blank, it is not considered as being included in the test.

Checking the "STAT TEST FOR SALES" ANOVA above, there are four banner
points included in the test, resulting in

df1 = 4 - 1 = 3

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-752 MENTOR

Adding together all cells included in this test ("DON"T KNOW/NOT SURE" is
excluded), "<500 MIL"=36, "<1 BIL."=17, "500-4.9 BIL."=47, and "5+ BIL."=23.
The number of banner points is four, resulting in

df2 = (36 + 17 + 47 + 23) - 4 = 119.

For table 002, the chi-square test produced the following output:

STAT TEST FOR SERVICE TYPE

chi_square = 38.51, d_f = 1, prob = 0.0000

STAT TEST FOR NEW SERVICE

chi_square = 0.13, d_f = 1, prob E<5

STAT TEST FOR TAX PREPARATION

chi_square = 138.98, d_f = 1, prob = 0.0000

STAT TEST FOR FREQUENCY OF USE

chi_square = 2.00, d_f = 2, prob = 0.3694

STAT TEST FOR SALES

chi_square = 4.93, d_f = 3, prob = 0.1764

Similar to the ANOVA output, the number following "chi_square=" is the value of
the chi-square statistic for the region tested. "d_f" represents the degrees of
freedom for this statistic. The same facts apply to "prob=" as did for ANOVA.
"E<5" means that the expected value of the frequency for 25% or more of the cells
in the tested region is less than 5, possibly making probability calculations for the
region invalid.

Checking that the desired categories are being tested is easier for the chi-square
test is easier than for the ANOVA. For degrees of freedom, the following equation
applies:

d_f = (number of stub points included in the test - 1) *

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -753

 (number of banner points included in the test - 1).

If a row or column is blank, it is not considered as being included in the test.

Using "STAT TEST FOR SALES" as an example, "number of stub points included
in the test"=2 since "DON'T KNOW/NOT SURE" is excluded, and "number of
banner points included in the test"=4. Putting these numbers in the equation:

 d_f = (2 - 1) * (4 - 1) = 1 * 3 = 3.

OTHER ANOVA AND CHI-SQUARE OPTIONS

It is possible to mix ANOVA and chi-square tests on the same table. This is true
only when the -CHI_SQUARE_ANOVA_FORMAT option is used to output the
results in list format. Here is an example of an EDIT statement that would do this.
The regions have been defined as in the above example.

 EDIT={Q47_EDIT2:

 CHI_SQUARE=BAN1_REG1

 CHI_SQUARE=BAN1_REG2

 CHI_SQUARE=BAN1_REG3

 CHI_SQUARE=BAN1_REG4

 ANOVA=BAN1_REG5

 }

NOTE: Alternative way of defining regions and invoking statistical tests is as
follows:

 EDIT={EDIT1:

 TABLE_TESTS=[$R 1 TO 2 BY 1 TO LAST]

 TABLE_TESTS=[$R 3 TO 4 BY 1 TO LAST]

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

-754 MENTOR

 TABLE_TESTS=[$R 5 TO 6 BY 1 TO LAST]

 ANOVA

 }

If this method is used, Mentor will not allow both ANOVA and chi-square

on the same table.

Two other interesting possibilities are testing overlapping ranges and testing
columns that are not next to each other. Again,
-CHI_SQUARE_ANOVA_FORMAT must be used. Also, doing this might require
some creative labeling of the horizontal axis. Example specs follow.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.9 CHI-SQUARE AND ANOVA TESTS

MENTOR v 8.1 -755

Here are some example specs:

BAN3_REG1: [$T="GENDER " $R
2 TO 3 BY 1 TO LAST]

BAN3_REG2: [$T="DRIVE CAR " $R
4 TO 5 BY 1 TO LAST]

BAN3_REG3: [$T="1-10, 11-49, & 50+ YRS OF DRIVING " $R
6,7,9 BY 1 TO LAST]

BAN3_REG4: [$T="<50 & 50+ YRS OF DRIVING " $R
8,9 BY 1 TO LAST]

''BAN3_REG3 defines columns which are not next to each
other.

''BAN3_REG4 defines a region that overlaps BAN3_REG3.

EDIT={BAN3_EDIT: -COLUMN_TNA,PERCENT_DECIMALS=0

 COLUMN_WIDTH=7,STUB_WIDTH=25

 -CHI_SQUARE_ANOVA_FORMAT

 TABLE_TESTS=BAN1_REG1

 TABLE_TESTS=BAN1_REG2

 TABLE_TESTS=BAN1_REG3

 TABLE_TESTS=BAN1_REG4

 }

BANNER={BAN3_BANNER:

| GENDER DRIVE CAR YEARS OF DRIVING

| ============= ============= ===========================

| TOTAL MALE FEMALE YES NO 1-10 11-49 <50 50+

| ------ ------ ------ ------ ------ ------ ------ ------ ------

 }

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-756 MENTOR

BAN3_COL: TOTAL WITH &

[5^1/2] WITH &

[10^1/2] WITH &

[30.2*P#1-10/11-49/1-49/50-99]

EDIT={Q49_EDIT: ''Used as a LOCAL_EDIT to invoke tests for a

''specific question.

CHI_SQUARE=BAN3_REG1

CHI_SQUARE=BAN3_REG2

CHI_SQUARE=BAN3_REG3

CHI_SQUARE=BAN3_REG4

}

8.10 NOTES ON SIGNIFICANCE TESTING

This section contains some additional notes on significance testing in order to help
you understand some of the problems or errors that might occur.

When using other sources to verify significance testing accuracy, be aware that the
majority of other programs or textbooks do not take into consideration the
consequences of dependent or inclusive tests, the Newman-Keuls procedure, and
pooled variances. Mentor uses the additional information available to produce
more reliable results in general.

8.10.1 What Can and Cannot Be Tested
Significance testing can only be performed on means or percentages produced
from simple frequencies. As a general rule, a "simple" frequency counts
respondents, not responses, nor does it include any mathematical calculations.
Basically each data case must return either a 1 (it is there) or a 0 (it is not there) for
the cells being tested.

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

MENTOR v 8.1 -757

The only exceptions to this are either a Mean or a weighted table. You can test cells
with different weighting schemes, but only if a given data case has the same weight
everywhere in that test.

The following constructions will not produce simple frequencies and therefore
cannot be tested for significance:

• *L modifier

• all summary statistics other than means

• any arithmetic operation

• sigma

• sums

• NUMBER_OF_ITEMS or any other number returning function

These rules apply to both ROW and COLUMN definitions. In addition, if you have
any kind of summary statistic such as a $[MEAN] in the COLUMN variable you
cannot test any part of the table. If you have any of the above constructions in the
ROW other than summary statistics, you will not be able to test any part of the
table, unless you turn off the testing around that item using $[-DO_STATISTICS]
(See Section 8.6 EXCLUDING ROWS/COLUMNS FROM THE SIGNIFICANCE
TESTING).

Also the AXIS commands $[BREAK] and $[BASE] are acceptable in ROW
definitions but not in COLUMN definitions. $[OVERLAY] and
$[NETOVERLAY] tables can be tested. If you wish to do a test on responses, you
must either use a $[OVERLAY] or a READPROCEDURE to read each data case
multiple times.

Tables that are created or modified by table manipulation cannot be tested for
significance. Market share tables which use sums cannot be tested. If you are
trying to test items based on market share we recommend that you test the mean of
the items. Testing a straight market share is very dangerous as a single outlier can
easily skew the results.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-758 MENTOR

Any construction can be tested using print phase tests, but remember that Mentor
does not check or complain if your testing is illogical. For example, you should
never use Mentor to test two numbers that were created as a calculation.

8.10.2 Degrees of Freedom

Degrees of freedom (df) is a measure of sample size for use in statistical tests. The
higher the degrees of freedom, the more reliable the resulting t values are. The
degrees of freedom should be calculated as follows:

Let's assume a sample of size n (either simple count or effective_n) with n1 in
group 1, n2 in group 2, and n_both in the overlap.

The degrees of freedom for the All Possible Pairs Test procedure, regardless of the
variance specified, or for the Newman-Keuls procedure when only testing two
groups (all simple t-tests), is calculated as follows:

no overlap, means df = n1 + n2 - 2

no overlap, percents df = n1 + n2 - 1

overlap, means or percents df = n1 + n2 - n_both - 1

When you use the T= (for inclusive tests) option to take out the overlap, the
program utilizes the no overlap formula which results in n - 2 for means and n - 1
for percents. If one group is completely contained in the other it always results in n
- 1.

The degrees of freedom for the Newman-Keuls procedure when testing more than
two groups would be:

no overlap df = n1 + n2 - 2

overlap df = n1 + n2 - n_both - 1

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

MENTOR v 8.1 -759

8.10.3 Verifying Statist ical Tests

It may be desirable to verify the results on tables that utilize Mentor’s statistical
tests. We could use the formulas shown in Appendix A: STATISTICAL
FORMULAS, but more often a cursory check that the correct columns and rows
were tested is all that is needed.

The ~SET keyword STATISTICS_DUMP does this by sending a printout to the list
file showing key elements of the statistical procedure.

For example, if the test performed was an independent test of the means which
included a test of column A against column B, then a portion of the list file
pertaining to this statistical test will look similar to this:

test 1 (216 len, 2 groups, err=0, base_row=0):I=AB row/col=(15,15; 1,2) means
ncases=28

 group 1 12, 76, 564, 0,

 group 2 16, 106, 778, 0,

 effn,mean,std: 12 6.33333 2.74138 -- sumsq,sumsqadj,effn: 82.6667 1 12

 effn,mean,std: 16 6.625 2.24722 -- sumsq,sumsqadj,effn: 75.75 1 16

 tags: 1, 2,

 getpoolv: 6.09295,2:26=158.417/26

 doqs (6.09295,26) 0-1 tags: 1, 2,

 -->0: (-0.437582,26)

 SIGFAREA(26,-0.437582->0.05 for 1) returns 0.7572 from -0.309417 -> 0,0.7572

 differences[in AB:]

This information can be used in numerous ways to check the statistical test
performed. The first line tells us this is a test of two groups, the base row for
statistics is the System Total row (base_row=0), it is an independent test of columns
A and B (:I=AB), it is using row 15 and columns 1 and 2, and it is a test of means.
The number of cases in the statistics base is 28 (or 16 + 12). The line with -->0:
(-0.437582,26) shows 0:(q-value, df). In the next line down, the "returns 0.7572
from -0.309417 -> 0,0.7572" means "returns <significance> from <t-value>".

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-760 MENTOR

A printout like the one shown above would be generated for each pair of columns
tested.

If our test was a dependent test of columns A, B, C, D, E, and F for all percent
rows and the mean row, then a portion of the list file pertaining to this statistical
test would look similar to this:

 test 1 (1232 len, 6 groups, err=0, base_row=0):ABCDEF

row/col=(3,3; 1,6) percents ncases=166

 group 1 12, 4, 4, 0,

 group 2 16, 6, 6, 0,

 group 3 14, 2, 2, 0,

 group 4 27, 13, 13, 0,

 group 5 69, 9, 9, 0,

 group 6 28, 9, 9, 0,

 sxy matrix all zero

 effn,mean,std: 12 0.333333 0.492366 --

sumsq,sumsqadj,effn: 2.66667 1 12

 effn,mean,std: 16 0.375 0.5 -- sumsq,sumsqadj,effn: 3.75

1 16

 effn,mean,std: 14 0.142857 0.363137 --

sumsq,sumsqadj,effn: 1.71429 1 14

 effn,mean,std: 27 0.481481 0.509175 --

sumsq,sumsqadj,effn: 6.74074 1 27

 effn,mean,std: 69 0.130435 0.339248 --

sumsq,sumsqadj,effn: 7.82609 1 69

 effn,mean,std: 28 0.321429 0.475595 --

sumsq,sumsqadj,effn: 6.10714 1 28

 tags: 1, 2, 3, 4, 5, 6, multiple comparisons

 getpoolv: 0.1931,2:165=43/166

 doq (0.1931,165) 0-5 tags: 1, 2, 3, 4, 5, 6,

 -->0: (-0.351143,26) (1.55823,24) (-1.37423,37)

(2.08774,79) (0.111041,38)

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

MENTOR v 8.1 -761

 -->1: (2.04147,28) (-1.08619,41) (2.83657,83) (0.550136,42)

 -->2: (-3.309,39) (0.136389,81) (-1.75572,40)

 -->3: (4.97691,94) (1.90971,53)

 -->4: (-2.74322,95)

 doqs (0.1931,165) 0-5 tags: 1, 2, 3, 4, 5, 6,

 -->0: (-0.316228,27) (1.59364,25) (-1.2021,38) (2.48386,80)

(0.102869,39)

 -->1: (1.99451,29) (-0.94989,42) (3.25042,84) (0.50417,43)

 -->2: (-2.98179,40) (0.175692,82) (-1.73374,41)

 -->3: (5.17632,95) (1.69734,54)

 -->4: (-3.08478,96)

 differences[in ABCDEF: D vs E;]

 differences[D vs E;]

The first line tells us this is a test of six groups (ABCDEF), the base row is the
System Total row (base_row=0), it is a dependent test of columns A, B, C, D, E,
and F. The test is using row 3 and columns 1 to 6, and it is a test of percents. The
line beginning with "doqs (0.1931,165)" shows:

 (q-value,df) for

 -->0: (A vs B) (A vs C) (A vs D) (A vs E) (A vs
F)

 -->1: (B vs C) (B vs D) (B vs E) (B vs F)

 -->2: (C vs D) (C vs E) (C vs F)

 -->3: (D vs E) (D vs F)

 -->4: (E vs F)

A printout like this would be available for each row tested.

8.10.4 Error and Warning Messages

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-762 MENTOR

The following is a list of error and warning messages that can occur while doing
statistical testing. Each message has a brief description of why it might occur and
how to fix it.

(ERROR #603) printable_t collision with code C

This error is caused when the STATISTICS= PRINTABLE_T option is used, but
the column list is not printable. Column "C" is probably used multiple times.
Either do not print t values or check your column list.

(ERROR #5055) table T002, test 3 (=GHIJ) is an i= test
but has cells 4 and 2

Test of columns GHIJ was marked as independent, but is dependent. Data is either
dirty or you are using the wrong test.

(ERROR #5091) Newman_Keuls test not ok with approximate
significance 0.75

This means you cannot use the DO_STATISTICS APPROXIMATELY option in
conjunction with the Newman-Keuls test.

(ERROR #5520) tables with COL/ROW_WEIGHT= cannot have
STATS= without SET MULTIWGT

COLUMN_SHORT_WEIGHT or ROW_SHORT_WEIGHT has been used in
conjunction with a STATISTICS statement. Use the SET option
MULTIPLE_WEIGHT_STATISTICS to override.

(ERROR #5524) stat test 3 (=GHIJ) had an error during
construction

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

MENTOR v 8.1 -763

Test of columns GHIJ was marked as inclusive, but is not. Data is either dirty or
you are using the wrong test.

(ERROR #6736) table T011, test 1 (at 2) has conflicting
weight values 1 vs 0.88

Cannot have a data case with multiple weights in a single test even if SET
MULTIPLE_WEIGHTS_STATISTICS is used. Table 011 has a data case with
weight of 1.00 and 0.88.

(ERROR #6831) col A has stats percent 102/372 different
from vertical percent 102/295

There is a cell in column A in which the statistical base does not match the vertical
percentage base. In particular the cell has a frequency of 102, the statistical base a
value of 372, and the percentage base a value of 295.

(WARN #1141) to install this option, we have to clear
out the existing tables first at (18):

SET option STATISTICS_BASE_AR or -STATISTICS_BASE_AR has been used
in the middle of a run. No override possible.

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-764 MENTOR

Error And Warning Messages (continued)

(WARN #5157) we will use all_pairs tests as the default
statistical test

No test was specified on the EDIT statement so the default All Possible Pairs Test
will be used. Suppress this warning by specifying
ALL_POSSIBLE_PAIRS_TEST on the main EDIT.

(WARN #5385) table T006 with STATS= TAB6_st but no stat
tests to do or report

This warning can appear for multiple reasons. One is that there is a non-simple
frequency in the table that was not tested.

(WARN #5621) MULTIPLE_WEIGHT override for stats testing: be careful!

Set option MULTIPLE_WEIGHT_STATS has been used. No override possible.

8.10.5 Commands Summary

The following is a list of all statements/keywords/options that affect statistical
testing. Information about these keywords can be found in either Appendix B:
TILDE COMMANDS or in the section reference mentioned on the right.

STATEMENT/KEYWORD/OPTION SECTION

AXIS

$[BASE] 8.2.2 and 8.4

$[EFFECTIVE_N] 8.4

. .
 .

. .ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

MENTOR v 8.1 -765

$[DO_STATISTICS] 8.6.2

$[MEDIAN] 7.2.2

$[INTERPOLATED_MEDIAN] 7.2.2

[col.wid^code/(STATISTICS)/code/code] 7.2

EDIT=

ALL_POSSIBLE_PAIRS_TEST 8.3.1

ANOVA_SCAN 8.3.3

DO_PRINTER_STATISTICS 8.5.1

DO_STATISTICS 8.1.3, 8.1.5, 8.1.6, and 8.1.7

DO_STATISTICS_TEST 8.5.1

FISHER 8.3.3

FLAG_MINIMUM_BASE 8.6.3

MARK_CHI_SQUARE 8.9

MINIMUM_BASE 8.6.3

NEWMAN_KEULS_TEST 8.3.2

PAIRED_VARIANCE 8.3.4

POOLED_VARIANCE 8.3.4

SEPARATE_VARIANCE 8.3.4

USUAL_VARIANCE 8.3.4

STATISTICS=

ABCD 8.1.1

I=ABCD 8.1.1

T=ABCD 8.1.1 and 8.1.8

PRINTABLE_T 8.1.1 and 8.7.1

D=1,2 8.8.1

ST A T I S T I C S (S I G N I F I C A N C E TE S T I N G)
8.10 NOTES ON SIGNIFICANCE TESTING

-766 MENTOR

P=1,2 8.8.2

RM=ABCD 8.3.3

STATEMENT/KEYWORD/OPTION SECTION

STUB=

BASE_ROW 8.2.1

DO_SIG_T= 8.7.1

DO_STATISTICS= 8.5.3

DO_T_TEST= 8.7.1

SET OPTIONS

MEAN_STATISTICS_ONLY 8.6.1

MULTIPLE_WEIGHT_STATISTICS 8.4.1

STATISTICS_BASE_AR 8.2.1

STATISTICS_DUMP 8.9.2

Version 8.1 MENTOR -767

.

. .
S P E C I A L I Z E D F U N C T I O N S 9

. .I N T R O D U C T I O N
his chapter describes generating and printing specialized reports, table
manipulation, and other functions. It also covers how to partition data
files.

9.1 GENERATING SPECIALIZED REPORTS

The normal report that Mentor creates is a summary of responses in a table format.
If you would rather see how each respondent answered a specific question, then
you can write a specification file that will create a specialized report. You can
produce these case-by-case reports by running a procedure on the data and printing
information about the selected records, much like the cleaning specs you created in
Chapter 2. All you need to do is add a few commands to control the how the report
is formatted. You can also add headers, footers and a summary at the end of a
report.

You can create specialized reports which are lists of respondents who meet certain
criteria, or lists of comments written on surveys. You can also create specialized
reports to fill out existing forms your company has. These reports can include data
accumulated across cases, calculated values, or text. Examples of each of these are
provided below.

The specialized reports you create using Mentor can be simple or complex. In
general, you will use the following commands in a spec file to create reports:

~SET AUTOMATIC_NEW_LINE

>PRINT_FILE <filename> <page size, other options>

~DEFINE

 PROCEDURE={ <proc name>:

T

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-768 MENTOR

 WHEN TOP/BOTTOM control printing at the top/bottom of a page

 IF/THEN/ELSE/ENDIF controls program logic, printing,

 or GOTO data modification, or other commands

 EXECUTE_EOF executes commands at the end of a run (used

to print text at bottom of report)

 }

~INPUT <datafile>,<SELECT=specific cases or other options>

~EXECUTE PROCEDURE=<proc name>

~END

~SET AUTOMATIC_NEW_LINE

Says to go to a new line before printing a new case's information; this is the
default. Use ~SET -AUTOMATIC_NEW_LINE to stay on the same line across
cases.

>PRINT_FILE (a meta command)

Specifies the name of the file to print to, its size and other options. (Refer to your
UTILITIES manual under Appendix A: META COMMANDS).

~DEFINE PROCEDURE=name: commands }

Defines what commands to execute across cases.

~INPUT <datafile>,<options>

Says which data file to use, and which cases of that file, as well as other options.
The SELECT= option may have any valid variable description to subset the
records to use.

~EXECUTE PROCEDURE=<procedure name

Executes the procedure on the ~INPUT file, writing to the print file specified on
>PRINT_FILE.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -769

~END

Ends the program.

Most of the syntax is specified within the procedure defined with ~DEFINE
PROCEDURE=name:. Use IF/ELSE/THEN/ENDIF blocks or GOTO commands
to control whether to execute the printing commands within the procedure. Any
other procedure command can be used in a printing procedure as well, such as data
modification commands. Here are the major keywords used for report printing in a
procedure:

PRINT_LINES # "text \codes text "&&

 "more text" variables &

 more variables

This is the main printing command. Various backslash (\) codes are specified within
the text to control printing. PRINT_LINES formats the text line(s) and fills data
text controls with the responses to the variables. Text printing controls are
described below.

The number (#) in the command line allows you to specify which print file to print
to if more than one is opened. A double ampersand (&&) after the text allows you
to continue defining the text on the next line. An ampersand (&) at the end of a line
allows you to continue a PRINT_LINES statement to the next syntax line. (NOTE:
This command can be abbreviated to PRT)

SAY "text" variable "text" variable

This allows you to combine text and the responses to a variable, but has none of the
special print controls. Use it for quick but simple listings.

SKIP_TO +-#

This is used to skip forward some number of lines, or skip to a position some
number of lines from the bottom of the page.

WHEN TOP #/END_WHEN

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-770 MENTOR

This is generally used for page headings. PRINT_LINES and other commands
appearing between the WHEN TOP and END_WHEN will be executed at the top
of each page.

If both WHEN TOP and WHEN BOTTOM are used together, WHEN BOTTOM
must precede other regular print statements.

WHEN BOTTOM #/END_WHEN

Similar to WHEN TOP, this executes commands at the bottom of each page. It is
commonly used to print a footer.

EXECUTE_ANY

Execute the commands following both for each data case and at the end of the file.

EXECUTE_DATA

Execute the commands following for each data case, but not at the end of the file.
This is the default.

EXECUTE_EOF

Execute the following command only at the end of the run; for instance, if you
wish to print a summary at the bottom of a report.

Specific syntax and options for these keywords can be found in Appendix B:
TILDE COMMANDS.

The >PRINT_FILE controls relevant to reporting are:

>PRINT_FILE filename <options>

This command names the file which will contain the finished report. The name
will have a PRT extension unless preceded by a dollar sign ($) or the meta
command >-CFMC_EXTENSION has been invoked, in which case the name you
specify will be the actual name.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -771

Options:

-FORM_FEED

Says not to include form feeds in the report. Do this if you are unsure about
the number of lines per page your printer prints and wish to fill the pages as
much as possible.

PAGE_LENGTH=#

Controls how many lines each page of the report will have. If unspecified,
there will be 66 lines per page. The first three lines and the last three lines
are reserved as default top and bottom margins respectively. Adjusting
PAGE_LENGTH can prevent a new page in the middle of a respondent’s
information. Example 2: A Conditional List of Client Information later in
this section illustrates how to do this.

PAGE_WIDTH=#

Controls the page width. The default page width is 132.

LASER_CONTROL=<file name

Says that the printing will be controlled by the printer standards set up in the
file \CFMC\CONTROL\<name> (DOS, UNIX), or
<name>.CONTROL.CFMC (MPE). In the laser control file, you can
specify an initial print string, what string to use for bold, underline, color,
etc. and other print options. In your UTILITIES manual, refer to Appendix
D: CFMC CONVENTIONS under Command Line Keywords, LISTFILE for
more information.

The following options are only available on the MPE operating system:

>PRINT_FILE LP

Says to print directly to the line printer, labelled 'LP' in the devices list.

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-772 MENTOR

LASER_NUMBER=#

Says which laser printer to print directly to. The devices must be labelled LJET1,
LJET2, etc.

COPIES=#

Says how many copies to print, if printing directly to a printer.

FORMS="message"

Says to send the message to the printer, stop the printer, and wait until the operator
replies to the message before continuing printing.

THE PRINT_LINES COMMAND

The PRINT_LINES command is the main command used to generate reports. Here
is a short description of the text controls and variable descriptions. For more
information refer to ~CLEANER PRINT_LINES in Appendix B: TILDE
COMMANDS. The syntax for PRINT_LINES is:

PRINT_LINES "text and \text controls" variable1 variable2 & more variables

There are codes to control how much information is printed on a line, how the data
is formatted, and codes to print specific characters. The most common codes are
described below.

LINE PRINTING CONTROL CODES

Syntax: \#<code>

Options:

#repeat the operation X number of times (optional)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -773

G go to print position on line (must be to right of current position)

N skip line(s)

P starts a new page

T generate actual TAB character(s)

X skip print position(s)

Example:PRINT_LINES "\10GThis is my name:\N\10G\S" Name

This will print: 'This is my name:

FRED SMITH '

CODES USED TO PRINT INFORMATION FROM THE DATA OR A
VARIABLE

Syntax:\<modifiers><width><.numdecs><|maxitems><code>

Options: <modifiers>:

< left-justify (default)

= center

> right-justify

Indent second and subsequent lines by a # number of spaces.

<width> the number of print positions the item is to print in. The
default is the actual width of the item.

<.numdecs> the number of decimals a numeric item is to print with.

<|maxitems> the max number of items to include in a category.

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-774 MENTOR

<code>

* Prints response codes from a category variable. Response
codesavailable from variables built with ~DEFINE PREPARE= or
fromSurvent specifications in the ~PREPARE module.

\L Prints exactly what is in the variable location.

\S Prints response text from a data location or category variable; trailing
blanks are dropped. Multiple responses are separated by commas.

\V# Prints the following (must be used with \S):

V1 Variable's name. [Q1]

V2 Variable's title text. [What's your age?]

V3 Variable's location. [1/5]

V4 Variable's question number. [0.10]

V5 User text. [This is a comment about the variable.]

PRINT_LINES "Variable's name: \V1s \V1s" Q1 Q2

This will print the Variable names for questions one and two.

 PRINT_LINES "For: \V2 \NAnswer Was: \S" AGE AGE

This will print the title text and response for the variable AGE.

 PRINT_LINES "Company Name: \20s, No. Employees:
\>3S" &

[10.20] [numempl]

PRINT_LINES "Question One: \V1s \V2s" QN1 QN1

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -775

PRINT_LINES "First 3 Responses: \|3*" QN1

PRINT_LINES " Text: \|3S" QN1

Would print an entry for each case in the following format:

Company Name: ABC GADGET CO., No. Employees: 23

Question One: Cards, Number of Credit Cards Used

First 3 Responses: 01, 02, 05

 Text: American Express, Mastercard, Visa
Gold

CODES TO PRINT SPECIFIC CHARACTERS

Syntax:\<code>

Options:

\ prints a backslash

' prints an apostrophe

[start ignoring ALL backslash codes except \] (Print the
backslashes)

] stop ignoring ALL backslash codes

^ - followed by <hexdigit><hexdigit> to print special
characters from the ASCII character set (see Appendix G:
GRAPHICS CHARACTERS in your UTILITIES manual).
\^letter will print control characters.

Example:PRINT_LINES "This file is of type \'CfMC\', with
name" &&

"\[\cfmc\data\myfile.tr\]"

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-776 MENTOR

will print: 'This file is of type 'CfMC', with name
\cfmc\data\myfile.tr'

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -777

To print a quote, use two quotes in a row.

Example: PRINT_LINES "Here is a ""quoted"" string."

Will print: Here is a "quoted" string.

VARIABLE REFERENCES

The variables in the variable list can be predefined items from a DB file, data
location references, or items defined on the PRINT_LINES command itself,
including mathematical expressions.

Predefined Variables

Predefined variables already have a data type. If they are categorical, the responses
to the categories are printed; if they are string or text type, the text is printed. If they
are numeric, the number is printed. All you need to do is reference them by name,
but you can also use the name in data location type references. If the items are
stored in a DB file, it must be opened with the >USE_DB meta command in order
to access them.

Example:

PRINT_LINES "\S" Gender Prints 'Male' or 'Female'

PRINT_LINES "\S" Income Prints a number for income

PRINT_LINES "\S" Whyliked Prints the text recorded under
'Whyliked'

PRINT_LINES "\S" [(Name) 1.10$] Prints the first 10 characters of
'Name'

PRINT_LINES "\S" Age * 5 Prints a number that is 'Age'
times 5

PRINT_LINES "\S" [Cards$P] Prints all the punches in 'Cards'.

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-778 MENTOR

Data Location Variables

Print what is in the data depending on the data type. You cannot use multiple
location data variables, but you may use a single location loop variable to print
multiple items from the data.

Example:

PRINT_LINES "\S" [10.5] Prints number in location 10
with length of 5

PRINT_LINES "\S" [10.5$] String in location 10 with length
of 5

PRINT_LINES "\S" [10.5$P] Punches in [10.5] (i.e.,
"1/23/B/1.5XY/7")

PRINT_LINES "\S" [10.1$T] Text pointer to text variable (for
long text)

PRINT_LINES "\S" [(8,2)10.2$] Print the eight strings starting at
10.2

For categorical variables, you can specify the text for each code:

PRINT_LINES "\S" [10.5#"Less than 500":0-500/501-5000/ &&

"> 5000":5001-99999]

This would print "Less than 500" if the data contained a 0-500 and "> 5000" if
greater than 5000. If the data was 501-5000, the text "501-5000" would print.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -779

PRINT_LINES "\S: [10^Yes:1/No:2/"Don't know":3-Y,B]

This would print "Yes" if there was a 1 punch in column 10, "No" if a 2 punch, and
"Don't know" if anything else including no punch (B). Notice that you do not need
quotes around the text unless there are special characters in the text such as spaces
or apostrophes.

For calculations, any valid math calculation may be used, but you must follow it
with a semi-colon before specifying the next variable to be printed.

PRINT_LINES "Factor: \5.2S Age: \S" &
(Income*Age/NUMBER_OF_ITEMS(Cards))+[10.5]; Age

This would print the result of the calculation as a 5 wide, 2 decimal number then the
age of the person for each case.

There are certain variables, called system variables or constants, that contain
information that may be useful in your listings. Especially useful are:

DATE_TIME Specifies the current date and time in the format:

"NOV 02, 1994 10:23 AM"

See ~CLEANER PRINT_LINES in Appendix B: TILDE COMMANDS for
examples of how to get just the month, day, etc. from the date/time.

LINE_NUMBER

Keeps track of the current line number. Line numbers are seldom printed on reports,
but can be used in conditional statements to print something at a specific place on
the page. This is illustrated in example 2.

PAGE_NUMBER

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-780 MENTOR

Similar to LINE_NUMBER, this variable automatically keeps track of the current
page number.

WHEN TOP

PRINT_LINES "Community access report on date: \S, page
\S" &

DATE_TIME PAGE_NUMBER

END_WHEN

See ~DEFINE VARIABLE= in Appendix B: TILDE COMMANDS for more
information on defining variables to print.

Use the following guidelines for your specs:

• Remember that print commands are executed sequentially from left to right and
from top to bottom of the page.

• Remember that Mentor automatically goes to a new line at the end of a case.

• Use separate PRINT_LINE commands for headings and data. This makes it
easier to make changes to your specs.

Example Reports

EXAMPLE 1: A LISTING OF DATA FOR CLEANING PURPOSES

This example illustrates a simple case-by-case data list. This example also
illustrates some uses of the PRINT_LINES command with spacing control and
different variable types. Refer to Appendix B: TILDE COMMANDS for a detailed
explanation of PRINT_LINES syntax.

Example 1 SPECFILE

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -781

>USE_DB Sample‘‘this file contains the predefined
variables

‘‘referenced by name in this spec file

>PRINT_FILE Listdata

~DEFINE

 PROCEDURE={List:

 WHEN TOP

 PRINT_LINES "ID
\TNAME\TDAY\TSIBLINGS\TNUMSIBS\TOTHERS"

 PRINT_LINES
"----\T----\T---\T--------\T-------\T------"

 END_WHEN

 PRINT_LINES "\S\T\S\T\S\T\S\T\>2S\T\S" CASE_ID NAME
[DAY$] [SIBLINGS$P] &

 [NUMSIBS] [OTHERS$P]

 } ‘‘end of procedure list

~INPUT Dataraw

~EXECUTE PROCEDURE=List

~END

Example 1 OUTPUT

ID NAME DAY SIBLINGS NUMSIBS OTHERS

--- ---- --- -------- ------- ------

0001 MICKEY MON 1 12 1

0002 OLIVER TUE 0 2

0003 ZAZU WED 3 1 123

0004 THU 2 ? 8

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-782 MENTOR

0005 CICI 1 1 45

0006 DELI FRI ? 45

0007 CARMINA SAT 1 ? 8

0008 NORM SUN 1 7 B

0009 PEANUT MON 1 3 28

0010 CHI-CHI WEE 1 2 6

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -783

EXAMPLE 2: A CONDITIONAL LIST OF CLIENT INFORMATION

The next example is a list of a group of people who meet the condition -- "all tours
cancelled." This example illustrates some of the keywords and design
characteristics discussed before:

1) ",PAGE_LENGTH=#" is used on the >PRINT_FILE command to insure that no
respondent's information will be divided between two pages. Blank lines must
be included in all line counts. A page length of 66 (default) allows up to 60 lines
to be printed (since there are three lines in the top and bottom margin).

For the following example, the heading takes four lines and the trailer takes one
line. With 60 usable lines per page, this leaves 55 lines available for the data list
(60-4- 1=55). Each person's data requires eight lines to list. Dividing the number
of lines available for the data list, which is 55, by 8 yields 6.875. Since it is
undesirable to divide one person's data between two pages, each page can
accommodate a maximum of six people's data. So the actual data listing can be
as big as 48 lines on a single page (6x8=48). This gives

LINES OF GENERATED TEXT PER PAGE = 4 lines in heading + 48 lines
in data list + 1 lines in trailer = 53,

and

PAGE_LENGTH = 3 lines in top margin + 3 lines in bottom margin +
53 lines of generated text per page = 59.

2) As in the previous example, specs for the heading were divided to resemble the
final report. It was also practical to do this with the block that prints from the
data ("SURVEY #","NAME", etc.). Again, the results are more readable specs
which are more likely to produce correct output in fewer runs.

3) LINE_NUMBER is used in an IF-THEN conditional statement to insure that the
final trailer will appear at the end of the last page.

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-784 MENTOR

Example 2 SPECFILE

>USE_DB Tours

~INPUT data,SELECT=Tours(C)‘‘Only use those whose tours
were cancelled

>PRINT_FILE REPORT,PAGE_LENGTH=59

~DEFINE ‘‘Variable names were not assigned previously.

‘‘They are assigned here to make the specs more
readable ‘‘and for ease of maintenance.

Survey: [1.3$]‘‘Use dollar sign ($) to print data as a
string instead

‘‘of a number

First: [12.12$]

Last: [24.15$]

Company: [39.30$]

Address: [69.30$]

City: [99.20$]

State: [209.3$]

Zip: [212.7$]

Phone: [126.10$]

Tour_name: [140.50$]

PROCEDURE={print_it:

 WHEN TOP

 PRINT_LINES " SAMPLE TOURISM BOARD TOUR
STUDY"

 PRINT_LINES " RESPONDENTS WHO HAD ANY OR ALL
TOURS && CANCELLED"

 PRINT_LINES " APR 1991"

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -785

 PRINT_LINES "\N"

 END_WHEN

 WHEN BOTTOM

 PRINT_LINES "\19X------ Page \S ------" PAGE_NUMBER

 END_WHEN

 PRINT_LINES " SURVEY #: \S" Survey

 PRINT_LINES " NAME: \S \S" First Last

 PRINT_LINES " COMPANY: \S" Company

 PRINT_LINES " ADDRESS: \S" Address

 PRINT_LINES " \20S \3S \7S" City State
Zip

 PRINT_LINES "TELEPHONE #: (\S) \S-S" [(Phone)1.3]
[(Phone)4.3] &

 [(Phone)7.4)]

 PRINT_LINES " TOUR NAME: \S" Tour_name

 PRINT_LINES "\N"''throws an extra line since it's the
end of the case

 EXECUTE_EOF''goes to end of last page as determined by
LINE_NUMBER ''and prints footer

 IF LINE_NUMBER < 56 THEN ''56=# lines of
generated

 ''text/page +

 SKIP_TO -1 ''# lines in top margin

 PRINT_LINES "\19X------ Page \S ------" PAGE_NUMBER

 ENDIF

} ''end of procedure Print_it

~EXECUTE PROCEDURE=Print_it

~END

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-786 MENTOR

Example 2 OUTPUT

 SAMPLE TOURISM BOARD TOUR STUDY

 RESPONDENTS WHO HAD ANY OR ALL TOURS CANCELLED

 APR 1991

SURVEY #: 001

 NAME:

 COMPANY: JOE SMITH & SONS

 ADDRESS: 1111 MAIN #111

 DENVER NY 11111

 TELEPHONE #: (888) 888-8888

 TOUR NAME: TREASURES OF THE MIDWEST

SURVEY #: 002

 NAME:

 COMPANY: HARKER TOURS INC

 ADDRESS:

 TX

 TELEPHONE #:

 TOUR NAME: MIDWESTERN PANORAMA

SURVEY #: 003

 NAME:

 COMPANY: MIDAMERICAN TOURS

 ADDRESS: BOX 222

 FT COLLINS KS 22222

 TELEPHONE #: (111) 111-1111

 TOUR NAME: FLAT LANDS PLUS

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -787

SURVEY #: 004

 NAME:

 COMPANY: FLATLAND TOURS INC

 ADDRESS: 333 MAIN ST

 COLORADO SPRINGS VT 33333

 TELEPHONE #: (222) 222-2222

 TOUR NAME: FLATLANDS

SURVEY #: 005

 NAME:

 COMPANY: JED & WALLY FERRIS TOURS

 ADDRESS: 444 GRAHAM RD

 CENTRAL CITY GA 44444

 TELEPHONE #: (333) 333-3333

 TOUR NAME: KANSAS WHEAT FIELDS

SURVEY #: 006

 NAME:

 COMPANY: ELVIS BUS LINES

 ADDRESS: PO BOX 5555

 AURORA NB 55555

 TELEPHONE #: (444) 444-4444

 TOUR NAME: MIDWESTWARD HO

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-788 MENTOR

 ------ Page 1 ------

 SAMPLE TOURISM BOARD TOUR STUDY

 RESPONDENTS WHO HAD ANY OR ALL TOURS CANCELLED

 APR 1991

SURVEY #: 007

 NAME:

 COMPANY: SHELAC TOURS, INC

 ADDRESS: 6666 U.S. HWY 66, #6

 SIOUX CITY OK 66666

 TELEPHONE #: (555) 555-5555

 TOUR NAME: MIDWEST & THE CORN FIELDS

SURVEY #: 008

 NAME: JOHN SMITH

 COMPANY: WHEAT CLUB TOURS

 ADDRESS: PO BOX 777-7777 DEL NORTE DR

 BOULDER LA 77777

 TELEPHONE #: (666) 666-6666

 TOUR NAME: NEBRASKA PLAINS

SURVEY #: 009

 NAME: JOHN DOE

 COMPANY: MIME TOURS, INC

 ADDRESS: PO BOX 888-8888 ST ANDREWS DR

 GREELY AK 88888

 TELEPHONE #: (777) 843-1211

 TOUR NAME: FLATLAND RAIL ADVENTURE

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

MENTOR v 8.1 -789

SURVEY #: 010

 NAME: DRAKE WHITE

 COMPANY: JIM MAGEE TOURS

 ADDRESS: PO BOX 999-9999 W FORREST LN

 SILVERTHORN NM 99999

 TELEPHONE #: (888) 843-1211

 TOUR NAME: MIDWEST INDIAN LANDS

 ------ Page 2 ------

9.1.1 Printing a Report Footer using WHEN BOTTOM

In order to print a footer or WHEN BOTTOM block at exactly the bottom of every
page of your specialized report run, use the following method:

S P E C I A L I Z E D F U N C T I O N S
9.1 GENERATING SPECIALIZED REPORTS

-790 MENTOR

1 Turn off the Mentor's new line default with ~SET -AUTOMATIC_NEW_LINE.

2 Count the exact number of lines that should appear at the bottom of the page. This
number should include all blank lines, and should account for any \N commands.

3 Use the number calculated above on the WHEN BOTTOM # statement. To print
three lines at the bottom of each page, the WHEN BOTTOM statement would be:
WHEN BOTTOM 3.

4 The first line of the WHEN BOTTOM block should be "SKIP_TO -#", where # is
the same number specified on the WHEN BOTTOM statement. Once again, if
there are three lines in the WHEN BOTTOM block, then the first statement of the
WHEN BOTTOM block should be: SKIP_TO -3.

5 If you use both WHEN TOP and WHEN BOTTOM together, the WHEN
BOTTOM statements must precede other regular print statements.

6 The WHEN BOTTOM block will not print on the bottom of the last page of the
run unless you include instructions for EXECUTE_EOF. These instructions should
be exactly those found inside of the WHEN BOTTOM block.

Here is an example of a three line WHEN BOTTOM block, including the
EXECUTE_EOF instructions:

 WHEN BOTTOM 3

 SKIP_TO -3

 PRINT_LINES "\NLine 1 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 2 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 3 of WHEN BOTTOM block"

 END_WHEN

 EXECUTE_EOF

 SKIP_TO -3

 PRINT_LINES "\NLine 1 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 2 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 3 of WHEN BOTTOM block"

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -791

The example above will print on the last three lines of each page. There will be no
blank lines between the last regular printed line, and the first line of the WHEN
BOTTOM block.

If you want a blank line separating the last regular printed line from the first line of
the WHEN BOTTOM block, include it inside the WHEN BOTTOM block. Be sure
to count this line on your WHEN BOTTOM # and SKIP_TO -# settings.

Because the WHEN BOTTOM block and the EXECUTE_EOF instructions are
exactly the same, a more efficient way to write the above example is to save the
PRINT_LINES statements as an item in a DB file and then read in the db item (i.e.,
&&dbitem):

 >FILE_TO_DB print_bot #

 SKIP_TO -3

 PRINT_LINES "\NLine 1 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 2 of WHEN BOTTOM block\N"

 PRINT_LINES "Line 3 of WHEN BOTTOM block"

 >END_OF_FILE

 WHEN BOTTOM 3

 &&print_bot

 END_WHEN

 EXECUTE_EOF

 &&print_bot

Although both examples contain the same number of lines, by using the second
method, you would only need to alter the PRINT_LINES instructions in one
location if an alteration or correction was necessary.

9.2 TABLE MANIPULATION

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-792 MENTOR

Table manipulation is useful if you have numbers you want to combine from one
or more tables, if you have information in a data file that you want to display on a
table, or if you want to transfer numbers from a table to a data file. Tables can be
manipulated in either the ~CLEANER block or a procedure can be written in the
~DEFINE block which is later processed in the ~EXECUTE block. (In the SPL
software, this was called TPROG.)

Use the ~CLEANER block if you have all the tables you want to manipulate in a
DB file and the names of the tables are readily available.Write a procedure to
manipulate tables in a ~DEFINE block if you:

• want to save the procedure in a DB file so you can run it again at a later time

• need to use IF/THEN/ELSE/ENDIF statements to evaluate table cells

• find it easier to maintain the list of tables and cells you want to use in a data file
rather than in a >REPEAT.

A table is made up of columns and rows. In addition to columns and rows that are
defined, there are system-generated Total and No Answer columns and rows.

The following terms may be used to describe columns and rows on a table:

T system-generated Total column or Total row

NA system-generated No Answer column or No Answer row

ALL all columns or all rows (including system-generated)

LAST last column or last row on a table

Other examples of describing columns (or rows) are:

1 TO 5 columns 1,2,3,4, and 5

1,...,5 columns 1,2,3,4, and 5

1,3,...,5 columns 1 and 3 and 5

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -793

T TO 5 the system-generated Total and No Answer column and
columns 1 to 5

The word "LAST" describes the last column or row on a table. "LAST" is helpful if
you don't know what the last row on a table is or if you want to use one statement to
describe several tables of unequal size. Some examples of using "LAST" to
describe a column (or row) are:

2 TO LAST column 2 to the last column in the table

1 TO LAST-1 column 1 to the second to the last column (last column minus 1)

You can divide a table into regions. A region is described in terms of column
number(s) BY row number(s). A region can be as large as the whole table described
as "ALL BY ALL" which means all columns by all rows, or a region can be as
small as a cell described as "1 BY 1" which means the cell where column 1 and row
1 meet. The word "BY" separates the columns of a region from the rows of a
region. In the ~CLEANER block the whole region description is enclosed in
parentheses. A table region described as (1,3,5,7 BY 2,4,6,8) is a region made up of
all the odd columns and all the even rows on a table.

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-794 MENTOR

Other examples of describing a region on a table are:

T001(1 TO 3 BY 3 TO 5)the region of table T001 which includes columns 1, 2
and 3 by rows 3, 4 and 5

T002(ALL BY 1,...,5)the region of table T002 which includes all columns
(including the system-generated Total and No Answer
column) by rows 1 to 5

T003(1 TO LAST BY 4)the region of table T003 which includes all columns first
to last (excluding the system-generated Total and No
Answer column) by row 4

If you are using anything other than simple column ranges (eg, 1 to last by
1,3,...,last) then a semicolon may be required in place of BY. This is also true if a
previously defined name is used in place of a range.

We will concentrate on ~CLEANER command table manipulation in this section
and follow with writing a procedure in the next section. In the ~CLEANER block
the following table manipulation commands are available for creating a new table
or changing an existing table:

CREATE_TABLES

Creates a new table in memory of specified dimensions and fills the cells of the
table with a numeric value or MISSING. Can also create a new table in memory by
copying or combining other tables.

MODIFY

Alters or combines tables.

A table with 3 columns and 5 rows would be 5 by 7 when the System columns and
rows are added. The following statement would create such a table and fill all the
cells with zero.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -795

CREATE_TABLES T001(=5, =7)=0

We can create a new table that was exactly the same as an existing table:

CREATE_TABLES T002 = T001

We can create a table that is the sum of one table added to another:

CREATE_TABLES T003 = T001 + T005

We can create a new table T004 that has the same number of columns as table T001
and four more rows than table T005 and fill the table with zeros:

CREATE_TABLES T004 (= NUMCOLS(T001), = NUMROWS(T005) +
4) = 0

The following arithmetic operations are available in both the ~CLEANER and
~DEFINE blocks:

= copies table cells

!= copies table and all table elements (banner, stub, etc.)

+= adds table cells

-= subtracts table cells

*= multiplies table cells

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-796 MENTOR

/= divides table cells

%= percentages table cells

We can change a cell in column 1 and row 1 to the number 5:

MODIFY T001(1 BY 1) = 5

We can change all the cells in column 3 to a 7:

MODIFY T001(3 BY ALL) = 7

We can add the number 3 to all the cells in row 5:

MODIFY T001(ALL BY 5) += 3

The following commands are available in both the ~CLEANER and ~DEFINE
blocks for loading and unloading tables from memory and storing tables in a DB
file.

LOAD_TABLES tablename Loads the table from a DB file into memory

STORE_TABLES tablename Stores the table in a DB file that has write
access

UNLOAD_TABLES tablename Unloads the table from memory

UNLOAD_TABLES * Unloads automatically loaded tables from
memory

UNLOAD_TABLES ! Unloads every table from memory

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -797

In the following example we will define, execute and store a table called T001 in a
DB file. If you are not familiar with these steps, see Chapter 4: “Basic Tables”. We
will then create a new table called T101 that is exactly the same as T001. We will
multiply every cell in T101 by 2 and then print our two tables (T001 and T101).

>CREATE_DB TEST1

>PRINT_FILE TEST1

~DEFINE

 COLDEF: TOTAL WITH [6^1//3]

 ROWDEF: [4^1/2]

 EDIT=EDIT_BASIC:

 COLUMN_WIDTH=10, STUB_WIDTH=0, -VERTICAL_PERCENT,

 -COLUMN_TNA, -ROW_TNA }

 BANNER=BAN1:

 | TOTAL A B C

 | ----- -- -- -- }

 STUB=STUB1:

 FIRST

 SECOND }

~SET AUTOMATIC_TABLES

~INPUT DATA

~EXECUTE

 COLUMN=COLDEF, ROW=ROWDEF

 RUN_CHAIN

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-798 MENTOR

~CLEANER

 CREATE_TABLES T101=T001

 MODIFY T101 *= 2

 STORE_TABLE T101

~EXECUTE

 EDIT=EDIT_BASIC,BANNER=BAN1,STUB=STUB1

 LOAD_TABLE=T001,PRINT_TABLE

 LOAD_TABLE=T101,PRINT_TABLE

~END

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -799

The resulting two tables from the above setup will look like this:

 TABLE 001

 BANNER: TOTAL WITH [6^1//3]

 STUB: ROWDEF

 TOTAL A B C

 ----- -- -- --

 FIRST 6 2 1 3

 SECOND 4 2 1 1

 TABLE 101

 TOTAL A B C

 ----- -- -- --

 FIRST 12 4 2 6

 SECOND 8 4 2 2

The following ~CLEANER commands are useful for examining tables that are
either in a DB file or in memory:

PRINT_TABLES tablenamePrints the table

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-800 MENTOR

SHOW_TABLESLists the tables that are loaded in memory

SHOW tablenameShows the table and all the elements (banner, stub, etc.) that
are stored with the table.

If we use the DB file that we just created we could examine table T001 in the
following ways:

 >USE_DB TEST1

~CLEANER

LOAD_TABLES T001

SHOW_TABLES

PRINT_TABLES T001

SHOW T001

~END

The results (which have been edited for readability) would be:

 SHOW_TABLES

 dump of all 1 tables in in_core chain

 #1: test1^T001 (6 by 4)

 end of dump

 PRINT_TABLES T001

 TABLE test1^T001

 BANNER: TOTAL WITH [6^1//3]

 STUB: ROWDEF

 Total N/A TOTAL 6^1 6^2 6^3

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -801

Total 10 - 10 4 2 4

 100.0 100.0% 100.0% 100.0% 100.0%

N/A - - - - - -

4^1 6 - 6 2 1 3

 60.0% 60.0 50.0% 50.0% 75.0%

4^2 4 - 4 2 1 1

 40.0% 40.0% 50.0% 50.0% 25.0%

 SHOW T001

 title= T001_t (size 2, user_said 0)

 ..column= COLDEF_c (size 874, user_said 1)

 ..banner= COLDEF_bn (size 1, user_said 0)

 ..row= ROWDEF_r (size 410, user_said 1)

 .stub= ROWDEF_s (size 2, user_said 0)

 table:

 row (-1): 10 0 10 4 2 4

 row (0): 0 0 0 0 0 0

 row (1): 6 0 6 2 1 3

 row (2): 4 0 4 2 1 1

You will notice in the previous table that the Total row is shown as 'row (-1)' and
the No Answer row is shown as 'row (0)'. The defined rows are numbered (1) and
(2). The columns are described in the same manner. This means the first defined
column will be referred to as column 1.

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-802 MENTOR

We will use the same table T001 that we just created and we will create a new table
called T102 that is 6 columns wide (includes T and NA columns) and 4 rows long
(includes T and NA rows) and every cell is set to missing. We will modify table
T102 so that it will be the same table T001 with rows 1 and 2 switched. We will
then print both tables.

>USE_DB TEST1,READ_WRITE,DUPLICATE=WARN

>PRINT_FILE TEST2

~CLEANER

 CREATE_TABLES T102(=6, =4)=MISSING

 MODIFY T102(ALL BY 1 TO 2)=T001(ALL BY 2 TO 1)

 STORE_TABLES T102

~EXECUTE

 EDIT=EDIT_BASIC, BANNER=BAN1, STUB=STUB1

 LOAD_TABLE=T001, PRINT_TABLE

 LOAD_TABLE=T102, PRINT_TABLE

 ~END

The results will look like:

TABLE 001

BANNER: TOTAL WITH [6^1//3]

STUB: ROWDEF

TOTAL A B C

----- -- -- --

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -803

FIRST 6 2 1 3

SECOND 4 2 1 1

TABLE 102

TOTAL A B C

----- -- -- --

FIRST 4 2 1 1

SECOND 6 2 1 3

Functions are also available that operate on table cells. Some examples are:

ABSOLUTE_VALUEReturn the absolute value of a cell

MAKE_NUMBERTreat the result of another function as a number

NUMBERS_FROM_TABLE(#,tablename)Make a region with # numbers by
copying numbers from the
table that is specified

TABLE_FROM_NUMBERS(VALUES(#,#),2,1)Fill a table region with
numbers (#)

SQUARE_ROOTReturn the square root of a number

SUM Sum a range of table cells

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-804 MENTOR

X Return zero if the cell is missing

(See “9.3.2 Functions” for more information on these and other functions.)

We can take the absolute value of a number on a table:

 MODIFY T002(4 BY 4) = &

 ABSOLUTE(NUMBERS_FROM_TABLE(1,T001(3 BY 3)))

We can modify a table cell to equal a square root or an absolute value:

 MODIFY T001(1 BY 1) = SQUARE_ROOT(14)

 MODIFY T001(1 BY 1) = ABSOLUTE(-6)

We can modify a table region to equal a square root or an absolute value:

 MODIFY T001(ALL BY ALL) =
MAKE_NUMBER(SQUARE_ROOT(14))

 MODIFY T001(ALL BY ALL) = MAKE_NUMBER(ABSOLUTE(-6))

We can fill a table region with different values. The syntax for this function is:

 TABLE_FROM_NUMBERS(VALUES (numbers desired starting
in upper left-most corner, ending with lower right-most
corner) number of columns, number of rows)

 MODIFY T001(1 TO 2 BY 1 TO 2) =
TABLE_FROM_NUMBERS(VALUES(2,3,4,5),2,2)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -805

We can take the square root of a number on a table:

 MODIFY T002(2 BY 2) =
SQUARE_ROOT(NUMBERS_FROM_TABLE(1,T001(1 BY 1)))

or, for a two cell region:

 MODIFY T002(2 BY 2 TO 3) =
SQUARE_ROOT(NUMBERS_FROM_TABLE(2,T001(3 BY 3 &

 TO 4)))

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-806 MENTOR

or, for a four cell region:

 MODIFY T002(2 TO 3 BY 2 TO 3) = &

 SQUARE_ROOT(NUMBERS_FROM_TABLE(4,T001(3 TO 4 BY 3
TO 4)))

or, to a region from a single cell:

 MODIFY T002(2 TO 3 BY 2 TO 3) = &

 MAKE_NUMBER(SQUARE_ROOT(NUMBERS_FROM_TABLE(1,T001(3
BY 4))))

We can sum a range of table cells and place the result into another cell: (the
number after the NUMBERS_FROM_TABLES function, 6 in this case, is the
number of cells in the range to be summed)

 MODIFY T001(7 BY 1) = &

 SUM(NUMBERS_FROM_TABLES(6,T001(1 TO 6 BY 1)))

We can make a procedure to return a zero if a table cell is missing:

 PROCEDURE={PROC1:

 IF X(MAKE_NUMBER(NUMBER_FROM_TABLE(1,T001(4 BY
4))))=0

 THEN MODIFY T002(3 BY 3) = 100

 ENDIF

 }

Functions are also available to combine or evaluate tables.

FLIP Turns columns into rows and the reverse

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -807

JOIN_COLUMNSJoins tables side by side

JOIN_ROWSJoins tables by appending one to the other

NUMBER_OF_COLUMNSReturns how many columns are in a table

NUMBER_OF_ROWSReturns how many rows are in a table

REPLICATEDuplicates blocks of columns or rows on a table

We could flip an entire table:

 MODIFY T001=FLIP(T001)

or just a region:

 MODIFY T001(1 TO 3 BY 2 TO 4) = FLIP(T001(1 TO 3 BY 2
TO 4))

We could make a new table by joining two other complete tables column wise:

 CREATE_TABLES T002=JOIN_COLUMNS(T001,T001)

or row wise:

 CREATE_TABLES T002=JOIN_ROWS(T001,T001)

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-808 MENTOR

or by joining two other table regions column wise:

 CREATE_TABLES T002=JOIN_COLUMNS(T001(1 TO 3 BY
ALL),&

 T001(1 TO 3 BY ALL))

or row wise:

 CREATE_TABLES T002=JOIN_ROWS(T001(ALL BY 1 TO 3),&

 T001(ALL BY 1 TO 3))

We could fill a table cell with the number of columns in a table:

 MODIFY T002(1 BY 1) = NUMBER_OF_COLUMNS(T001)

or the number of rows:

 MODIFY T002(1 BY 1) = NUMBER_OF_ROWS(T001)

We can replicate regions of one table onto another table. The syntax for this
command is:

 REPLICATE(tablename(region),column multiplier,row
multiplier)

For this function the receiving region must be the appropriate size to receive the
sending region as specified by the multiplying factors:

 MODIFY T002(3 TO 4 BY 2 TO 3) = &

 REPLICATE(T001(1 BY 3 TO 4),2,1)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -809

In a procedure created in the ~DEFINE block, table regions are described by $R. To
create a new table with 3 detail columns and 5 detail rows we would say:

 MODIFY [$R=T001 T TO 5 BY T TO 7]=0

In the following example we will write a procedure to create a new table, copy data
from an old table to the new table and store the new table. A new table called
NEW1 is created and it is exactly the same as the old table named GB009.

 ~DEFINE

 PROCEDURE={PROC:

 MODIFY [$R=?=NEW1]=GB009 ''? means get size of new
table
''from old table

 STORE_TABLES NEW1

 }

Tables with the same name that are stored in different DB files can be combined
and stored in a third DB file using the following statement:

 MODIFY COMBINE^T010 = WAVE1^T010 + WAVE2^T010

Name^ in the above example means get the table from that DB file, which must
have been opened with a previous DB command.

The following example uses table manipulation to create a table of means called
TAB_MEANS from three tables, called TAB_QUALITY, TAB_CORRECT and
TAB_DELIVERY that have been stored in a DB file called TABS1. We will define
our banner and stub for our table of means first. Then our table manipulation step
will occur in a ~CLEANER block where we will make row 1 of our table of means
equal to the mean row (row 7) of the table TAB_QUALITY, row 2 of our table of
means equal to the mean row (again row 7) of the table TAB_CORRECT, and row

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-810 MENTOR

3 of our table of means equal to the mean row (still row 7) of the table
TAB_DELIVERY. We will then print the table TAB_MEANS.

>USE_DB TABS1,READ_WRITE,DUPLICATE=WARN

>PRINT_FILE PRTMEANS

~DEFINE

 BANNER={BAN_AGE:

 | TOTAL 18-24 25-34 35-44 45-54 55-64 65-99

 | ----- ----- ----- ----- ----- ----- ----- }

 STUB={STUB_MEANS:

 QUALITY

 CORRECT

 DELIVERY }

 EDIT={EDIT_MEANS:

 COLUMN_WIDTH=7, STUB_WIDTH=20, -VERTICAL_PERCENT,

 -COLUMN_TNA, -ROW_TNA, FREQUENCY_DECIMALS=2,

 PRINT_ALPHA_TABLE_NAMES }

 LINES={TITLE_MEANS: SUMMARY TABLES OF MEAN SCORES }

~CLEANER

 CREATE TAB_MEANS(=9, =5) = 0

 MODIFY TAB_MEANS(1 TO 7 BY 1) = TAB_QUALITY(1 TO 7 BY 7)

 MODIFY TAB_MEANS(1 TO 7 BY 2) = TAB_CORRECT(1 TO 7 BY 7)

 MODIFY TAB_MEANS(1 TO 7 BY 3) = TAB_DELIVERY(1 TO 7 BY 7)

 STORE TAB_MEANS

~EXECUTE

 BANNER=BAN_AGE,EDIT=EDIT_MEANS,STUB=STUB_MEANS

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -811

 TITLE=TITLE_MEANS

 LOAD_TABLE=TAB_MEANS,PRINT_TABLE

~END

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-812 MENTOR

This will produce output which looks like this:

TABLE TAB_MEANS

SUMMARY TABLES OF MEAN SCORES

 TOTAL 18-24 25-34 35-44 45-54 55-64 65-99

 ----- ----- ----- ----- ----- ----- -----

QUALITY 3.39 3.25 3.26 3.65 3.43 3.56 3.50

CORRECT 3.61 3.42 3.47 3.85 4.00 3.61 3.57

DELIVERY 3.88 3.83 3.80 3.80 4.14 4.00 3.75

This table could then be utilized in a specialized report run to form an ASCII file
for input into a spreadsheet or graphics program. In the following example $TAB
is the label we will have on each line, $ROW is the row in our table of means
(TAB_MEANS) that we will associate with each label, and $NEW is the report
command to give us a new line in the output file which we will call GRAPH1. The
first PRINT command prints the $TAB variable in the first 8 spaces of the line.
This first PRINT command is repeated three times, once for each line of our table
of means. The second PRINT command says to skip a space then print a number
from a cell on our table of means (TAB_MEANS) into a four column location with
two decimal places. This second PRINT command is repeated seven times for each
line, once for each cell of each line in our table of means. (For more information
on print control, see “9.1 GENERATING SPECIALIZED REPORTS”).

>USE_DB TABS1

>PRINT_FILE GRAPH1

~CLEANER

>REPEAT $TAB=QUALITY,CORRECT,DELIVERY;&

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -813

 $ROW=1,2,3;&

 $NEW="","\N","\N"

PRINT_LINES "$NEW\8S" "$TAB"

>REPEAT $COL=1,...,7

PRINT_LINES "\1X\4.2S"
NUMBERS_FROM_TABLE(1,TAB_MEANS($COL BY $ROW))

>END_REPEAT

>END_REPEAT

~END

The output from this run will be named GRAPH1.PRT and will look like:

 QUALITY 3.39 3.25 3.26 3.65 3.43 3.56 3.50

 CORRECT 3.61 3.42 3.47 3.85 4.00 3.61 3.57

 DELIVERY 3.88 3.83 3.80 3.80 4.14 4.00 3.75

Normally, tables saved into db files have only frequencies and variable statistics
saved, not percents or any edit statistics. If our original tables, TAB_QUALITY,
TAB_CORRECT and TAB_DELIVERY, had edit means as opposed to variable
means, these mean rows would not normally be stored with the table into the db file
TABS1. However, through the use of the ~SET command, SAVE_TABLE="_X"
("_X" is a user defined tablename suffix), we can save the tables as printed
(including all percent and edit statistics rows).

>CREATE_DB TABS1

>PRINT_FILE TABS1

~DEFINE

 AGE: TOTAL WITH
[40.2#18-24/25-34/35-44/45-54/55-64/65-99]

 QUALITYP: [98^5//1/0]

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-814 MENTOR

 CORRECTP: [99^5//1/0]

 DELIVERYP: [100^5//1/0]

 BANNER={BAN_AGE:

 | TOTAL 18-24 25-34 35-44 45-54 55-64 65-99

 | ----- ----- ----- ----- ----- ----- ----- }

 STUB={STUB_RATINGP:

 5- EXCELLENT

 4- GOOD

 3- FAIR

 2- POOR

 1- VERY POOR

 NO OPINION

[PRINT_ROW=MEAN] EDIT MEAN

[PRINT_ROW=STD] EDIT STD }

 EDIT={EDIT_PRTST: COLUMN_WIDTH=7,STUB_WIDTH=20,

 VERTICAL_PERCENT=T,-COLUMN_TNA,

 PRINT_ALPHA_TABLE_NAMES,

 COLUMN_STATISTICS_VALUES=VALUES(5,4,3,2,1),

 COLUMN_MEAN,COLUMN_STD,STATISTICS_DECIMALS=2

 }

 LINES={TITLE_QUALITY: RATING QUALITY OF FOOD }

 LINES={TITLE_CORRECT: RATING CORRECT FOOD ITEMS
RECEIVED }

 LINES={TITLE_DELIVERY: RATING PROMPT DELIVERY OF FOOD
}

~INPUT DATACLN

~SET SAVE_TABLE="_X"

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -815

~EXECUTE

 COLUMN=AGE,BANNER=BAN_AGE,EDIT=EDIT_RATING

 STUB=STUB_RATINGP

 TITLE=TITLE_QUALITY,LOCAL_EDIT=EDIT_PRTST,ROW=QUALITYP

 TABLE=TAB_QUALITYP

 TITLE=TITLE_CORRECT,LOCAL_EDIT=EDIT_PRTST,ROW=CORRECTP

 TABLE=TAB_CORRECTP

TITLE=TITLE_DELIVERY,LOCAL_EDIT=EDIT_PRTST,ROW=DELIVERY
P

 TABLE=TAB_DELIVRYP

~END

We can find out what saved printed table row corresponds to the mean row (or a
percentage row if desired) by printing the saved printed tables using a small spec
file such as:

 >USE_DB TABS1

>PRINT_FILE PRTTABS

~DEFINE EDIT={FREQ_EDIT: FREQUENCY_ONLY,FREQUENCY_DECIMALS=2 }

~EXECUTE

 EDIT = FREQ_EDIT

 LOAD=TAB_QUALITYP_X,PRINT_TABLE

 LOAD=TAB_CORRECTP_X,PRINT_TABLE

 LOAD=TAB_DELIVRYP_X,PRINT_TABLE

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-816 MENTOR

~END

Once again, we will define our banner and stub for our table of means first. Then
our table manipulation step will occur in a CLEAN block where we will make row
1 of our table of means equal to the mean row (row 17) of the table
TAB_QUALITYP_X, row 2 of our table of means equal to the mean row (again
row 17) of the table TAB_CORRECTP_X and row 3 of our table of means equal to
the mean row (still row 17) of the table TAB_DELIVRYP_X. We will then print
the table TAB_EMEANS.

>USE_DB TABS1,READ_WRITE,DUPLICATE=WARN

>PRINT_FILE PRTMEANS

~DEFINE

 BANNER={BAN_AGE:

 | TOTAL 18-24 25-34 35-44 45-54 55-64 65-99

 | ----- ----- ----- ----- ----- ----- ----- }

 STUB={STUB_MEANS:

 QUALITY

 CORRECT

 DELIVERY }

 EDIT={EDIT_MEANS: COLUMN_WIDTH=7, STUB_WIDTH=20,

 -VERTICAL_PERCENT, -COLUMN_TNA, -ROW_TNA,

 FREQUENCY_DECIMALS=2, PRINT_ALPHA_TABLE_NAMES }

 LINES={TITLE_EMEANS: SUMMARY TABLE OF EDIT MEAN SCORES }

~CLEANER

 CREATE TAB_EMEANS(=9, =5) = 0

 MODIFY TAB_EMEANS(1 TO 7 BY 1) = &

 TAB_QUALITYP_X(1 TO 7 BY 17)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -817

 MODIFY TAB_EMEANS(1 TO 7 BY 2) = &

 TAB_CORRECTP_X(1 TO 7 BY 17)

 MODIFY TAB_EMEANS(1 TO 7 BY 3) = &

 TAB_DELIVRYP_X(1 TO 7 BY 17)

 STORE TAB_EMEANS

~EXECUTE

 BANNER=BAN_AGE, EDIT=EDIT_MEANS, STUB=STUB_MEANS

 TITLE=TITLE_EMEANS

 LOAD=TAB_EMEANS, PRINT_TABLE

~END

This table could then be utilized in the same formatted report run as described
above to form an ASCII file for input into a spreadsheet or graphics program.

You should be familiar with the following ~SET options that are useful in
manipulating tables and are described in Appendix B: TILDE COMMANDS.

TABLE_DROP_MODE=#Specifies when tables or regions are unloaded from
memory

TABLE_DROP_WARN=#Specifies how modified tables will react when
unloaded from memory

TABLE_MISSING MODE=#Specifies how the program reacts when tables are
not found

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-818 MENTOR

TABLE_MODIFY_MODE=#Specifies how the program reacts when tables do
not fit together

TABLE_STORE_MODE=#Specifies when tables are stored in a DB file

In the following example, we will utilize the RANK_TABLE_COLUMNS
function to add a row to the bottom of a table which shows the rank of the mean for
each column in the banner. Since the RANK_TABLE_COLUMNS function is
designed to rank row cells and show the ranks as a column, we must use the FLIP
function to rank column cells.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -819

1 ~INPUT DATACLN

2 >CREATE_DB TRANK

3 >PRINT_FILE TRANK

4

5 ~DEFINE

6 TABLE_SET={BANCNTRS:

7 EDIT=: COLUMN_WIDTH=6, STUB_WIDTH=20, -COLUMN_TNA

8 -ROW_NA, CALL_TABLE="", VERTICAL_PERCENT=T,

9 PERCENT_DECIMALS=0, STATISTICS_DECIMALS=2 }

10 BANNER=:

11 |

12 | STORE STORE STORE STORE STORE STORE STORE

13 | TOTAL 1 2 3 4 5 6 7

14 | ----- ----- ----- ----- ----- ----- ----- -----
}

15 COLUMN=: NET([23.2#00,01,02/03,05/06,38,39,07,08/&

16 10,31,35/09,13/37,19,12,30/36,21,32,34])
}

17

18 TABLE_SET={Q4A:

19 LOCAL_EDIT=: EXTRA_STUBS_OK }

20 TITLE=: Q4. HOW CONSISTENT IS THE CONCEPT:\N

21 A. GOOD PLACE TO SHOP }

22 STUB=:

23 7-VERY CONSISTENT

24 6

25 5

26 4-NEITHER CONSISTENT NOR INCONSISTENT

27 3

S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

-820 MENTOR

28 2

29 1-VERY INCONSISTENT

30 [STATISTICS] MEAN

31 [FREQUENCY_ONLY] RANK MEANS }

32 ROW=: [35^7//1] $[MEAN] [35] }

33

34 ~EXECUTE

35 TABLE_SET=BANCNTRS

36 TABLE_SET=Q4A TAB=TQ4A

37

38 ~CLEANER

39 CREATE TEMP(+1,*)=FLIP(TQ4A)

40 MODIFY TEMP(LAST BY 2 TO 8) = &

41 RANK_TABLE_COLUMNS(HIGH,LOW_TIES,TEMP(LAST-1 BY 2
TO 8))

42 CREATE RANKQ4A=FLIP(TEMP)

43 STORE RANKQ4A

44

45 ~EXECUTE

46 TABLE_SET=BANCNTRS, STUB=Q4A_S, TITLE=Q4A_T

47 LOAD=RANKQ4A, PRINT_TABLE

48

49 ~END

To add the row of ranks, we create a temporary table in line 39 of the above spec
file which is one row bigger in size than our existing table (TEMP(+1,*)) and into
this temporary table we place the existing table, FLIPped. Then in line 40 of the
above spec file we say to modify the last row (the RANK MEANS row) to reflect
the rank of the cells in the next to last row (the MEAN row) but only for columns 2
to eight (we don't want to rank the TOTAL column). Then the temporary file is
FLIPped back to its proper orientation for final printing. When the ranking is
accomplished in line 41, we say to rank high to low (HIGH) and show any ties in

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.2 TABLE MANIPULATION

MENTOR v 8.1 -821

ranking with the lower rank number for all ties (LOW_TIES). (See“9.3.2
Functions”, Table Related Functions for a more complete discussion of the
RANK_TABLE_COLUMNS function.)

Here is the final table:

Q4. HOW CONSISTENT IS THE CONCEPT:

A. GOOD PLACE TO SHOP

 STORE STORE STORE STORE STORE STORE STORE

 TOTAL 1 2 3 4 5 6 7

 ----- ----- ----- ----- ----- ----- ----- -----

Total 87 14 14 14 7 15 12 11

 100% 100% 100% 100% 100% 100% 100% 100%

7-VERY CONSISTENT 4 - - 2 - 2 - -

 5% 14% 13%

6 17 5 3 2 1 2 3 1

 20% 36% 21% 14% 14% 13% 25% 9%

5 15 2 - 3 2 5 1 2

 17% 14% 21% 29% 33% 8% 18%

4-NEITHER CONSISTENT 26 5 7 3 2 4 2 3

NOR INCONSISTENT 30% 36% 50% 21% 29% 27% 17% 27%

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-822 MENTOR

3 14 - 2 1 1 2 4 4

 16% 14% 7% 14% 13% 33% 36%

2 5 - 1 2 - - 1 1

 6% 7% 14% 8% 9%

1-VERY INCONSISTENT 6 2 1 1 1 - 1 -

 7% 14% 7% 7% 14% 8%

MEAN 4.22 4.43 3.93 4.36 4.00 4.87 3.83 3.82

RANK MEANS - 2 5 3 4 1 6 7

9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

Mentor has some special keywords to give you more power to describe and
manipulate your data. These are divided into System constants and functions.

System constants allow you to get information on current System values or use
System-defined items. Functions allow you to modify the meaning of variables.
Both have special uses which you will need at times when cleaning data, running
procedures, or building tables.

Functions and System constants can be used anywhere standard variables are used
in Mentor. Remember that most of the names can be abbreviated. See Appendix X:
ALLOWED ABBREVIATIONS for the allowed abbreviations.

NOTE: Cross-case operations (also called functions) are special features used for
row and column creation, and are not related to the functions described
here. For more information, see “5.2 Axis Commands/Cross-Case
Operations”and Appendix B: TILDE COMMANDS, ~DEFINE
VARIABLE=.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -823

9.3.1 System Constants

System constants can be accessed at any time, but cannot be modified. They
contain information such as the current date and time, information about the data
case being worked on, and other current system values.

The System constants can be classified as follows:

• Variable constants refer to constants that are used with or in creation of variables
or vectors when running procedures or building tables.

• Case reading constants hold information about the data case being read.

• System information constants contain other general information.

You can specify the name of certain system constants inside parentheses causing
the data to come from the value of the system variable instead of the case.

Example:

[(DATE_TIME) $] will say the date/time

[(DATE_TIME) 1.6 $] will be the day and month only

[(DATE_TIME) 13.2 # 00//23] will evaluate the hour

[(DATE_TIME) 16.2] will be the minutes as a number

[(DATE_TIME) 13.2 #
"Morning":6-11/"Afternoon":12-16/"Eve":0-5,17-23]

[(LINE_NUMBER) # 1-30] > 39

You can subset the following System constants:

• CASE_ID

• CASE_NUMBER

• DATE_TIME

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-824 MENTOR

• JULIAN_DATE

• LINE_NUMBER

• PAGE_NUMBER

• TABLE_NAME

• TEXT_AREA_STATUS

The following constants can be referenced for a specific data file (when you have
multiple data files open) by using a caret (^) after the data file name:

ALTER_FLAG

CASE_ID

CASE_NUMBER

CASE_WRITTEN

DELETE_FLAG

EOF_DATA

ERROR_FLAG

FIRST_CASE

TEXT_AREA_STATUS

For instance you could compare the value of CASE_ID in two different data files.

data1^CASE_ID EQ data2^CASE_ID

The constants LINE_NUMBER and PAGE_NUMBER can be used (in an IF
block) to control printing when you have multiple print files open. See the meta
command >PRINT_FILE in your Utilities manual for information on using
multiple print files.

Here are the descriptions of the system constants. The examples given highlight
cases where the System constant would be particularly useful. As with other
keywords throughout the manual, many of these can be abbreviated. Those that

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -825

can be shortened will show the allowed abbreviation in the syntax or example for
that keyword or enclosed in parentheses at the end of the description.

VARIABLE CONSTANTS

CATEGORIES(#,#)

Specifies which categories are turned ON using numbers; the numbers are the
category numbers to be treated as being ON.

Syntax:CATS(#,#,#-#,#,...,#)

You can use ranges or ellipses to describe a CATEGORIES list.

CATS(1,3,...,23Says every other category from 1 to 23 is ON.

CATS(1-5,9)Says that categories 1 through 5 and 9 are ON.

This is used for particular data modifications. For instance, to add a category to a
multi-category variable without affecting the other categories:

TRANSFER [10^1/3/5/7/9] += CATS(3)

This would add a 5 punch to column 10 since it is the third category.

CATEGORIES is used with the RANDOM_CATEGORY function to return a
random category to a variable:

TRANSFER [10^1/3/5/7/9] = RANDOM_CATEGORY(CATS(1-5))

This would randomly assign one of the 5 categories (1, 3, 5, 7, or 9).

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-826 MENTOR

Another special use of category assignment is when reading a file under the
control of a ~MAKE_READ_CONTROL variable, which speeds up processing
when trying to read only particular cases:

 ~INPUT MYFILE

 ~MAKE_READ_CONTROL,STORE = [5.3#1//100]

 ~INPUT
MYFILE,READ_CONTROL=STORE(1,5-10,81,90,92,...,98)

The items in parentheses are the categories from the store variable to be used when
determining which cases to read in the file.

DUD

A category variable with one category, that one being FALSE. Can be used to
describe an empty cell in a table. Especially useful to have an empty cell in
$[OVERLAY] or $[BREAK] tables where the number of categories must be the
same for each section, but you want to combine different numbers of categories in
the different sections.

ROW=Items_ate: [10^1//5] $[BREAK] [11^1//4] WITH DUD

The DUD category would line up with the 5 of column 10 and put a blank cell in
the table for that category.

ERRORS

Returns the number of errors (i.e., (ERROR # text)) for a particular run. This
constant can be used to control execution in a specification file.

~GO_TO (done) ERRORS >0

FALSE

A boolean which has the value of FALSE. Same as DUD.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -827

MISSING

A numeric category which has no value.

TOTAL

A category variable, with one category being TRUE. This is useful when you want
a Total category in a table, such as a Total column.

COLUMN=Banner: TOTAL WITH Sex WITH Age

TRUE

A boolean which has the value of TRUE. Same as TOTAL.

VALUES(values)

Returns a vector of a set of numbers, where the numbers are the value for a given
category. If you have no number, just a comma, then that category does not have a
value. VALUES(,,5.56,1.2,,-3) has 6 categories with values 5.56 in
category 3, 1.2 in category 4, and -3 in category 6.

In table building, this is used with the SELECT_VALUE function to describe the
values for weights or when using assigned values for mean or percentile
calculations.

~DEFINE

Weight1:
SELECT([10^1//5],VALS(1.2,.85,1.275,0.654,.999)

~EXECUTE WEIGHT=Weight1

COLUMN=...,ROW=..., TABLE=...

...

This would assign 1.2 as a weight for those with a 1 in col 10, .85 for those with a 2,
and so on.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-828 MENTOR

On the EDIT statement, VALUES is used to describe the weights used for the rows
or columns when calculating print time statistics.

~DEFINE EDIT=Domean:

COLUMN_MEAN,COLUMN_STATISTICS_VALUES=VALS(,,10,20,...,9
0) }

This says to do a mean on the table skipping the first two rows (,,) then using the
values10, 20, etc. through 90 for the rows 2 through 10.

CASE READING CONSTANTS

ALTER_FLAG

This is TRUE or FALSE depending on whether the case has ever been changed.
When the case is written to a new file, this is set back to FALSE. You can see the
current value of the ALTER_FLAG for the case you are on in the ~CLEANER
block with the >STATUS command.

CASE_ID

A string whose value is the case ID of the current case being read. This is usually
used in procedures when trying to find a particular case, or just to print the case ID.

IF [5^1] SAY "CASE" CASEID "IS A MALE" ENDIF

This is not the data in the columns that are said to be the case ID, but the value the
system has for the case ID. You can reload a new case ID with the PUT_ID
command.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -829

The CASE_ID value is displayed whenever you move to a new case in the
~CLEANER block. It is also used by the ~CLEANER NEXT command when
looking for a particular case.

CASE_NUMBER

This is the relative position of the data case in the file, not to be confused with
CASE_ID, which is the assigned identifier for the case.

The case number is used by the ~CLEANER NEXT command using the syntax:

NEXT ###,

For example, NEXT 256. This would find the 256th case in the file.

CASE_WRITTEN

This returns TRUE if the case has been written to an output file during the current
procedure. It is most useful to gather all cases that haven't been written to a prior
file into a separate file, i.e., write out the exceptions.

IF [5^1] THEN

WRITE_CASE #1

ENDIF

IF [5^2] THEN

WRITE_CASE #2

ENDIF

IF CASE_WRITTEN

ELSE

WRITE_CASE #3

ENDIF

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-830 MENTOR

CHECK_ERROR

This is a boolean that returns either TRUE or FALSE for the last ~CLEANER
CHECK statement executed. Use this constant in an IF or GOTO block to control
the execution of a data cleaning procedure.

DELETE_FLAG

This says whether the case has been marked as deleted. Note that to read
previously deleted cases, the file must be opened with the USE_DELETED option
on, i.e., ~INPUT oldfile,USE_DELETED. DELETE_FLAG is turned on when a
case is written after the ~CLEANER ASSIGN_DELETE_FLAG or DROP
commands have been issued. It can be turned off with the ~CLEANER
UNDELETE command.

IF DELETE_FLAG

PRINT_LINES "CASE \S WAS DELETED\N" CASE_ID

ENDIF

When working in ~CLEANER interactively, the >STATUS command will also tell
you whether the delete flag is set for the case you are looking at.

EOF_DATA

Says whether you are at the end of the data file. Useful in procedures when you
wish to do something after you are done processing the data, such as print
summary information.

IF EOF_DATA

PRINT_LINES "Total exceptions: \S\N" Exctot

 "Total errors: \S\N" Errtot

ENDIF

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -831

ERROR_FLAG

Tells whether the case has been marked as having an error. The error flag is turned
on by the ~CLEANER commands CLEAN, CHECK, EDIT, and ERROR.

The error flag is removed after modifications are made to the case. The
~CLEANER FIND_FLAGGED command finds the next case with the error flag
turned on.

The >STATUS command will tell you if the error flag is turned on for the case, or
use the System constant ERROR_FLAG in an IF block.

 IF ERROR_FLAG

command(s)

.

.

.

ENDIF

FIRST_CASE

Is TRUE whenever you are on the first case of the data file. This is useful in
procedures when you want to do something special at the beginning of the run.

IF FIRST_CASE

TRANSFER COUNTER[2/1.5]=1

ENDIF

This sets a counter to 1 at the beginning of a procedure.

LAST_CASE

Is true when Mentor reaches the last case of the data file. This is useful in
procedures when you want to do something at the end of a run.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-832 MENTOR

TEXT_AREA_STATUS

Checks the status of the text area and returns one of following numbers:

1 text area empty

2 text area is okay

3 some front pointers do not point to text because they are blank

4 text area not blank after last text answer

5 some front pointers do not point to text, and are not blank

6 some other problem with the text area, bad back pointers

10 not the input file specified

11 no data case in hand

12 no text location specified

TEXT_AREA_STATUS evaluates to 1-6 for the values 1-6 described above, to -1
for 10 or 11. It is a fatal error if value 12 is returned.

Use <studyname>^TEXT_AREA_STATUS or
<studyname>!TEXT_AREA_STATUS to control which input file to
check,when multiple files are open. You may also use this system variable inside
brackets [], e.g., [(TEXT_AREA_STATUS) # -1/1/2//6]

Related commands are the ~ADJUST options INPUT_TEXT_LOCATION and
OUTPUT_TEXT_LOCATION.

SYSTEM INFORMATION CONSTANTS

DATE_TIME

Returns the current system date/time in the form:

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -833

DD MMM YYYY HH:MM (day month year hours minutes)

12 OCT 1994 15:23

This is useful to print the date on reports made with procedures.

Example: ~CLEANER PRINT "The current date and time are: \S" DATETIME

DATE_TIME_DIFF

Here is an example of the syntax:

Example: datetimediff(string,string,datepart)

Where the strings are YYYYMMMMDDHHMMSS and, where the datepart can
be:

1 for seconds

2 for minutes

3 for hours

4 for days

5 for months

6 for years

7 for weeks

Examples:

datetimediff("20050504030201","20040504030201",4)

datetimediff([11.14$],[31.14$],4)

datetimediff(str1,str2,4)

OFFSETDATE

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-834 MENTOR

Here is an example syntax:

Example: offsetdate(string,increment,datepart)

Where the strings are YYYYMMDDHHMMSS and where increment is how much
to offset the datepart

Thee datepart can be:

 1 for seconds

 2 for minutes

 3 for hours

 4 for days

 5 for months

 6 for years

 7 for weeks

Example: say offsetdate("20010101010101",1,1)

JULIAN_DATE

Returns the current system date and time in the form:

YYMMDDHHMMSSHHWJJJ

(year/month/day/hour/minutes/seconds/hundredths/day of week/julian date)

 941112155145606316

Day of the week begins with Monday as day 1.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -835

LINE_NUMBER

Returns the current line number you are positioned on in the opened print file (see

the meta command >PRINT_FILE). This can be used to print something on the
same line of every page. See “9.1 GENERATING SPECIALIZED REPORTS” for
an example of this constant.

 IF LINE_NUMBER = 60 THEN

PRINT_LINES "Values for America Report, End of page \S"
&

PAGE_NUMBER

 ENDIF

MATH_VALUES

A 17 category vector defined by the constant (seven of which have values as
indicated):

VALUES(,1,0,,-1,,1.41,,,,3.14,,2.72,,,,1.62)

These are special values often used in mathematical calculations, i.e., the 11th
value is Pi.

PAGE_NUMBER

Returns the page number of the currently opened print file (see the >PRINT_FILE
command). This is usually used to print the page number on the page during
printing procedures. See “9.1 GENERATING SPECIALIZED REPORTS” for an
example of this constant.

 WHEN TOP

 PRINT_LINES "Values for America Report - page
\S \2N" PAGE_NUMBER

 END_WHEN

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-836 MENTOR

RANDOM_VALUE

This returns a 14 digit random number between 0 and 1. It can then be used to
make decisions about random samples or assigning random categories.

 IF RANDOM_VALUE > .5

 PRINT_LINES "This should get about half the
cases\N"

 WRITE_CASE

 ENDIF

The RANDOM_VALUE system variable can also be used to assign a number in a
range of 0 to some high value, then making decisions based on the number
returned. This example writes out a 10% random sample to a new data file.

 ~CLEANER

 TRANSFER Pick[2/35.3] = RANDOM_VALUE * 100

 IF Pick <= 10 THEN

 WRITE_CASE

 ENDIF

TABLE_NAME

The name of the table currently loaded.

9.3.2 Functions

Functions are used to get special values or translate one type of element to another.
They can be divided into several groups. You can use these functions
interchangeably wherever functions can be used. The function types are:

• Arithmetic functions for mathematical computation

• Vector functions for table axis creation

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -837

• Number returning functions returning special numbers

• Logical functions

• Table related functions

• Integer functions

• String functions

The general syntax for all functions is:

Syntax: function name(argument1, argument2, ...,
argumentn)

The function name must be immediately before the opening parenthesis. Items
inside the parentheses can have spaces separating them from the parentheses as
well as each other. A comma is required between arguments, and a closing
parenthesis must follow the arguments. Most functions have only one argument.

Here are the functions within each group. The examples include likely uses for that
function. Note that items within functions may be defined earlier, then referenced
by name. Also, a vector is a complex variable description; you may also use simple
data variables or numbers wherever a vector is mentioned. Allowed abbreviation of
function names are shown in the syntax or example, or indicated in parentheses at
the end of the description.

ARITHMETIC FUNCTIONS

ABSOLUTE_VALUE(vector)

Returns the absolute (positive) values of the numbers in the vector. See “9.2 TABLE
MANIPULATION” for an example of this function.

 TRANSFER [10.2] = ABSOLUTE_VALUE(Age-20000)

AVERAGE(vector1, vector2, vectorn, region)

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-838 MENTOR

Returns the average of all of the numbers present. The average is the sum of the
values divided by the number of values present. AVERAGE can also operate on a
table region (see SUM for an example).

 $[MEAN] AVERAGE([10,...,15])

On a table, this returns the mean of the average of columns 10 to 15.

EXPONENT(vector)

Returns the exponents of the numbers in the vector.

 TRANSFER [20.5,25,30*F3]=EXPONENT(1 WITH 2 WITH 3)

This returns the exponents of 1, 2, and 3 to the specified columns with three
decimal places of significance.

LOGARITHM(vector)

Returns the natural logs (e sub n) of the numbers in the vector.

 TRANSFER [20.5,25,30*F3]=LOGARITHM(1 WITH 2 WITH 3)

This returns the logarithm of 1, 2, and 3 to the specified columns with three
decimal places of significance.

MAKE_NUMBER(function)

Treats the result of another function as a number.

 MODIFY T001(ALL BY ALL) =
MAKE_NUMBER(SQUARE_ROOT(25))

See “9.2 TABLE MANIPULATION” for an example of this function.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -839

SQUARE_ROOT(vector)

Returns the square roots of the numbers in the vector.

 TRANSFER [35.5*F4]= SQUARE_ROOT(Age)

This returns the square root of the variable AGE. See “9.2 TABLE
MANIPULATION” for an example of this function.

STANDARD_DEVIATION(vector1, vector2, vectorn)

Performs a standard deviation on a list of numeric fields

STD([1.2], [3.2], [5.2])

SUM(vector1, vector2, vectorn, region)

Returns the sum of all of the numbers and categories present.

 Tab1: SUM([2/1,...,2/5]) WITH [2/1,...,2/5]

This returns the sum of the five fields followed by each of the fields. SUM can also
operate on a table region.

SAY SUM(tab1(T to last by 1))

X(Numeric variable or Math equation)

Returns a 0 if the numeric variable or equation is blank or is not a valid number.
This is usually used to make sure that a good value gets used even if part of the
equation is missing. By default, if an item is missing in an equation, the equation
returns MISSING.

 TRANSFER [45.2] = X([50.2]) + 5

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-840 MENTOR

This returns the sum of the data in location 50-51 plus 5. If columns 50-51 are not
a valid number, a 0 is used, and 5 is the result. See “9.2 TABLE MANIPULATION”
for an example of this function.

VECTOR FUNCTIONS

BALANCE(vector)

Returns the vector, followed by the No Answer category for the vector. This is the
same as CATEGORY_FUNCTION(-2,vector), only easier to say.

 Row23: BALANCE([10.2#1//20])

This returns 21 categories, the twenty numeric categories plus one category
containing anyone not included in the other categories.

BALANCE must be used with a category variable and not a boolean variable.

Example:

a: BALANCE(([1^1] BY [1^2]))

b: BALANCE(MAKE_CATEGORIES([1^1/2] AND [1^2]))

c: BALANCE(MAKE_CATEGORIES([1^1] AND [1^2]))

d: BALANCE(CATS(1,2))

CATEGORY_FUNCTION(-#, vector)

Returns the vector with different combinations of Total, No Answer, and Net of the
vector added before and/or after the vector.

-32 = T before

-16 = NA before

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -841

 -8 = NET before

 -4 = T after

 -2 = NA after

-1 = NET after

Add together elements to get combinations; i.e., if you want the Total and No
Answer before and Net after the vector, use:

(-32) + (-16) + (-1) = -49

Row19: CATEGORY_FUNCTION(-49,[10^1] WITH [11^1//5])

This returns the Total and No Answer, followed by the six categories of the vector,

followed by the Net of the vector.

NET(vector)

Returns a vector which is the Net of the vector followed by the original vector. This
is the same as CATEGORY_FUNCTION(-8,vector), but easier to say.

NET(Age WITH Income)

This returns the Net of AGE WITH INCOME followed by AGE, followed by
INCOME.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-842 MENTOR

VECTOR FUNCTIONS (continued)

NUMBERS_FROM_TABLE(maximum # of cells to get, table description)

Makes a vector of # numbers and assigns the numbers from a table region there.

A standard table region description is:

TABLENAME(<first col> TO <lastcol> BY <first row> TO <last row>)

 TRANSFER [10.2,12,...,24] = &

 NUMBERS_FROM_TABLE(8,T001(1 TO 4 BY 1 TO 2))

This moves the first 4 columns and 2 rows of table T001 into the data in 2 column
wide fields from 10 through 24. The first cell will be in 10-11, the second column,
first row will be in 12-13, and so on. See“9.2 TABLE MANIPULATION” for an
example of this function.

RANDOM_CATEGORY(category vector)

Randomly picks one of a set of categories that are TRUE.

This is used to pick one of a set of categories that have been previously chosen. A
typical example is picking one of two codes that have been chosen to rate an item;
i.e., the respondent picked 3 and 4 on a 5 point rating scale, and you wish to just
pick one of the codes and use it for analysis.

To pick a random category among categories chosen, and put it back in the same
location:

TRANSFER [12^1//10] = RANDOM_CATEGORY([12^1//10])

RANDOM_CATEGORY can also be used to just pick a number out of a set of
numbers. Do this by using numeric categories.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -843

To get a random integer returned between 1 and 100:

TRANSFER [10.3#1//100] =
RANDOM_CATEGORY(CATS(1,...,100))

See the RANDOM System constant to get a random number between 0 and 1. This
could be multiplied by any number to get a random number in the range from 0 to
that number.

NUMBER RETURNING FUNCTIONS

FIRST_SUBSCRIPT(category vector)

Returns the subscript (or number) of the first category seen in the vector. For
example, if the third and fifth values of the category vector are present,
FIRST_SUBSCRIPT returns a 3.

FIRST_VALUE(vector)

Returns the first numeric value present in the vector. Note that the vector can
include categorical data, in which case a 1 will be returned if the category is the
first thing present.

This would be used if you allowed responses in different locations, but only wanted
to tabulate the first location answered.

Tab1: FIRST_VALUE([10,...,20])

This would return the first number seen in columns 10 through 20.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-844 MENTOR

FSIG(df1,df2,f)

Returns the level of significance for a one-tailed test base on df1, the degrees of
freedom in the numerator, and df2, the degrees of freedom in the denominator, and
f, the f-ratio. See TSIG.

LAST_SUBSCRIPT(categorical vector)

Like FIRST_SUBSCRIPT, except it returns the subscript (or number) of the last
category seen in the vector.

LAST_VALUE(vector)

Like FIRST_VALUE, except it returns the last value present in the vector.

MAXIMUM_VALUE(vector1, vector2, vectorn, region)

Returns the highest number present in the vectors. MAXIMUM_VALUE can also
operate on a table region (see SUM for an example).

MAXIMUM_VALUE_SUBSCRIPT(vector1, vector2, vectorn)

Returns the subscript of the item with the highest value in the vector. If the second
item is the highest, it returns a 2.

This is useful when checking against a set of values, then using the highest value in
later calculations.

IF MAXIMUM_VALUE_SUBSCRIPT([10,...,15]) = 1 THEN

 TRANSFER [20/5] = [1] * AGE

 ELSE

 IF MAXIMUM_VALUE_SUBSCRIPT([10,...,15]) = 2
THEN

 TRANSFER [20/5] = [2] * AGE

 ...

 ENDIF

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -845

 ENDIF

This finds the high value to use for the ~CLEANER TRANSFER calculation.

MINIMUM_VALUE(vector1, vector2, vectorn, region)

Returns the smallest number present in the list. MINIMUM_VALUE can also
operate on a table region (see SUM for an example).

MINIMUM_VALUE_SUBSCRIPT(vector1, vector2, vectorn)

Returns the subscript of the item with the lowest number seen in the vector. If the
third value is 12, and the fifth is 34, it returns a 3.

NUMBER_OF_ITEMS(vector)

Returns the total number of categories present. If there is a data location in the
vector ([col.wid]), this returns the number of binary punches in the columns, in
addition to the other categories in the vector. The NUMBER_OF_ITEMS function
can be used to count ASCII responses as well as punches.

NUMITEMS creates the equivalent of the Total Responses in a category set, which
is often useful as a percentage base in tables. A zero is returned if there are no
responses, never MISSING.

Q12open_end: NUMBER_OF_ITEMS([10.3]) WITH [10.3^1//36]

This produces the sum of the punches in columns 10 to 12, then each of the punches
as a separate category.

Q13open: NUMBER_OF_ITEMS([13.2^1//5/18//24]) WITH
[13.2^1//5/18//24]

This produces the sum of the categories described in columns 13 to 14, then the
separate categories.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-846 MENTOR

To get a table of the number of responses to a set of questions, you could do the
following:

In a procedure ...

TRANSFER [5/78.2] =
NUMBER_OF_ITEMS([2/10.3,2/13,2/16^1//27])

In a table definition ...

Q23Responses: [5/78.2#0//12/13-99] $[MEAN,STD]
[5/78.2]

This would produce a table of the number of responses to question in columns 2/10
to 2/18, along with the mean number and standard deviation of responses.

RANDOM_SEQUENCE(vector variable(,seed))

Used to obtain specific random values, it generates two category vectors: the next
random number and the resulting seed for the next call to the program for a
random number.

Its most common use is maintaining a user-controlled random chain with a
specification such as ~CLEANER MODIFY
var1[1/11.10,1/21.10]=RANDOM_SEQUENCE(var2), where the user can supply
the first seed, or if var2(2)=MISSING, then the program will generate a random
start or the user can supply one with the meta command >RANDOM_SEED=.

SELECT_VALUE(vector, <vector or VALUES(#,...,#)>)

Returns a number which is the number in the second vector or values list
corresponding to the category seen in the first vector. Can have only one active
category, or an ERROR is produced. You must have the same number of categories
or values on both sides of the comma.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -847

SELECT_VALUE is usually used to assign weights for data or statistical
calculations (such as mean, standard deviation, percentile, etc.).

~DEFINE Weight1:

SELECT_VALUE([10^1//5],VALUES(1.2,.85,1.275,0.654,.999)
)

 ~EXECUTE WEIGHT=Weight1

 COLUMN=... ,ROW=... ,TABLE=...

This would assign 1.2 as a weight for those with a 1 in col 10, .85 for those with a 2,
etc.

STRING_LENGTH(<"string", $, $T, or $P string variable>)

Returns the number of characters in the string variable, starting at the first position
and going to the last non-blank character.

This is often used when listing open-end responses:

 IF STRING_LENGTH(a[2/23.20$]) > 5

 SAY "Question had response" A

 ENDIF

This checks to see the length of the response in columns 2/23 to 2/42, then prints
the response if the length is greater than 5.

SUBSCRIPT(vector)

Returns the subscript (position of the category) of the category found. Used to
assign ordered values. If more than one value is found, returns MISSING.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-848 MENTOR

SUBSCRIPT is often used to assign values when you want continuous numeric
categories; for instance, changing a 0 punch to a 10 for purposes of statistical
calculation.

$[MEAN] SUBSCRIPT([2/13^1//0])

If column 2/13 was a 0, this would return a 10. If there was more than one category
present, the value would be MISSING, and would not be used in the MEAN
calculation.

See also FIRST_SUBSCRIPT and LAST_SUBSCRIPT.

TSIG(df,t)

Returns the level of significance for a two-tailed test base on df, the degrees of
freedom and t, the calculated t-value. TSIG(df,t) = FSIG(1,df,t*t). See FSIG.

VARIABLE_EXISTS(string variable)

Evaluates the string variable as a variable name and checks for its existence in any
open data base (DB) files. Returns a number indicating the type of DB entry if the
variable named is found in an open DB file, otherwise it returns MISSING. The
number returned is the same number found for that variable type in the
>LIST_DB_CONTENTS meta command.

The string variable can be a name in quotes (i.e., "thisvar"), or a string in the data
(i.e., [20.5$]).

IF VARIABLE_EXISTS("myvar") TRANSFER Myvar = 10 ENDIF

This would put the number 10 in the variable MYVAR if the variable is in an open
DB file.

WORD_MATCHES(string variable, string variable)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -849

Returns the number of ASCII character matches in the string variable to the string
variable. This is a word search; the string must not be contained within another
string. This is a non-case-sensitive search.

The comparison is word oriented, thus WORD_MATCHES("b", "abc") will return
zero (no matches), but WORD_MATCHES("b", "a b c") will return one, as will
WORD_MATCHES("B", "a_b_c").

The string variable can be a specific string in quotes ("string"), or an ASCII data
string ([2/23.10$]), a punch string ([2/23.10$P]), or a text string (probably from
Survent) ([4/10.1$T]).

This is useful when recoding open-ended responses to codes. You can search for
meaningful keywords to help put the text into categories.

 IF WORD_MATCHES(food[20.20$],"candy") >= 1 THEN

 SAY "CASE " CASE_ID "HAS " food "Maybe code
as '1'?"

 ENDIF

This looks for all occurrences of the word "candy" in data locations 20 through 39,
and, if one or more, lists the response to possibly be recoded as a 1 in the response
list. To find all words starting with a string, see the WORD_STARTS function.

WORD_STARTS(string variable 1, string variable 2)

Returns the number of times the second string starts a word in the first string. This

is a non-case-sensitive search.

The string variable can be a specific string in quotes ("string"), or an ASCII data
string ([2/23.10$]), a punch string ([2/23.10$P]), or a text string (probably from
Survent) ([4/10.1$T]).

WORD_STARTS([20.1$T],"HE")

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-850 MENTOR

This returns the number of times "HE" starts a word in the text variable with a
pointer in column 20. If it contained "hello there Henry", STARTS would return
the value 2.

LOGICAL FUNCTIONS

CASCADE(vector)

Returns TRUE if all categories are true starting at the first category until no more
are true. This is useful when checking a set of items where you are supposed to
mark the top ones in a larger list, without forcing the user to mark all the items.

 IF CASCADE([2/1.2,2/3,...,2/19*F#1//10])

 ELSE

 ERROR "Ranking should be continuous from 1 on"

 ENDIF

If there was just a 1 ranking, this would be OK. If there were no ranking at all, it
would be OK. If there was a 1, 2, 4, and 5 ranking , this would not be OK. If there
were a 1, 2, and 3 ranking, it would be OK.

COMPLETE(vector)

This returns TRUE if all categories in the vector are true. This is useful when
checking a set of items that are supposed to be ranked, say from 1 to 10, with no
skips.

 IF COMPLETE([2/1.2,2/3,...,2/19*F#1//10])

 ELSE

 ERROR "Ranking should be continuous from 1 to
10"

 ENDIF

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -851

If there was just a 1 ranking, this would not be OK. If there were no ranking at all, it
would not be OK. If there was a 1, 2, 4, and 5 ranking, this would not be OK. It is
only OK if it were ranked 1 through 10.

COMPLETE is also useful to make sure that all items in a set are present.

MAKE_BOOLEAN(vector)

Returns TRUE if any category in the vector is true. This is useful to get a net
category from a complex vector.

Mytable: MAKE_BOOLEAN([5^1] WITH [8.2#1//10]) WITH &

 [5^1] WITH [8.2#1//10]

This returns a 12 category vector; the first category is anyone having a 1 punch in
column 5 or a number 1 to 10 in columns 8-9, then each of the separate categories is
laid out.

MAKE_BOOLEAN is particularly useful when you have previously defined an
item, and now just want a net of the answers in the item.

table23: MAKE_BOOLEAN(likeit) with likeit

This would provide the net of LIKEIT followed by LIKEIT.

MAKE_BOOLEAN is also useful when you need to collapse any vector to a single
category for other purposes.

NOTE: IF statements always collapse all categories into one category like
MAKE_BOOLEAN.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-852 MENTOR

TABLE RELATED FUNCTIONS

FLIP(table region)

This flips the columns and rows in a region of a table.

CREATE Tab001=FLIP(t001)

This would create the new table TAB001 which is a flipped version of the original
table T001.

JOIN_COLUMNS(table region 1, table region 2)

This extends a table by columns. It is used to put two tables or table regions
side-by-side on a page; i.e., first wave vs. second wave numbers. The tables must
have the same number of rows to be joined.

CREATE t301 = JOIN_COLUMNS(t001,t201)

This would make a new table T301 which would combine tables T001 and T201
such that the columns of the tables would be side-by-side. Table T001's columns
would be first, followed by table T201's columns.

JOIN_ROWS(table region 1, table region 2)

This extends tables by rows. It is used to put two tables or table regions one above
the other on a page; i.e., to combine two product lists. The tables must have the
same number of columns to be joined.

CREATE t301 = JOIN_ROWS(t001,t201)

This would make a new table T301 which would combine tables T001 and T201
such that the rows of the tables would be combined. Table T001's rows would be
first, followed by table T201's rows.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -853

LOADED(table region)

This returns TRUE or FALSE depending on whether the table region is currently
loaded in core.

NUMBER_OF_COLUMNS(table region)

This counts the number of columns in a region. It is used to calculate the number of
columns to use in future tables.

For instance, if you want to combine two tables you can say:

CREATE t003(=NUMBER_OF_COLUMNS(t001) +
NUMBER_OF_COLUMNS(t002),=5) = 0

You can create tables with twice as many columns, etc.

NUMBER_OF_ROWS(table region)

This counts the number of rows in a region. It is used to calculate the number of
rows to use in future tables. For instance, if you want to combine two tables you can
say:

CREATE t003(=10,=NUMBER_OF_ROWS(t001) +
NUMBER_OF_ROWS(t002)) = 0

You can create tables with twice as many rows, etc.

RANK_TABLE_COLUMNS(HIGH/LOW,LOW_TIES/MEDIAN_TIES,<regi
on>)

Reads a region of a table and returns the rank value of each item in a column.

Options:

HIGH rank high to low.

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-854 MENTOR

LOW rank low to high.

LOW_TIES return the low rank value where rank value is the same (tied) for all
ties.

MEDIAN_TIEreturn the midpoint where rank value is the same (tied) for all ties.

region> defines the region of the table to rank

If columns and rows are included, it ranks down the columns, one column at a
time.

You cannot rank across rows; if you want to do this, set things up in columns, then
flip the table. See section “9.2 TABLE MANIPULATION” for an example table.

Example:

 MODIFY T001=RANK_TABLE_COLUMNS(HIGH, MEDIAN_TIES,
T000)

 MODIFY T007(5 TO 6 BY 6 TO
9)=RANK_TABLE_COLUMNS(HIGH, MEDIAN_TIES,&

 T000(5 TO 6 BY 1 TO 4))

REPLICATE(table region, # of col reps, # of row reps)

This is used to have a smaller number of columns or rows act on a larger number
of columns or rows (must be evenly divisible).

TRANSFER T001(1 TO 10 BY 1) += REPLICATE(t002(1 BY
1),10,1)

This would add the cell from column 1, row 1 of table T002 to the corresponding
cells of table T001 (columns 1 through 10, row 1).

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -855

See the ~CLEANER FILL command; it also does replicates. If you are using only
numbers, then the table automatically fills in a replicated manner.

TRANSFER T001(1 by all) = 5

This would put the number 5 in all rows of column 1 of table T001.

TABLE_FROM_NUMBERS(vector, # columns, # rows)

This takes data from the vector and fills a region of a table.

TRANSFER T001(1 TO 5 BY 1) =
TABLE_FROM_NUMBERS([5.2,7,...,13],5,1)

This takes data from columns 5-6, 7-8, etc. and moves it into columns 1 through 5,
row 1of table T001. See “9.2 TABLE MANIPULATION” for an example of this
function.

INTEGER FUNCTIONS

FILE_COMPARE("file1","file2", n, filter options, # lines until resynch)

Compares two files, and produces an error for every instance where they are not
identical. File1 is the master file and file2 is the compare file. You can stop the
comparison after n number of errors. This function returns the number of errors
found between the two files or one of the following.

1 If one of the files can't be opened (for example, if one of the files does not exist)

2 If the resulting line would be too long. For example, if you are comparing two files
with a PAGE_WIDTH=132 and writing the FILE_COMPARE results to a printfile,
the printfile must be 18 columns wider or PAGE_WIDTH=150. If it's not at least
that wide, FILE_COMPARE will return a -2 and a program WARNING message.

3 If one of the file names is a bad file name

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-856 MENTOR

Options:

n Stop after n errors. 0 means don't print any errors, and return a 1 if
there are any errors. -1 means print all the errors that occur
and return the number of errors. Otherwise, the function
prints up to the number of errors you specify and returns
the number of errors.

Filter Options:Will filter out items as follows:

0 no filter

1 filter out blank lines

2 filter out text marked between /* and */

4 filter out temporary file names (i.e. TE001001)

8 trim trailing blanks off lines before compare

You can combine filters by adding them together:

3 1 and 2

5 1 and 4

9 1 and 8

6 2 and 4

10 2 and 8

7 1, 2, and 4

15 all filters (1, 2, 4 and 8)

Number (#) of lines until files are re-synchronized controls how many lines are
read, when the files are out of synchronization, before attempting another
comparison. The default is 5, used if a number less than 0 is specified. If you set
this to "0" then no attempt is made to re-synchronize. You can set this to any other
positive number to specify the number of lines to be read before a re-
synchronization is attempted. If you only want to confirm that two files are exactly
the same, set this parameter to 0. If you are comparing two print files in which one

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -857

file could have whole pages that the other did not, use a value of at least 66 (the
number of lines on a page).

Line 1 is read from the master file and compared to line 1 in the compare file. If
there is a match then line 2 in both files is read. If the two lines do not match,
FILE_COMPARE reads up to the "# lines until resynch" (default is 5) in the
compare file looking for a match, FILE_COMPARE also reads the next"# lines
until resynch" from the master file.

FILE_COMPARE sees if any of these lines in the compare file match any of these
lines in the master file. If any match then the file that needs to skip forward the
shortest number of lines is resynched to the other file and the lines skipped are
listed. If no match is found in these lines then the unmatched line from the master
file is printed. Another line is then read from the master file and the compare
process begins again, without advancing in the compare file.

 >PRINT_FILE keywords

 ~DEFINE

 DIFF: FILE_COMPARE("sk.old","sk.new",-1,7,5)

 ~CLEANER

 PRINT_LINES "\S" "Checking new msgfile for
keyword changes"

 PRINT_LINES "\S" diff

 ~END

Here is a sample of the print file output. The total number of errors found would be
listed at the end of the file. The master file is listed first, followed by the line
number and text of the line that differs from the compare file. In this example lines
1 and 2 in the master file differ from the same line in the compare file. 24 is the
total errors found comparing these two files.

Checking new msgfile for keyword changes

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-858 MENTOR

File: 1 (1) postrelease Mentor
13Jul93(showkey,sk.new) ... Watcom (C) CfMC 1978 -
1993

File: 1 (2) System versions: 714 ... 0 ... 0 ...
9305

File: 2 (1) postrelease Mentor
21Jul93(showkey,sk.new) ... Watcom (C) CfMC 1978 - 1993

File: 2 (2) System versions: 720 ... 0 ... 0 ...
9305

.

.

.

24

STRING FUNCTIONS

FIND_STRING(string variable1, string variable2)

Reports the number times string variable1 appears in string variable2. This is a
string search, text may be inside other words. The search is not case sensitive.

Example: FIND_STRING("IF","ENDIF")

Will return a 1. You can use variables in your search.

Example: INPUT $

~CLEAN

MODIFY str1 [1.10$]="123456"

PRINT "Number of matches: \s"
FIND_STRING("5",str1)

~END

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -859

This example would return: Number of matches: 1

For a search that match entire strings only, use the WORD_MATCHES function.

STRING_FROM_NUMBER(num, wid, dec)

Converts a numeric argument into a string. Num is the numeric argument, wid is
the string width, and dec is the number of decimals. You can use a negative number
for wid to zero fill the string. This function is useful in combination with the
PUTID command to assign case IDs. Num, wid and dec can be either numbers or
variables. For example, you can use the system constant CASE_NUMBER for the
numeric argument, for example:

Example: PUTID STRING_FROM_NUM(CASE_NUMBER, -4, 0)

The example below assigns sequential case IDs to a data file that has no ID field.

Example:

~DEFINE

PROC={mkid:

IF FIRST_CASE then

CREATE tmp(=1, =1)=0

ENDIF

MODIFY [$r=tmp T by T] += 1

PUTID STRING_FROM_NUM([$r=tmp T by T], 4, 0)

ERROR "Table cell" CASEID

WRITECASE

}

~INPUT data.asc ascii=80:11.4

S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

-860 MENTOR

~OUTPUT string

~EXC PROC=mkid

~END

STRIP(string variable)

Strips leading and/or trailing blanks from a string variable or data location
containing string information.

 ~DEFINE str1[$S=" abc de "]

 MODIFY [10-16$]=STRIP(str1)

This would strip the blanks off the front and back of the variable str1, and return

"abc de" to columns 10 - 16.

SUBSTITUTE(string variable, "original string", "replacement string")

Allows you to substitute one string of characters for another in a string variable or
data location containing string information.

This function is useful when making changes to "forms" being printed.

 info[$s="Beaver Cleaver, 4 Primrose Ln, Upper
Kirkwood MO"]

 SUBSTITUTE(info, ", ", "\n")

This would change each ", " in the string variable INFO to a new line character,
resulting in:

Beaver Cleaver

 4 Primrose Ln

 Upper Kirkwood MO

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS

MENTOR v 8.1 -861

This function is case-sensitive, thus in the fourth example below, "apples" is not a
match with "Apples". No substitution is done. The SUBSTITUTE function can be a
part of a variable definition.

 ~DEFINE

 str_1: [$="Apples"]

 str_2: [$="Oranges"]

 str_orig: [$="Apples for sale!"]

 sub_def: SUBSTITUTE("Apples and lemons say the
bells of &

 St. Clemons.", "Apples", "Oranges")

 ~CLEANER

 SAY SUBSTITUTE(str_orig, str_1, str_2)

 SAY SUBSTITUTE(str_orig, "Apples", "Oranges")

 SAY SUBSTITUTE("Apples for sale!", "Apples",
"Oranges")

 SAY SUBSTITUTE("Apples for sale! Get your apples
here!" &

 , "Apples", "Oranges")

 SAY sub_def

 ~END

UPSHIFT() and DOWNSHIFT ()

Changes the case of a string.

Example:

~clean

m test[1.12$]="ABcdEFghIJkl"

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-862 MENTOR

print "Upshifted= \s" upshift(test)

print "Downshifted= \s" downshift(test)

would print the lines:

Upshifted= ABCDEFGHIJKL

Downshifted= abcdefghijkl

The upshift and downshift functions can also be used in conjunction with $U, $D
and $N variable types. For example, the DOWNSHIFT() function can return a
lowercase version of an $U variable (see Chapter 3 Changing Case).

9.4 PARTITIONING DATA FILES

If multiple table runs are to be performed on a single data file, with each run based
on a subset of the whole, we can partition or index the data utilizing a
user-supplied criteria. For instance, we may want to run multiple sets of tables
using a particular region or store as a base for each run. We could accomplish this
using a SELECT option on the ~INPUT statement or using a FILTER for a given
run. However, Mentor gives us another, faster way to accomplish this goal.

MAKE_READ_CONTROL

This command is used to define the variable that controls the reading of the data
file in future runs. The variable must have unique categories so that no case falls
into more than one category. CAT or NUM type variables may be used. Categories
must be specified in order of sort. Table suffixes will differentiate the sets of tables
and will be based on the controlling categories.

MAKE_READ_CONTROL =MARITAL[359#M/S]

In this example, the table suffixes will be "_M" and "_S".

READ_CONTROL

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -863

Used as an option to the ~INPUT command, this command allows the run to read
only categories previously specified by the MAKE_READ_CONTROL command,
thereby speeding up data processing. Categories must be specified in ascending
order.

Specific syntax for these keywords can be found in Appendix B: TILDE
COMMANDS.

Example Reports

1) An open-ended opinion table run by a combination of responses to a prior scale
question.

This example illustrates a simple use of MAKE_READ_CONTROL and
READ_CONTROL to get two sets of tables, each based on different responses to a
scale question; one run on those very or somewhat satisfied and one run on those
very or somewhat dissatisfied.

>CREATE_DB HARDWARE

~DEFINE

 LINES= {HEADSAT: =SATISFACTION LEVEL: VERY/SOMEWHAT
SATISFIED\N

 }

 LINES= {HEADDISSAT: =SATISFACTION LEVEL: VERY/SOMEWHAT
&

 DISSATISFIED\N

 }

 TABLE_SET={BAN1:

 EDIT=:

 COLUMN_WIDTH=8

 STUB_WIDTH=22

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-864 MENTOR

 PERCENT_DECIMALS=1

 -COLUMN_TNA

 -PERCENT_SIGN

 STATISTICS_DECIMALS=2

 RUNNING_LINES=1

 }

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -865

 BANNER={:

 | AGE

 | ===============================

 | UNDER 45 OR

 | TOTAL 25 25-34 35-44 OLDER

 | ----- ------- ------- ------- ------- }

 COLUMN=: TOTAL WITH &

 [24^1,2//5,6] ''AGE

 }

 TABLE_SET={Q3:

 TITLE=: Q3. HOW SATISFIED ARE YOU WITH HARRY'S
HARDWARE?\N

 }

 STUB=:

 VERY SATISFIED (1)

 SOMEWHAT SATISFIED (2)

 SOMEWHAT DISSATISFIED (3)

 VERY DISSATISFIED (4)

 [STATROW] MEAN

 [STATROW] STD }

 ROW=: [6^1//4] $[MEAN,STD] [6] }

 TABLE_SET={Q3A:

 TITLE=: Q3A. WHY ARE YOU SATISFIED OR DISSATISFIED
WITH &

 HARRY'S HARDWARE?\N }

 LOCAL_EDIT=: RANK_LEVEL=1,MINIMUM_FREQUENCY=1 }

 STUB=:

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-866 MENTOR

 [COMMENT, UNDER_LINE]POSITIVE RESPONSES

 [R=1, STUB_INDENT=2]GOOD QUALITY TOOLS/HARDWARE

 [R=1, STUB_INDENT=2]PAYMENT CHOICES GOOD

 [R=1, STUB_INDENT=2]RESPONSIVE/COOPERATIVE

 [R=1, STUB_INDENT=2]HARRY'S IS GOOD HARDWARE

 [R=1, STUB_INDENT=2]GOOD PROJECT MANAGEMENT ADVICE

 [R=1, STUB_INDENT=2]EDUCATION/INFORMATION

 [R=0, STUB_INDENT=2]OTHER POSITIVE

 [COMMENT, UNDER_LINE]NEGATIVE RESPONSES

 [R=1, STUB_INDENT=2]POOR QUALITY TOOLS/HARDWARE

 [R=1, STUB_INDENT=2]INSUFFICIENT PAYMENT OPTIONS

 [R=1, STUB_INDENT=2]POOR MANAGEMENT/HELP

 [R=1, STUB_INDENT=2]TOO CROWDED

 [R=1, STUB_INDENT=2]HIGH PRICES

 [R=1, STUB_INDENT=2]INSUFFICIENT PROJECT HELP

 [R=1, STUB_INDENT=2]LACK OF LUMBER CHOICES

 [R=0, STUB_INDENT=2]OTHER NEGATIVE

 [R=1L] NO RESPONSE

 }

 ROW=: [07.2,...,15.2*F#1//6/9/10//16/19/20] }

~INPUT DATACLN

~MAKE_READ_CONTROL Q3READCTRL = Q3RC[6^1,2/3,4]

>PRINT_FILE HHSAT

~INPUT DATACLN,READ_CONTROL=Q3READCTRL(1)

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -867

~EXECUTE

 HEADER=HEADSAT

 TABLE_SET=BAN1

 TABLE_SET=Q3,TABLE=*

 TABLE_SET=Q3A,TABLE=*

 RESET

>PRINT_FILE HHDISSAT

~INPUT DATACLN, READ_CONTROL=Q3READCTRL(2)

~EXECUTE

 HEADER=HEADDISSAT

 TABLE_SET=BAN1

 TABLE_SET=Q3,TABLE=*

 TABLE_SET=Q3A,TABLE=*

~END

This run stores the READ_CONTROL item Q3READCTRL in the open DB file
HARDWARE and can therefore be called up in other runs without re-specifying.

A previously defined variable, i.e., SEX could be used in a
~MAKE_READ_CONTROL statement, but only if the responses were 1,2 or F,M
because M,F isn't in sorted order.

The list file created by this run has a summary of the READ_CONTROL item
included. This summary looks like:

 ~MAKE_READ_CONTROL Q3READCTRL = Q3RC[6^1,2/3,4]

 Number of cases read not fitting into any category: 5

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-868 MENTOR

 Number of cases fitting into category 1: 38

 Number of cases fitting into category 2: 25

The print file HHSAT.PRT, the first table of which follows, has only those
respondents who qualified for category 1 of the READ_CONTROL item named
Q3READCTRL. This category is those respondents who had a 1 or a 2 punch in
column 6. The HEADER was created by the user and the table name was created
automatically due to the use of TABLE=*.

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -869

EXAMPLE 1 TABLE:

 SATISFACTION LEVEL: VERY/SOMEWHAT SATISFIED

 TABLE 001

 Q3. HOW SATISFIED ARE YOU WITH HARRY'S HARDWARE?

 AGE

 ===============================

 UNDER 45 OR

 TOTAL 25 25-34 35-44 OLDER

 ----- ------- ------- ------- -------

 TOTAL 38 7 15 10 6

 100.0 100.0 100.0 100.0 100.0

 N/A - - - - -

 VERY SATISFIED (1) 12 5 4 1 2

 31.6 71.4 26.7 10.0 33.3

 SOMEWHAT SATISFIED (2) 26 2 11 9 4

 68.4 28.6 73.3 90.0 66.7

 SOMEWHAT DISSATISFIED

 (3) - - - - -

 VERY DISSATISFIED (4) - - - - -

 MEAN 1.68 1.29 1.73 1.90 1.67

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-870 MENTOR

 STD 0.47 0.49 0.46 0.32 0.52

Related keywords:

TABLE_FIELD

Allows automatic table names to be suffixed with the categories specified by the
READ_CONTROL command. Causes a separate set of tables to be run for each
category of the MAKE_READ_CONTROL variable. If this command is used then
each category in the MAKE_READ_CONTROL variable can have only one
value.

#VARIABLE=<varname>#

A System variable similar to #DATE# or #PAGE# that allows substitution of
variable category labels into text strings.

TABLE_NAME

A System constant which is the name of the last table the program has dealt with.

JOIN

A function used to join two text type variables or a text string with a text variable.

2) Automatic switching between four bases which are the responses to a prior scale
question.

This example uses MAKE_READ_CONTROL and READ_CONTROL to get
four runs through the data, each based on a different response to a scale question.
The tables are numbered and titled automatically using TABLE_FIELD.

>CREATE_DB HARDWARE

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -871

~DEFINE

 TABLE_SET= {BAN1:

 EDIT=: COLUMN_WIDTH=8

 STUB_WIDTH=22

 -COLUMN_TNA

 PERCENT_DECIMALS=1

 -PERCENT_SIGN

 STATISTICS_DECIMALS=2

 RUNNING_LINES=1

 }

 BANNER=:

 |

 | AGE

 | ===============================

 | UNDER 45 OR

 | TOTAL 25 25-34 35-44 OLDER

 | ----- ------- ------- ------- ------- }

 COLUMN=: TOTAL WITH &

 [24^1,2/3/4/5,6] ''AGE

 }

~SPEC_FILES HHSPC ‘‘this is required before the DEFINE
block

~DEFINE

 TABLE_SET= {Q3:

 TITLE=:

 Q3. HOW SATISFIED ARE YOU WITH HARRY'S
HARDWARE?\N }

 STUB=:

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-872 MENTOR

 VERY SATISFIED (1)

 SOMEWHAT SATISFIED (2)

 SOMEWHAT DISSATISFIED (3)

 VERY DISSATISFIED (4)

 [STATROW] MEAN

 [STATROW] STD }

 ROW=: [6^1//4] $[MEAN,STD] [6]

 }

 TABLE_SET= {Q3A:

 TITLE=: Q3A. WHY ARE YOU SATISFIED OR DISSATISFIED
WITH &

 HARRY'S HARDWARE?\N }

 LOCAL_EDIT={: RANK_LEVEL=1, MINIMUM_FREQUENCY=1 }

 STUB=:

[COMMENT, UNDERLINE]POSITIVE RESPONSES

[R=1, STUB_INDENT=2] GOOD QUALITY TOOLS/HARDWARE

[R=1, STUB_INDENT=2] PAYMENT CHOICES GOOD

[R=1, STUB_INDENT=2] RESPONSIVE/COOPERATIVE

[R=1, STUB_INDENT=2] HARRY'S IS GOOD HARDWARE

[R=1, STUB_INDENT=2] GOOD PROJECT MANAGEMENT ADVICE

[R=1, STUB_INDENT=2] EDUCATION/INFORMATION

[R=0, STUB_INDENT=2] OTHER POSITIVE

[COMMENT, UNDER_LINE] NEGATIVE RESPONSES

[R=1, STUB_INDENT=2] POOR QUALITY TOOLS/HARDWARE

[R=1, STUB_INDENT=2] INSUFFICIENT PAYMENT OPTIONS

[R=1, STUB_INDENT=2] POOR MANAGEMENT/HELP

[R=1, STUB_INDENT=2] TOO CROWDED

[R=1, STUB_INDENT=2] HIGH PRICES

[R=1, STUB_INDENT=2] INSUFFICIENT PROJECT HELP

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -873

[R=1, STUB_INDENT=2] LACK OF LUMBER CHOICES

[R=0, STUB_INDENT=2] OTHER NEGATIVE

[R=1L] NO RESPONSE }

 ROW=: [07.2,...,15.2*F#1//6/9/10//16/19/20]

 }

 CTRLNAME[(TABLE_NAME) 6.1 # "VERY SATISFIED":1 /&

 "SOMEWHAT SATISFIED":2/&

 "SOMEWHAT DISSATISFIED":3/&

 "VERY DISSATISFIED":4]

 LINES= {HEADSAT: =SATISFACTION LEVEL:
#VARIABLE=CTRLNAME#\N }

~INPUT DATACLN

~MAKE_READ_CONTROL Q3READCTRL = Q3RC[6^1/2/3/4]

>PRINT_FILE HHALL

~INPUT DATACLN,DOTs=1,READ_CONTROL=Q3READCTRL(1,2,3,4)

~SET TABLE_FIELD="_" JOIN [Q3RC $]

 AUTOMATIC_TABLES

~EXECUTE

 HEADER=HEADSAT

 TABLE_SET=BAN1

 TABLE_SET=Q3

 TABLE_SET=Q3A

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-874 MENTOR

 RESET,PRINT_RUN

~END

NOTE: There must be one label for each category specified for the tables to be
labeled properly. Punches don't have to be in the same order, but they
must match.

The list file created by this run has a summary of the READ_CONTROL item
included. This summary looks like:

 ~MAKE_READ_CONTROL Q3READCTRL = Q3RC[6^1/2/3/4]

 Number of cases read not fitting into any category: 5

 Number of cases fitting into category 1: 12

 Number of cases fitting into category 2: 26

 Number of cases fitting into category 3: 18

 Number of cases fitting into category 4: 7

The print file HHALL.PRT, the first table of which follows, has only those
respondents who qualified for category 1 of the READ_CONTROL item named
Q3READCTRL. This category is those respondents who had a 1 punch in column
6. The HEADER was created by using the CTRLNAME variable which is the
sixth column of the table name with associated text. The table names, which
because of AUTOMATIC_TABLES being set would normally be T001, in this run
have been JOINed to an "_" and the four separate categories of the variable Q3RC
made into a text string.

The pertinent lines in the spec file above are:

 CTRLNAME[(TABLE_NAME) 6.1 # "VERY SATISFIED":1/&

 "SOMEWHAT SATISFIED":2/&

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -875

 "SOMEWHAT
DISSATISFIED":3/&

 "VERY DISSATISFIED":4]

 LINES= {HEADSAT: =SATISFACTION LEVEL:
#VARIABLE=CTRLNAME#\N

 }

 ~MAKE_READ_CONTROL Q3READCTRL = Q3RC[6^1/2/3/4]

~INPUT,DATACLN,DOTS=1,READ_CONTROL=Q3READCTRL(1,2,3,4)

 ~SET TABLE_FIELD="_",JOIN [Q3RC $]

 AUTOMATIC_TABLES

Four different sets of tables were made (one for each category of the
MAKE_READ_CONTROL variable Q3READCTRL and each with an
automatically created HEADER), with a table names that look like T001_1,
T002_1, etc. for category 1 and T001_2, T002_2, etc. for category 2 and so on, the
tables are printed in the order of all category 1 tables in numerical order, then all
category 2 tables in numerical order, etc.

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-876 MENTOR

EXAMPLE 2 TABLE:

 SATISFACTION LEVEL: VERY SATISFIED

 TABLE 001_1

 Q3. HOW SATISFIED ARE YOU WITH HARRY'S HARDWARE?

 AGE

 ===============================

 UNDER 45 OR

 TOTAL 25 25-34 35-44 OLDER

 ----- ------- ------- ------- -------

 Total 12 5 4 1 2

 100.0 100.0 100.0 100.0 100.0

 N/A - - - - -

 VERY SATISFIED (1) 12 5 4 1 2

 100.0 100.0 100.0 100.0 100.0

 SOMEWHAT SATISFIED (2) - - - - -

 SOMEWHAT DISSATISFIED

 (3) - - - - -

 VERY DISSATISFIED (4) - - - - -

 MEAN 1.00 1.00 1.00 1.00 1.00

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -877

 STD 0.00 0.00 0.00 ? 0.00

PRELIMINARIES

There are N cases indexed by j = 1, 2, . . . , N. Each case has a weight Wj and
observations in none, some, or all of I groups; indexed by k = 1, 2, . . . , I and/or by
m = 1, 2, . . . , I:

X1j, . . . , XIj
For any case, the weight Wj and/or any of the variables Xkj may be missing, either
by design or by the happenstance of collection. In all formulas below, missing
values are assumed to be excluded from the summations (the additional and
cumbersome notation to show this is also omitted) and the index of summation is
similarly omitted when the range is obvious. For summations involving the
variable Xkj, we use the notation Wkj to indicate the weight Wj if Xkj is present.
For two variables Xkj and Xmj, we use Wkjm to mean Wj if both Xkj and Xmj are
present. Finally, we say Xkjm to mean Xkj, if Xmj is present.

BASIC SUMS AND STATISTICS

After all data reading is completed, the following summations and counts are
available:

UNIVARIATE:

Counts: Fk = · Wkj k = 1, . . . , I

Sums: Sk = · WkjXkj
Sums of Squares:Zk = · WkjXkj

2

Squares of Weights:Yk = · Wkj
2

BIVARIATE:

Counts: Fkm = Wkjm Σ k m≠

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-878 MENTOR

Sums: Skm = WkjmXkjm
Sums of Squares: Zkm = WkjmXkjm

2

Squares of Weights: Ykm = Wkjm
2

Cross Products: Tkm = WkjmXkjmXmjk

CAUTION: Only Fkm = Fmk is generally true. Otherwise, you have to be careful
with the order of subscripts.

The following statistics are all available.

NOTE: If processing is unweighted (i.e., Wj = 1 for j = 1, . . . , I) then all the
formulas reduce to their usual unweighted versions.

Mean: Mk = Sk/Fk
Adjusted sum of squares: Ak = (Zk - Sk

2/Fk)/(j W
2/ jW) = (Zk -

Sk
2/Fk)/(Yk/Fk)

Effective sample size*: Ek = Fk
2/Yk

Variance: Vk = Ak/(Ek - 1)

Standard deviation:
Standard error: SEk = SDk/

Correlation:

 Rkm =

Bivariate effective

Sample size*: Ekm = Fkm
2/Ykm =

SETS OF VARIABLES: NEWMAN-KEULS PRELIMINARIES

Suppose β is a subset of the indices {1, 2, . . . , I}. We will need:

Σ
Σ
Σ
Σ

Σ Σ

SDK VK=

EK

Tkm Skm– Smk Fkm⁄⋅

Zkm() S 2km() Fkm⁄) Zmk S 2mk() Fkm⁄–()–

VK EK⁄

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -879

Vβ, the pooled variance and

DFβ, the associated degrees of freedom.

Let Eβ = β Ek then,

Case One: The Xs are 0 - 1 variables (means are proportions).

 Let Pβ = βSk/ β Fk

Vβ = Pβ (1-Pβ)

 1-1/Eβ
 DFβ = Eβ - 1

Case Two: The Xs are continuous (or categorical).

 Let Gβ = the number of indices in β

 Vβ =

 DFβ = Eβ - Gβ

*For a discussion of this concept, see:

• “Equivalent Sample Size” and “Equivalent Degrees of Freedom,” Refinements
for Inference Using Survey Weights Under Superpopulation Models by Richard
F. Potthoff, Max A. Woodbury, and Kenneth G. Manton.

Σ

Σ Σ

Vβ
ΣβAK Yk Fk⁄•

Σβ Ek 1–()Yk Fk⁄
--=

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-880 MENTOR

• American Statistical Association Journal or the American Statistical
Association, June 1992, Vol.87, No.418, Theory and Methods, pages 383 – 396.

Then we define the Student differences Qkm k, m ε β and the associated degrees of
freedom as:

 Qkm = (Mk - Mm)

 DFkm = Ek + Em - 2 Ekm = 0

 = Ek + Em - Ekm - 1 Ekm > 0

Motivation

To motivate the use of these formulas, consider the following collection of Normal
random variables:

X1j j = 1, . . . , N1 ~ N (a1, σ1
2)

X2j j = 1, . . . , Nc ~ N (a2, σ2
2)

X3j j = 1, . . . , Nc ~ N (a3, σ3
2)

X4j j = 1, . . . , N4 ~ N (a4, σ4
2)

with all variables independent except:

 cov (X2,X3) = νσ2σ3
and define:

M1 =

Vβ
2

------- 1
Ek
------ 1

Em
------- 2

1

Rkm Ekm⋅

Ek Em⋅·()
-------------------------⋅

⎝ ⎠
⎜ ⎟
⎛ ⎞

–+
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅

ΣX1 ΣX2+
N1 NC+

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -881

M4 =

Then M1, M4 and M1 - M4 are all Normal:

M1 ~ N (b1 = , S1 =)

M2 ~ N (b4 = , S4 =)

 M1 - M4 ~ N (b1 - b4, S1 + S4 -)

In the following common cases, we can simplify the formulas and see more
familiar forms.

1 No overlap, independent groups: Nc = 0

M1 - M4 ~ N (a1 - a4,)

2 Complete overlap, correlated observations: N1 = N4 = 0

M1 - M4 ~ N (a2 - a3,)

3 M4 is a subset of M1: N1 = 0, ν = 1, a3 = a4, σ3 = σ4

M1 - M4 ~ • N (a2 - a4 ,)

ΣX3 ΣX4+
NC N4+

N1a1 Nca2+
N1 Nc+

N1σ 21 Ncσ 22+

N1 Nc+()2

Nca3 N4a4+
Nc N4+

Ncσ 23 N4σ 24+

Nc N4+()2

2Ncvσ σ42
N1 Nc+() Nc N4+()+

--

σ12

N1
--------- σ42

N4
---------+

vσ σ42
Nc

N4
N4 Nc+
------------------- σ22

Nc
--------- σ42

N4
---------+

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-882 MENTOR

(Note that tests of M1 - M4 are equivalent to tests of X2 - X4.)

9.4.1 The Newman-Keuls Procedure

Given a set of indices β, do the following with all the indices k, m ε β.

Step 1: Initial ordering. Put the indices in order as follows:

If all variables are computationally independent, i.e., Ekm = 0 for all k, m ε β, k
(not equal to) m, then sort the indices in order by the means Mk

Otherwise, sort the indices in order by the sums, i.e., Sumk = Qkm
1ε β

In either case, sort ties in any order. Set the lowest index to test to the first one, the
highest index to test to the last one. Finally, calculate Vβ.

Step 2: This step is applied to any contiguous subset of the sorted indices. We start
with the first index in the subset (Lo) and the last (Hi). First, check ties:

2.1 If there are ties in the sort basis at the Lo end, then reorder, putting the group
with the largest value of E lowest; similarly if there are ties at the high end, put the
largest group highest.

2.2 If the Xs are 0 - 1 (proportions), recalculate Vβ only on the indices between Lo
and Hi and recalculate Q Lo, Hi.

2.3 Count the number of groups Ng between Lo and Hi, and test

QLo, Hi using a Newman-Keuls table with (DFβ, Ng) degrees of freedom.

Σ

m k≠

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -883

2.4 If the difference is not significant, go to Step 4; otherwise, mark the difference
(Lo, Hi) as significant, along with all other groups that are tied on both the sort
basis and sample size.

Step 3: Raise the Lo value to above the ties and go back to Step 2 if .

Step 4: Lower the Hi value to below the ties and go back to Step 2.

9.4.2 Statist ical Testing In Mentor

All tests generated by the DO_STATISTICS= command are tested as follows:

1 Tests Between Columns: Use the Newman-Keuls procedure except when:

1.1 Ek/Em > 2 for some k, m ε β or

1.2 The user specified separate tests.

In case 1.1, calculate Vβ and Qkm k, m ε β and test each Q separately using DFkm,
Gβ as degrees of freedom.

In case 1.2, calculate Vβ, Qkm for S = {k,m} (i.e., for every pair) and test each
Qkm separately using DFkm, 2 as degrees of freedom.

(We use the Student Newman-Keuls range table. In this case, a version of the
conventional T-table.)

2 Tests Between Rows: These are the same as a T-test with independent groups, i.e.,
the same as 1.1 with two indices and Tkm=0. For preference tests, unknowns are
split evenly between the two groups for reporting, but excluded from the statistical
testing.

Lo Hi≠

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-884 MENTOR

3 Difference Tests:

Write D = e1x1 + e2x2 . . . + emxm with

 ek = 1 or - 1 for k = 1, . . . , I.

For example, D = (x1 - x2) - (x3 - x4) = x1 - x2 - x3 + x4

then let D1 = ekmk

Continuous: V = V{1,2, . . . , I} •

Proportion: V = V{1,2, . . . , I}

and test D1/ with degrees of freedom (DFβ,2)

9.4.3 TABLE-BUILDING PHASE

The tests in this section are calculated entirely in the table-building phase. They
may be subsequently printed or not. But no further computation is done in the
printing phase.

NOTATIONS AND MISCELLANEOUS FACTS

Suppose (X1, Y1), . . . , (Xn, Yn) are independent ~ N (µ, Φ)

with E[(Xi)] = µx E[(Xi - µx)2] = σx
2 i = 1, . . . ,

N

Σ
j⎝ ⎠

⎛ ⎞ Σ
m⎝ ⎠

⎛ ⎞ Ekmekem
EkEm

Σ

v 2⁄

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -885

 E[Yi] = µy E[(Yi - µy)2] = σy
2

 E = ν

Let W1, W2, . . . , Wn be real numbers with Wi > 0 i = 1, . . . , N

Define F = · Wi

 Sx = · WiXi Sy = · WiYi

 Vx = · WiXi
2 - Vy = WiYi

2 -

 C = WiXiYi -

then Sx ~ N (Fµx Wi
2σx

2) Sy ~ N (Fµy, Wi
2σy

2)

so E[Sx] = Fµx E[Sy] = Fµy

 E[Vx] = σx
2 (F -) E[Vy] = σy

2 (F -)

 E[C] = ν • σxσy

Xi µx–()
σx

µy()
σy

----------•

S 2x
F

--------- Σ
S 2y
F

Σ
SxSy

F

Σ Σ

ΣW 2i
F

ΣW 2i

F

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-886 MENTOR

ESTIMATE FOR MEANS, STANDARD DEVIATIONS, STANDARD
ERRORS AND CORRELATIONS

General Strategy: If E[f(x1, . . . , xn, y1, . . . , yn)] = g

then estimate g with f, i.e., = f (x1, . . . , xn, y1, . . . , yn)

so that is, at least, unbiased. This easily gives

 =

 =

(Note: x
2 is unbiased, but is not.)

ĝ

ĝ

µ̂x
Sx
F
-----= stdx

ˆ σ 2x
ˆ

=
vx

F
Σ Wi()2

F
-------------------–

µ̂y
Sy
F
-----= stdy

ˆ σ 2y
ˆ

=
vy

F
Σ Wi()2

F
-------------------–

σ stdx
ˆ

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -887

For Standard Error, if s x =

 then so,

(Note: As with , is not unbiased, but its square is.)

MORE ESTIMATES

This formula

is not unbiased, though built in an obvious way from unbiased estimators.

This formula

has a t-distribution when W1= W2=, . . . , Wn, but is otherwise different by an
unknown amount.

ê E µ̂x E µ̂x[]–()
2

[]

sêx
ΣW 2i

F2
--------------σ 2x=

sêx
σ̂ 2x

F2

ΣW 21

⎝ ⎠
⎜ ⎟
⎛ ⎞
---------------------= sêy

σ̂ 2x

F2

ΣW 2i

⎝ ⎠
⎜ ⎟
⎛ ⎞
-------------------=

std̂ sê

v̂ C

stdx
ˆ stdy

ˆ
-------------------------=

t̂
µ̂x µ̂y–

sêx2 2v̂sexsey sêx2+–
--=

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-888 MENTOR

FORMULAS FOR STATISTICS CREATED DURING TABLE
BUILDING (ROW=)

Suppose Xi, Wi, i = 1, . . . , N are the values and weights for a set of N cases. (If
the table is not weighted, it is the same as if Wi = 1 for all cases.)

The FREQUENCY F = Wi

The SUM S = WiXi

The MEAN = S/F

The STANDARD DEVIATION

The STANDARD ERROR se =

NOTE: If all the weights Wi are the same value, whatever it might be so long as
its bigger than zero, then you get exactly the same values for , sd, se
weighted or not weighted. This is also true for T and DEPT on the
following page.

Σ

Σ

X

N F2

ΣW2
------------= N 2 F2 ΣW2–

ΣW2
------------------------=–

sd
Σx2w S2

F
-----–

F Σw2

F
----------–

--------------------------=

se std

F2

Σw2

---------------=

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -889

The T-TEST: Suppose you have two groups, each with its own Mean and Standard
Error.

 T =

THE DEPENDENT T-TEST: Suppose you have two values - X, Y for each person.
Each has a Mean and Standard Error (using the same weights).

You also need CXY =

DEPT =

Group 1 Group 2

Mean 1 2
Standard Error (SE) se1 se2

Group X Group Y

Mean
Standard Error (SE) sex sey

X X

X1 X2–

se1()2 se2()2+

X Y

ΣXYw ΣXwΣYw
Σw

--------------------------–

Σw Σw2

Σw
----------–⎝ ⎠

⎛ ⎞ Σw()2

Σw2

⎝ ⎠
⎜ ⎟
⎛ ⎞

--

X Y–

sex()2 2CXY sey()2+–

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-890 MENTOR

FORMULAS FOR STATISTICS CREATED DURING THE PRINT
PHASE (EDIT=)

ANOVA

The tests in this section are calculated in the print phase based entirely upon the
numbers that were created in the table-building phase. For each ANOVA to be
done, think about the table cut down to just the columns and rows to be used:

For each column i: Z1i =

 Z2i =

OVERALL:

 NT =

 SST =

 SSB =

ROWS Column 1 Column 2, ... Column C WEIGHTS

1 ...

?

...

R ... WR

N11 NC1 W1

Nij

N1R NCR

Σ
j⎝ ⎠

⎛ ⎞ Nij Wj•

Σ
j⎝ ⎠

⎛ ⎞ Nij

Σ
ij⎝ ⎠

⎛ ⎞ Nij

Σ
ij⎝ ⎠

⎛ ⎞ NijWj
2

ΣNijWj
ij⎝ ⎠

⎛ ⎞
2

NΓ
---------------------------–

Σ
ij⎝ ⎠

⎛ ⎞ NijWj
2 i

Zij
2

Z2i
---------–

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -891

 DFN = C - 1

 DFD = NT - DFN

 SSW = SST - SSB

 F = (SSB/DFN)/(SSW/DFN)

 MSN = SSB/DFN

 MSD = SSW/DFN

T AND Z TESTS

These tests assume columns. In the special case that one group is the total
column, then the test is column versus total-column.

T - Test

T =

Z - Test

Z =

Like T, but does not adjust N to N-1

X1 Y2–

SE1()2 SE2()2+

X1 Y2–

1
N2

ΣX1
2 ΣX1()2

N1
------------------–

N1
------------------------------------- 1

N2

ΣX2
2 ΣX2()2

N2
------------------–

N2
-------------------------------------•

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+•

--

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-892 MENTOR

WALKER T-TEST

Calculate F= with

If F is significant at .05 use D = (SE1)2 + (SE2)2

Otherwise, use D=((Σ X1
2 - + Σ X2

2 - /(N1 + N2)

Then T =

RANK SUM/WILCOXEN TEST

1 Rank the cells in the cumulative sample. Call the ranks R1, R2, . . . , etc.

2 Call the sample size of the smaller group N1. For this group, let:

 T = Σ N1 R1

3 Call the size of the bigger group N2. N = N1 + N2

4 Normalize T with

VAR (T) =

STD1
STD2
--------------⎝ ⎠

⎛ ⎞
2

DF N1 1 N2 2–,–=

ΣX2()2

N2
------------------ 1

N1
------ 1

N2
------+⎝ ⎠

⎛ ⎞

X1 Y2–

D

E T()
N1 N1 N2 1+ +()

2
---=

N1N2 N1 N2 1+ +()
12

. .
 .

. .S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

MENTOR v 8.1 -893

5 Correction for ties: Call the ties T1, T2 , . . . , etc.

VAR (T) =

MORE REFERENCES:

THE KRUSKAl WALLIS TEST

For a discussion of this statistical test, refer to:

• Syndey Siegel and N. John Castellan, Jr., “NONPARAMETRIC STATISTICS
FOR THE BEHAVIORAL SCIENCES,” Chapter 8, pages 207-215.

The Anova Scan and Fisher Tests

• Sir Maurice Kendall, Sc.D., F.B.A. and Alan Stuart, D.Sc. (econ.), “THE
ADVANCED THEORY OF STATISTICS,” Volume 3, Design and Analysis and
Time-Series, Third Editon, pages 43-46.

Chi-square Tests

For a discussion of Chi-Square tests, refer to either:

• Wilfred J. Dixon and Frank J. Massey, Jr., “INTRODUCTION TO STATISTICAL
ANALYSIS,” Third Edition, Chapter 13, Enumeration Statistics, pages 237-243

• John T. Roscoe, “FUNDAMENTAL RESEARCH STATISTICS FOR THE
BEHAVIORAL SCIENCES,” Chapter 29, Chi-Square Tests of Independence,
pages 196-203.

N1N2
N N 1–()

N3 N–()
12

---------------------- Σ
T1

3 T1–()
12

-----------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

S P E C I A L I Z E D F U N C T I O N S
9.4 PARTITIONING DATA FILES

-894 MENTOR

I-1

.

.

. .
INDEX

 AND
See joiners

Symbols
~SET TABLE_NAME=
command 370
~SET TABLE_NAME=name 368

A
access DB file 374
Add Ranking To A Table 246
adding a base to a table 247
adding data to data file 123
adding statistics rows to tables 377
adding summary statistics to a
table 249
adding/removing punches 123
adding/removing responses 140
additional data cleaning
commands 109
advanced functions

generating specialized
reports 767

how to partition data files 767
table manipulation 767

advanced tables 381
All Possible Pairs

example 664
See significance testing

AllOW_INDENT meta 196
ampersand (&)

&filename 254
for DB items 196

ANOVA test
table-building 890

ANOVA_SCAN
example 670

arithmetic calculations 142
ASCII data (#) 204
assigning variable names 178

asterisk (*)
in cleaning 41
Survent variable modifiers 85
when reformatting data 142
with STORE 190

at sign (@)
with DEFINE meta 195

auto-fixing data 71
AXIS commands 326

B
back to defaults

on AXIS commands 649
on EDIT commands 184

banner
banner points 205
defining 215
defining a procedure for

complex banner 266
definition 169
editing 227
formatting 223
formatting text 218
make_banner 237
weighting banner points 481

banner_title 227
banners

printing multiple banners 363
basic steps of report process 19
blanking data 114

C
CALL_TABLE 369
CfMC

getting Tech Support 24
Changing Table Element Defaults
(The DEFINE EDIT Statement) 181
Changing Table Processing Defaults
(The SET Statement) 185
Cleaning 43

cleaning data 28
cleaning data for error listing 91
cleaning data in batch mode 94
cleaning examples 41
cleaning process overview 27
cleaning punch data 43
cleaning specifications 32
cleaning with Survent variables 77
Codes

Print Specific Characters 775
column medians 433

on range type variables 436
commands

SET DROP 186
commands for statistical testing 764
correcting error messages 66
correcting errors 91
create banner

using make_banner 237
create On-Demand tables 609
CREATE_DB command 196
creating variables 143
cross-case operations 326
custom cleaning specifications 82
customizing specs 565

D
data

auto-fixing 71
data cleaning

reasons why 29
data definitions 197
Data Location Variables 778
data manipulation commands 111
data manipulation for pre-defined
variables 133
data manipulation for punch, string,
and numeric variables 118
Data Manipulation in the
~CLEANER Block 158

I N D E X

I-2 Mentor Technical Manual

Data Types 203
database capabilities 16
Database commands

CREATE_DB 196
database commands

USE_DB 196
DB commands 196
DB file 196

accessing 374
decimal points in data 153
Default Varname Generation 180
DEFINE command 195
Defining a Procedure for Complex
Banners 266
defining data 197
defining individual tables 245
defining table elements 174
defining the banner 215
definition of Mentor 13
drop_banner_title 227
Dynamic table options 567

E
Edit

banner 227
EDIT command 184
edit option

banner_title,
drop_banner_title 227

error messages
correcting 66
generating a list 87
program-generated 40
sending to a print file 107

erros
correcting 91

E-Tabs 305
expressions

basic 310
See also joiners 310

F
feature summary of Mentor 14
Formatting a banner 223
formatting banner text 218

formatting data elements 151
Formulas

for table building 888
formulas

Newman-Keuls 882
function types 836
functions

arithmetic 837
integer 855
logical 850
number returning 843
string 858
table related 852

G
generating specialized reports 767
getting started with Mentor, overview
of using Mentor 13

H
Holecount Table with a Varying
Percentage Base 501

I
installation requirements for On-
Demand 589
integration of Survent/Mentor 17

J
joiner

definition 207
joiners

BY 315
INTERSECT 317
JOIN 319
logical 312
NET 317
OTHERWISE 318
vector 315
WHEN 316
WITH 315

L
logical joiners 310

M
make_banner format 237
Making Several Tables 193
mathematical joiners

logical 312
See also joiners 311

medians
formula for column

medians 437
lost 439

Mentor
benefits 13
definition 13
features 14

Mentor EQUIVALENTS TO
SPL 165
Mentor features

database capabilities 16
Mentor output files

post processing steps 612
Mentor specs

customize to produce HTML
tables 565

meta commands 195
minus sign (-)

in cleaning 41

N
Newman-Keuls (N-K)

See significance testing 655
Newman-Keuls Procedure 882

O
On-Demand

installation 589
On-Demand tables 589

creating 609
sample output 612

operators
See also joiners 325

P
partitioning data files 862
percentiles 443
post processing

. .
 .

. .

I N D E X

I-3

prepare Mentor output files 612
preference testing

distributed 732
print

weighted/unweighted total
row 476

print specific characters
codes 775

PRINT_FILE meta 195
PRINT_LINES command 772
printing

a report footer 789
subtotal rows 549

Printing Individual Tables 189
printing text and data fields 114
Punch Data 203
punch data

cleaning 43
punch data punctuation 212
punches

adding 123
removing 123

Punctuation
for punch data 212
used in defining ASCII and

numeric data 214
used In referencing data field

locations 210
PURGE_SAME meta. See also
Utilities manual, Appendix A

Q
questionnaire

understanding framework 30

R
range of numbers

creating stats for 407
mean summary tables 454

RANK SUM/WILCOXEN
TEST 892
ranking

nets and subnets 529
tables 246
top box/bottom box 381

Recoding 10-Point Scales 156
Recoding To Exclude Selected
Responses 157
Recoding To Reverse A Scale
Question 157
References

table-building
tests/formulas 893

relational operators 146
Report footer 789
rules for manipulating data 112

S
sample basic table 264
sample error messages 37
sample specification files 251
Sample Specifications And
Table 220
See also minus sign
SET DROP 186
significance testing

ANOVA tests 735
ANOVA-Scan (A/S) 660
bi-level testing 640
changing confidence level 637
changing statistical base 644
chi-square 735
Fisher 660
inclusive T test 643
Kruskal-Wallis 660
Newman-Keuls (N-K) 655
on rows (preference testing) 726
reducing error results 654
repeated measures option 662
sets of formulas 654
setting confidence level 631
using nonstandard confidence

levels 642
single response string data 49
specific characters

codes to print 775
specifications

custom cleaning 82
spreading multi-punched data 154
Statistical Testing 883
statistical testing

commands summary 764
error messages 761
excluding any row 709
print phase 695
verifying 759

Statistics
for table building 888

statistics
changing default print

options 430
statistics, significance testing 627
Storing Tabsets in the DB file 190
Storing the Weight in the Data 479
string functions 858
STUB TABLE_SET 221
SUFFIX= and PREFIX= EDIT 369
summary of chapters 22
Summary of Rules for Defining
Data 208
Support contact infomation 24
Survent

cleaning with Survent
variables 77

system constants 823
System Information Constants

datetimediff 833
juliandate 834
linenumber 835
mathvalues 835
offsetdate 833
randomvalue 836
tablename 836

T
T and Z tests 891
table

add ranking, keep_rank 246
parts of, definition 169

Table Building
INPUT and EXECUTE

statements 188
table building basics 172
table names 366
table-related functions 852
tables

adding statistics rows 377

I N D E X

I-4 Mentor Technical Manual

advanced 381
bottom box 381
break table with multi-level

banner 504
categories within data

variable 205
customizing for internet use 565
defining new edit statement 374
excluding respondents 319
expressions and joiners 309
holecount 501
Holecount table with rating

scales 498
intermediate 309
long brand lists 526
Master-Trailer processing 554
multiple location 507
On-Demand 589
overlayed banner and row 523
overlayed row and base 517
printing different names 372
printing name with

prefix/suffix 369
punctuation to create

categories 205
replacing ’TABLE’ text before

table name 369
reprinting 372, 375
simple multiple location 509
specify starting name 368
specify unique names 370
suppressing blank rows 538
top box 381
weighted 470

Tech Support contacts 24
three levels of EDIT 184
transforming numbers into
strings 156

U
USE_DB command 196
using cleaning screens 70
using E-Tabs 305
Using Survent to generate Mentor

files 268
using Survent-type cleaning
screens 91
using the DB file 251

V
variable modifiers 85
variable references 777
variables

constants 825
data location 778
predefined 777

vector joiners 310

W
WALKER T-Test 892
WebTables 565

Z
zero-filled numeric data 49

	Contents
	1 Getting Started 13
	2 Preparing Your Data 27
	3 Reformatting Your Data 111
	4 Basic Tables 169
	5 Intermediate Tables 309
	6 Advanced Tables 381
	7 Tables Viewable Through a Browser 565
	8 Statistics (Significance Testing) 627
	9 Specialized Functions 767
	Getting Started
	1
	Introduction
	1.1 WHAT IS MENTOR?
	1.2 BENEFITS OF USING MENTOR
	Complex Feature Set
	Powerful Command Language
	Advanced Database capabilities
	Integration of Survent And Mentor
	Ease of Use

	1.3 THE BASIC STEPS OF THE REPORT/TABBING PROCESS
	1 Setting up the data file
	2 Defining the data descriptions
	3 Cleaning the data
	4 Generating new data from existing data
	5 Building and printing the report-ready tables
	6 Setting up the Data File
	7 Defining Data Descriptions
	8 Cleaning the Data
	9 Generating New Data
	10 Building and Printing Tables

	1.5 SUMMARY OF THE CHAPTERS
	1.6 GETTING TECHNICAL SUPPORT

	Preparing Your Data

	2
	Introduction
	2.1 OVERVIEW OF THE CLEANING PROCESS
	Cleaning Steps

	2.2 CLEANING DATA
	1 Make a backup copy of data file. Always have a copy of the data in its original form before you start cleaning.
	2 Translate your raw data file into a file that Mentor can read. Mentor data files are referred to as System files, and have an ...
	3 Generate reports that provide an overview of the data (these reports are commonly called "marginals"). Use the HOLE utility to...
	4 Write and test a procedure(usually referred to as "cleaning specs") that will check the data. To test the procedure, you can t...
	5 Clean the data, based on the errors generated by the cleaning specifications. When data looks incorrect, you can choose to delete it, change it by referring back to the original survey, or change it based on guidelines that you have established.
	6 Repeat steps three through five until you consider the data clean. (You can also use a final holecount to check the tables you generate from your data file.)

	2.2.1 Other Types of Data Files
	2.2.2 Why Clean the Data?
	2.2.3 Understanding The Questionnaire
	1 Who should answer each question?
	2 How should each question be answered?

	2.3 CLEANING SPECIFICATIONS
	Generating A List Of Error Messages
	Sample Error Listing
	Program-Generated Error Messages

	2.3.1 Cleaning Examples
	Cleaning Punch Data

	2.3.2 Correcting Errors
	Manually Cleaning The DATA
	1 Create the file clnit.spx with the following lines:
	2 Execute Mentor, using an ampersand to tell Mentor to expect input from the keyboard once the spec file has been read, and "echo" to send all program messages to the screen:

	Auto-fixing The Data

	2.3.3 Subsequent Cleaning Runs
	2.4 CLEANING WITH SURVENT VARIABLES
	A Sample Survent Questionnaire
	Cleaning Specifications Generated By A Compile
	Alternate CLN File
	Custom Cleaning Specifications
	Condition And Branching Statements
	Variable Modifiers
	Generating A List Of Error Messages
	Program-Generated Error Messages for Survent questions

	2.4.1 Correcting Errors
	Using Survent-type Cleaning Screens
	Modifying TEX Question Responses
	1 Open the QFF file (~QFF_FILE name) before opening the data file. Mentor will determine the text location from the compiled questionnaire file.
	2 Use the TEXT_LOCATION= option on either the ~INPUT or the ~CLEANER FILE statement.

	Auto-fixing The Data

	2.4.2 Subsequent Cleaning Runs
	2.5 REFERENCE
	2.5.1 Quick Reference: Cleaning Commands And Examples
	Example CHECK Statements
	1 98 is in the first position. The specification to clean would look like this:
	2 98 is in the list, but is not the last code in the field.
	3 The code list terminates with a code other than 98 or 99. This is only an error if 98 is always coded as the last mention (except for someone who has the maximum number of responses).

	2.5.2 Sending Error Messages To A Print File
	2.5.3 Specifying More Than One Command Per Line
	2.5.4 Additional Commands

	Reformatting Your Data

	3
	Introduction
	3.1 WHY REFORMAT DATA?
	The Overall Structure
	Rules For Manipulating Data

	3.1.2 Blanking Data
	3.1.3 Printing Text and Data Fields
	3.1.4 Data Manipulation for Punch, String, and Numeric Variables
	Direct Data Moves

	3.1.5 Data Manipulation for Predefined Variables
	3.1.6 Relational Operators
	3.1.7 Formatting Data Elements
	Zero-Filling Data
	Decimal Points in Data
	Spreading Multi-Punched Data
	Transforming Numbers Into Strings
	Recoding 10-Point Scales
	Recoding To Exclude Selected Responses
	Recoding To Reverse A Scale Question

	3.1.8 Data Manipulation in the ~CLEANER Block
	3.2 Creating Subsets of Data Files
	HOLD_OUTPUT_UNTIL_SUBSET
	~EXeCUTE Do_subset
	Sampling=#n and sampling=.n
	Try_for_sampling=#n and try_for_sampling=.n
	Select=
	Casewritten
	Combining options
	Num_sample_cases=
	Repeatable Subset Results

	3.3 Mentor EQUIVALENTS TO SPL

	Basic Tables

	4
	Introduction
	4.1 PARTS OF A TABLE
	4.2 TABLE BUILDING BASICS
	4.3 DEFINING TABLE ELEMENTS
	4.3.1 Assigning Variable Names
	Default Varname Generation

	4.3.2 Changing Table Element Defaults (The DEFINE EDIT Statement)
	The Three Levels of EDIT

	4.3.3 Changing Table Processing Defaults (The SET Statement)
	4.4 TABLE BUILDING (The INPUT and EXECUTE statements)
	Printing Individual Tables (Using TABLE_SET or TABLE=)
	Storing Tabsets in the DB file (Using STORE_TABLES)
	Making Several Tables (Using MAKE_TABLES)

	4.5 META COMMANDS
	The DB File

	4.6 DEFINING DATA
	Data Types
	Using Punctuation to Create Categories
	Joiners

	4.6.1 Summary of Rules for Defining Data
	Samples of Data Field Locations
	Punctuation Used In Referencing Data Field Locations
	Category Definitions Using Caret (^) For Punch Data
	Punctuation Used In Defining Punch Data
	Category Definitions Using Pound Sign (#) For ASCII And Numeric Data
	Punctuation Used In Defining ASCII And Numeric Data

	4.7 DEFINING THE BANNER
	4.8 FORMATTING BANNER TEXT
	Sample Specifications And Table
	The STUB TABLE_SET
	Formatting A Banner Wider Than 80 Columns
	Editing the Banner

	4.9 GENERATING BANNER SPECS
	1 to simplify the process of writing banners
	2 to consolidate everything so that you have one set of banner specs that generate a print banner, a delimited banner, and an html banner.
	How to create a banner using make_banner format

	4.10 DEFINING INDIVIDUAL TABLES
	How To Add Ranking To A Table
	How To Add A Base To A Table
	How To Add Summary Statistics To A Table

	4.11 SAMPLE SPECIFICATION FILES
	Using the DB File
	Putting It All Together
	Sample Table
	Defining a Procedure for Complex Banners

	4.12 USING Survent TO GENERATE Mentor SPECIFICATION FILES
	CAT Question
	FLD Question
	Survent specs
	Mentor tabset
	Mentor tabset
	NUM Question
	Survent specs
	Mentor tabset
	Survent specs
	Mentor tabset
	Changing What Appears in the DEF File
	!MISC option
	NUM_EXCEPTIONS=stubtitle,stubtitle

	USING E-TABS
	More E-Tab Options

	Intermediate Tables

	5
	Introduction
	5.1 Expressions and Joiners
	Logical Joiners
	Vector Joiners
	Math Joiners

	5.1.1 Logical Joiners
	5.1.2 Vector Joiners
	WITH
	BY
	WHEN
	INTERSECT
	NET
	OTHERWISE
	JOIN

	5.1.3 Mathematical Joiners And Operators
	5.2 Axis Commands/Cross-Case Operations
	5.3 Changing Table Specifications
	Global Print Options
	Column Print Options
	Row Print Options
	Sample Table Printed With Default Options
	Print Options
	Changing Percent Base Within A Stub

	5.4 Printing Multiple Banners For Each Table Row
	5.5 TABLE NAMES
	Printing Leading Alpha Character
	Specify Starting Name
	Printing Name With Prefix Or Suffix
	Replacing “Table”
	Specifying Unique Table Names
	Printing Different Table Names

	5.6 Reprinting Tables
	Accessing The DB File
	Defining A New Edit Statement And Table Header
	Reprinting The Tables
	Adding Statistics Rows To Finished Tables

	Advanced Tables

	6
	Introduction
	6.1 TOP BOX/BOTTOM BOX SUMMARY TABLES
	6.1.1 Top Box Tables with Constant Percentage Base
	6.1.2 Top Box Tables with a Changing Percentage Base
	6.1.3 Ranking of Top Box Tables
	6.2 SUMMARY STATISTICS (MEANS)
	6.2.1 Means on Rating Scales Using the Variable Definition
	With No Recoding Needed
	With A Numeric Don't Know Excluded
	With The Scale Reversed
	With The Scale Reversed And DK/NA Coded As Numeric
	With 10 Coded As A Zero, An X, Or Y

	6.2.2 Means For Range Type Variables
	Interpolated Medians

	6.2.3 Means For Numeric Data
	With No Recoding Necessary
	With Don't Know Coded As A Number
	With A Numeric Value Coded As A Non-Numeric

	6.2.4 Summary Statistics in the Column Variable
	Summary Statistics In Both The Column And The Row

	6.2.5 Means And Medians Using The EDIT Options
	Means On A Rating Scale
	Means On A Rating Scale With Rows In The Middle That Need To Be Excluded
	Means On A Range Variable
	Changing The Default Print Options
	Column Medians
	Percentiles

	6.2.6 Mean Summary Tables
	Rating Scales With No Recoding
	Rating Scales With Recoding Needed
	Rating Scales With The Don't Know Coded As A Numeric
	Rating Scales With The Scale Reversed
	Rating Scales With The Scale Reversed and Don’t Know Coded As A Numeric
	Rating Scales With 10 Coded As A Zero (0)
	Range Variables
	Numeric Data With The Don't Know Coded As A Non-Numeric
	Numeric Data With The Don't Know Coded As Numeric
	Numeric Data With A Numeric Value Coded As A Non-Numeric Code
	Using the “BY” joiner

	6.2.7 Means Scattered Throughout The Table
	Mean/Frequency Summary Table

	6.2.8 Summary Statistics with Arithmetic
	6.3 WEIGHTED TABLES
	6.3.1 Weighting with Weight Value already Stored in the Data
	6.3.2 Weighting using the SELECT Function
	6.3.3 Printing Both a Weighted and an Unweighted Total Row
	6.3.4 Storing the Weight in the Data
	6.3.5 Assigning Different Weights to Different Banner Points
	6.3.6 Printing Both a Weighted and an Unweighted Total Column
	6.3.7 Assigning Different Weights To Different Rows
	6.3.8 WEIGHTING USING MULTIPLE FACTORS
	6.4 SUMMARY TABLES (MARKET SHARE)
	6.5 HOLECOUNT AND BREAK TABLES
	6.5.1 Holecount Table with Different Brands (Locations) in the Banner
	6.5.2 Holecount Table with Rating Scales (Different Values) in Banner
	6.5.3 Holecount Table with a Varying Percentage Base
	6.5.4 Break Table with a Multi-level Banner
	6.6 MULTIPLE LOCATION TABLES (OVERLAY AND LOOP STRUCTURES)
	6.6.1 Simple Multiple Location Tables
	6.6.2 Tables With Both the Row and the Base Overlayed
	6.6.3 Overlay Tables With Summary Statistics (Means)
	6.6.4 Tables with the Banner and the Row Overlayed
	6.7 LONG BRAND LISTS
	1 Producing nets of categories that are similar.
	2 Ranking the table with those categories mentioned most printing first.
	3 Suppressing rows that have no mentions.
	4 Collapsing rows with few mentions into an All Other category.

	6.7.1 Producing Net Categories
	6.7.2 Ranking With Nets And Sub-Nets
	6.7.3 Suppressing Blank Rows in a Large List
	6.7.4 Collapsing Low Mentions into another Category
	6.7.5 Printing Subtotal Rows
	6.8 MASTER-TRAILER PROCESSING
	1 Start with the primary file (hhdata).
	2 Do a choosefile on the secondary file (indata), which is the file associated with the studyname "indata".
	3 Starting with the first case look for the matching field indata![1.5$] to match hhdata!case_id. The matching field can be any expressions resulting in a string (for example, studyname![1.5$] join studyname![8$]).
	4 If the matching field is less, then read forward in the secondary file. If it is greater, then quit the loop. This only works if the file given by studyname is sorted by the matching field.
	5 Now execute the interior of the while endwhile for every case that passes any select= on the ~input statement and also has a matching field with the same CASE_ID in the primary file.
	6 Do a choosefile back to the primary file and go on.

	Tables Viewable Through a Browser

	7
	Introduction
	WebTables Overview
	Browser Compatibility
	Example Mentor Files Available Online

	7.1 Basic WebTables
	Writing Specs
	Managing Your Specs
	Using Set Commands in tabs.spx
	Global Edit Statements in the tabs.spx

	Files Needed to Create WebTables
	Files Produced by the Mentor Run
	Note for Windows/DOS clients
	When manually testing and preparing to Go Live

	Basic steps to Running a Live Mentor 7.7 Job
	1 Write the specs as if it’s a straight Mentor job, adding the necessary web-related commands to the tabs.spx file. This will allow you to produce an htm file.
	2 The live data must be transferred with fastcopy to a directory where it can be accessed. This step will prevent the corruption of the data set. (Fastcopy is a CfMC SUPER command. For more information, see Chapter 4 of your Survent Manual.)
	3 Run the tables.
	4 Once the tables are made, the htm (html) file must be transferred to the Web- accessible directory onnthe server, unless the tables have been run in that area of the server. They will then be viewable through a Web browser.

	Setting up Directories and Running WebTables
	Automating or Running Tables on a Set Schedule
	1 A CfMC cron job script is included in this documentation. It follows the example spec files. It is included as a guideline tool. So, in order to automatically run tables, you must:
	2 Set up the cron job.
	3 Consider password protecting your tables. (See the Webpass script, which is also included in this document.)
	4 If more than one banner is used or you would like to access both Web Tables and downloadable ASCII tables, an index page would be a good way to achieve this. (An example of an index.html file is also included.)

	7.2 Complex WebTables
	Basic Colors
	Helpful Internet Websites for Choosing Colors
	Sources for CSS Help
	Validation Websites

	Basic Commands with and without Cascading Style Sheet
	Example Files and How They Work
	The tabs.spx file
	The banner_a.def File
	The rrunr_x.def file
	The index.html file
	Example Output of a WebTable

	Custom CfMC Scripts
	THE WebPass ScRIPT

	7.3 ON-DEMAND TABLES
	7.3.1 Installation Requirements
	1 /var/www/html/cfmcweb/php/ondemand: holds php scripts. The files are:
	2 /var/www/html/cfmcweb/css: for html cascading style sheets. CfMC has included:

	7.3.2 Installation requirements
	Setup
	1 1 - A CfMC cron job script is included in this documentation. It follows the example spec files. It is included as a guideline tool. So, in order to automatically run tables, you must:
	2 2 - The study is not running on the server

	7.3.3 Editing
	WEBTAB.ADD

	7.3.4 Adding a Base or Weight
	1 In the .qpx
	2 Adding it with a file. This file can be named whatever you want it be, but by default a file called webtab.add will be looked for if the add option is used.
	3 Defining base or weight directly on the On-Demand selection screen define box.
	Adding a File on the Command Line
	Using the Define Box
	edit options
	Files Created

	7.3.5 Creating On-Demand Tables
	On-Demand Selection Screen
	Final Output of Tables

	Preparing Mentor Output Files For Post Processing
	1 Creating three files simultaneously by making your own tabsets.
	2 Creating three files simultaneously by using the .ban file and .def file created by ~prepare
	3 Customizing the delimited file
	4 Customizing an html file
	5 Putting the table of contents in a frame in the html file

	Augmenting Prepare Specs to Enhance Tables

	Statistics (Significance Testing)

	8
	Introduction
	8.1 SIGNIFICANCE TESTING TO MARK CELLS
	8.1.1 The STATISTICS Statement
	1 An independent test on columns B and C
	2 A dependent test on columns D, E, and F
	3 An independent test on columns G, H, and I
	4 An inclusive test on columns A, K, L, and M
	5 A dependent test on columns B, D, G, and J

	8.1.2 Independent, Dependent, Inclusive, and Printable Tests
	new protection value in significance testing

	8.1.3 Setting the Confidence Level
	8.1.4 Standard Significance Testing
	8.1.5 Changing the Confidence Level
	8.1.6 Bi-Level Testing (Testing at Two Different Confidence Levels)
	8.1.7 Using Nonstandard Confidence Levels
	8.1.8 Inclusive T Tests
	8.2 Changing the Statistical Base
	8.2.1 Changing to the Any Response Row
	8.2.2 Changing to Any Row in the Table
	8.2.3 Changing in the Middle of a Table
	8.3 Changing the Statistical Tests
	1 The All Possible Pairs Test (default)
	2 The Newman-Keuls Test
	3 The Anova-Scan Test
	4 The Fisher Test
	5 The Kruskal-Wallis Test

	8.3.1 The All Possible Pairs Test
	8.3.2 The Newman-Keuls Test Procedure
	1 The N-K procedure estimates which of the two columns is most likely to be different and tests it first. If they are not differ...
	2 The N-K procedure uses a pooled variance. This pooled variance is calculated by using a formula to combine the variance for ea...
	3 The N-K procedure requires slightly higher t values to mark items as significantly different based on how many columns are being tested.

	8.3.3 Other Testing Procedures
	Repeated Measures Option
	1 Both the fisher and anova_scan do an anova first.
	2 They both test for significance at the level specified.
	3 If the anova is significant the program goes ahead otherwise it stops.
	4 If the program goes ahead, then:

	Example One - using the All Possible Pairs test
	Example Two - using the anova_scan and repeated measures
	Example Three - using the Fisher test and Repeated Measures

	8.3.4 Changing the Variance
	8.4 SIGNIFICANCE TESTING ON WEIGHTED TABLES
	8.4.1 Weighted Tables with Different Weights
	8.5 PRINT PHASE STATISTICAL TESTING
	8.5.1 EDIT Options
	8.5.2 Changing the Confidence Level and the Type of Test
	8.5.3 Changing the Type of Test by Row
	8.6 EXCLUDING ROWS/COLUMNS FROM SIGNIFICANCE TESTING
	8.6.1 Testing Mean Rows Only
	8.6.2 Excluding any Row from Statistical Testing
	8.6.3 Excluding Columns with Low Bases from Statistical Testing
	8.7 PRINTING THE ACTUAL T AND SIGNIFICANCE VALUES
	8.8 SIGNIFICANCE TESTING ON ROWS (PREFERENCE TESTING)
	8.8.1 Direct Comparison Testing
	8.8.2 Distributed Preference Testing
	8.9 CHI-SQUARE AND ANOVA TESTS
	Discussion Of Output
	Other ANOVA And Chi-square Options

	8.10 NOTES ON SIGNIFICANCE TESTING
	8.10.1 What Can and Cannot Be Tested
	8.10.2 Degrees of Freedom
	8.10.3 Verifying Statistical Tests
	8.10.4 Error and Warning Messages
	8.10.5 Commands Summary

	Specialized Functions

	9
	Introduction
	9.1 GENERATING SPECIALIZED REPORTS
	The PRINT_LINES Command
	Line Printing Control Codes
	Codes Used To Print Information From The Data Or A Variable
	Codes To Print Specific Characters
	Variable References

	9.1.1 Printing a Report Footer using WHEN BOTTOM
	1 Turn off the Mentor's new line default with ~SET -AUTOMATIC_NEW_LINE.
	2 Count the exact number of lines that should appear at the bottom of the page. This number should include all blank lines, and should account for any \N commands.
	3 Use the number calculated above on the WHEN BOTTOM # statement. To print three lines at the bottom of each page, the WHEN BOTTOM statement would be: WHEN BOTTOM 3.
	4 The first line of the WHEN BOTTOM block should be "SKIP_TO -#", where # is the same number specified on the WHEN BOTTOM statem...
	5 If you use both WHEN TOP and WHEN BOTTOM together, the WHEN BOTTOM statements must precede other regular print statements.
	6 The WHEN BOTTOM block will not print on the bottom of the last page of the run unless you include instructions for EXECUTE_EOF. These instructions should be exactly those found inside of the WHEN BOTTOM block.

	9.2 TABLE MANIPULATION
	9.3 USING Mentor's SYSTEM CONSTANTS AND SPECIAL FUNCTIONS
	9.3.1 System Constants
	Variable Constants
	Case Reading Constants
	System Information Constants

	9.3.2 Functions
	ARITHMETIC FUNCTIONS
	VECTOR FUNCTIONS
	NUMBER RETURNING FUNCTIONS
	LOGICAL FUNCTIONS
	TABLE RELATED FUNCTIONS
	INTEGER FUNCTIONS
	1 If one of the files can't be opened (for example, if one of the files does not exist)
	2 If the resulting line would be too long. For example, if you are comparing two files with a PAGE_WIDTH=132 and writing the FIL...
	3 If one of the file names is a bad file name

	STRING FUNCTIONS

	9.4 PARTITIONING DATA FILES
	Preliminaries
	Basic Sums and Statistics
	Sets of Variables: Newman-Keuls Preliminaries
	1 No overlap, independent groups: Nc = 0
	2 Complete overlap, correlated observations: N1 = N4 = 0
	3 M4 is a subset of M1: N1 = 0, n = 1, a3 = a4, s3 = s4

	9.4.1 The Newman-Keuls Procedure
	9.4.2 Statistical Testing In Mentor
	1 Tests Between Columns: Use the Newman-Keuls procedure except when:
	2 Tests Between Rows: These are the same as a T-test with independent groups, i.e., the same as 1.1 with two indices and Tkm=0. ...
	3 Difference Tests:

	9.4.3 TABLE-BUILDING PHASE
	Notations And Miscellaneous Facts
	Estimate For Means, Standard Deviations, Standard Errors and Correlations
	More Estimates
	FORMULAS FOR STATISTICS CREATED DURING TABLE BUILDING (ROW=)
	FORMULAS FOR STATISTICS CREATED DURING THE PRINT PHASE (EDIT=)
	T and Z Tests
	WALKER T-Test
	RANK SUM/WILCOXEN TEST
	1 Rank the cells in the cumulative sample. Call the ranks R1, R2, . . . , etc.
	2 Call the sample size of the smaller group N1. For this group, let:
	3 Call the size of the bigger group N2. N = N1 + N2
	4 Normalize T with
	5 Correction for ties: Call the ties T1, T2 , . . . , etc.

	More references:

	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

